Supplementary information for

Mineralization of organic acids in aqueous suspensions of gold nanoparticles supported on cerium(IV) oxide powder under visible light irradiation

Results

Stability test of 1.0 wt%Au/CeO₂

To evaluate the stability of 1.0 wt%Au/CeO₂ in mineralization of formic acid, 1.0 wt%Au/CeO₂ was used repeatedly, indicating that it continuously decomposed formic acid under visible light irradiation without losing its activity (**Fig. S1**).

Fig. S1 Time course of evolution of CO_2 from formic acid (60 µmol) in an aqueous suspension of 1.0 wt%Au/CeO₂ under irradiation of visible light. After 12-h irradiation and evacuation, additional formic acid (60 µmol) was injected and the suspension was irradiated again.

Mineralization of formic acid by various Au-loaded CeO2 samples

Four other CeO₂ powders (JRC-CEO-1, -2, -3, -4) were supplied by the Catalysis Society of Japan and were used for decomposition of formic acid in aqueous suspensions under irradiation of visible light after loading 1 wt% Au. Some physical properties of these CeO₂ powders are summarized in **Table S1**. As in the case of Au-loaded CeO₂(Nanotech), CO₂ was evolved linearly with irradiation time for all Au/CeO₂ samples (**Fig. S2**).

JRC-CEO	Crystallite size/nm	Specific surface area/m ² g ⁻¹
-1	7.4	157
-2	8.7	123
-3	11.0	81
-4	12.6	65

Table S1Some physical properties of CeO2 powders

Fig. S2 Time courses of evolution of CO₂ from aqueous solutions of formic acid in the presence of Au/CeO₂(1) (circles), Au/CeO₂(2) (squares), Au/CeO₂(3) (triangles) and Au/CeO₂(4) (diamonds). The number in parentheses after CeO₂ corresponds to JRC-CEO-n (n = 1-4) supplied by the Catalysis Society of Japan.