Supporting Information:

Reversible H₂ Splitting between Ru(II) and a Remote Carbanion in a Zwitterionic Compound

Elzbieta Stepowska, Huiling Jiang and Datong Song*

Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto

80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

1. Synthetic procedures and spectroscopic data.

General. All reactions were handled under argon using standard Schlenk techniques or in a nitrogenatmosphere glovebox from MBraun. Unless otherwise stated, all chemicals were purchased from commercial sources and used without further purification. Pentane, hexanes, C₆H₆, C₆D₆ and THF were dried over sodium/benzophenone, vacuum transferred and stored over activated 4 Å molecular sieves in the glovebox. 4,5-Diazafluorene (LH),¹ [RuCl₂(PPh₃)₃]² and [RuHCl(PPh₃)₃]³ were prepared according to literature procedures. CD₂Cl₂ and CDCl₃ were purchased from Cambridge Isotope Laboratories, Inc., dried over CaH₂, and vacuum transferred before use. NMR spectra were recorded on a Varian 400 spectrometer working at 400 MHz for ¹H, 162 MHz for ³¹P and 100 MHz for ¹³C, or on a Varian 300 spectrometer working at 300 MHz for ¹H and 121 MHz for ³¹P. Elemental analyses were performed at our Chemistry Department using PE 2400 C/H/N/S analyzer. Due to the air- and moisture-sensitive nature of **2** and **3**, no satisfactory elemental analysis results were obtained for these compounds.

Synthesis of *cis,cis*-[RuHCl(LH)(PPh₃)₂] (1): 1.200 g (1.3 mmol) of [RuHCl(PPh₃)₃] was dissolved in 90 mL of THF and 0.220 g (1.3 mmol) of LH was added as a solid. The solution was stirred overnight in the glovebox. The orange precipitate was collected by filtration, washed several times with THF and dried under vacuum (86 % yield). ¹H NMR (CDCl₃, 300 MHz) δ 8.16 (d, 1H, LH), 7.97 (d, 1H, LH),

7.74-7.68 (m, 7H, 6H from PPh₃, 1H from LH), 7.47 (d, 1 H, LH), 7.20-6.99 (m, 13H, 12H from PPh₃, 1H from LH), 6.85-6.83 (m, 6 H, PPh₃), 6.79 (dd, 1H, LH), 3.95 (d, 1H, LH, ${}^{2}J_{H-H}$ = 15 Hz), 3.74 (d, 1H, LH, ${}^{2}J_{H-H}$ =15 Hz), -16.32 (t, 1H, ${}^{2}J_{H-P}$ =27.8 Hz, Ru-*H*). ³¹P NMR (CDCl₃, 162 MHz) δ 75.37 (dd, ${}^{2}J_{P-P}$ = 35 Hz, ${}^{2}J_{H-P}$ = 20 Hz), 65.25 (dd, ${}^{2}J_{P-P}$ = 35 Hz, ${}^{2}J_{H-P}$ = 20 Hz). Anal. Calcd for RuP₂N₂ClC₄₇H₃₉: C, 67.99; H, 4.73; N, 3.37. Found: C, 67.57; H, 4.62; N, 3.51.

Synthesis of *cis,trans*-[**RuH**(**L**)(**N**₂)(**PPh**₃)₂] (2): 0.443 g (0.53 mmol) of **1** was dissolved in 50 mL of THF and 0.063 g (0.56 mmol) of KO^tBu was added as a solid. The solution was stirred overnight under nitrogen. The volume was reduced by vacuum and pentane was added to afford **2** as a purple precipitate (80% yield). Crystals suitable for X-ray crystallographic analysis were obtained from slow diffusion of pentane into a concentrated solution of **2** in THF. ¹H NMR (C₆D₆, 400 MHz) δ 7.96 (d, 1H, ³J_{H-H} = 4 Hz, L), 7.76 (d, 1H, ³J_{H-H} = 8 Hz, L), 7.56 (d, ¹H, ³J_{H-H} = 8 Hz, L), 7.35 (m, 12 H, PPh₃), 6.96 (d, 1H, ³J_{H-H} = 4 Hz, L), 6.85 (m, 18 H, PPh₃), 6.81 (d, 1H, ³J_{H-H} = 4 Hz, L) 6.44 (s, 1 H, C*H* of the C₅ ring of L), 6.16 (dd, 1H, ³J_{H-H} = 4, 8 Hz, L), -12.23 (t, 1H, ²J_{P-H} = 20 Hz, Ru-H). ³¹P NMR (C₆D₆, 162 MHz) δ 49.65 ppm. IR(nujol): v(Ru-N₂) 2092 (s) cm⁻¹. ¹³C NMR (C₆D₆, 100 MHz) δ 141.1, 140.6, 137.8, 135.1, 134.0 (t, PPh₃), 133.6 (t, PPh₃), 129.7, 128.2 (t, L), 127.5, 127.4, 125.3, 124.6, 117.9, 117.6, 82.2 (CH of the C₅ ring of L).

Synthesis of *cis,cis,trans*-[**Ru**(**H**)₂(**LH**)(**PPh**₃)₂] (3): 0.300 g (0.36 mmol) of **1** was dissolved in 25 mL of THF. 0.016 g (0.4 mmol) of NaH (60 wt% dispersion in mineral oil) was added as a solid. The mixture was stirred overnight under nitrogen, filtered through Celite, and concentrated under vacuum. Pentane was added to afford **3** as a purple precipitate (61 % yield). Crystals suitable for X-ray crystallographic analysis were obtained from slow diffusion of hexanes into a concentrated solution of 3 in THF. ¹H NMR (C₆D₆, 300 MHz) δ 8.03 (d, 2 H, ³J_{H-H} = 6 Hz, LH), 7.79 (m, 12 H, PPh₃), 6.97 (m, 18 H, PPh₃), 6.68 (d, 2 H, ³J_{H-H} = 6 Hz, LH), 6.28 (dd, 2 H, ³J_{H-H} = 3, 6 Hz, LH), 2.97 (s, 2 H, CH₂ of LH) -

15.43 (t, 2 H, ${}^{2}J_{P-H} = 27$ Hz, Ru-*H*). ${}^{31}P{}^{1}H$ NMR (C₆D₆, 121 MHz) δ 63.21. ${}^{13}C$ NMR (C₆D₆, 100 MHz) δ 162.0, 151.7, 140.9 (t, PPh₃), 133.9(t, PPh₃), 133.4, 127.6, 127.4 (t, LH), 125.7, 123.2, 35.4 (CH₂ of LH).

Figure S2. Partially deuterated compound 3, resulting from the reaction of 2 with D₂.

3. Further mechanistic discussions.

If the initial H₂ splitting was Noyori type followed by isomerization, in addition to the observed deuterium incorporation onto the 9-position of the LH ligand, deuterium scrambling onto the pyridine rings should also be possible (see below). However, no deuterium scrambling onto the pyridine rings was observed.

4. X-ray Diffraction Analyses.

Single-crystal X-ray diffraction data for **2** were collected on a Bruker Kappa Apex II diffractometer and those for **3** were collected on a Nonius Kappa CCD diffractometer. In all cases, the collection conditions are as follows: Mo K α radiation ($\lambda = 0.71073$ Å), 50 kV and 30 mA, 150 K controlled by an Oxford Cryostream 700 series low-temperature system. The diffraction data for **3** were processed with the DENZO-SMN software package,⁴ while the data for **2** were processed with the Bruker APEX2 software package.⁵ All structures were solved by the direct methods and refined using SHELXTL V6.10.⁶ All non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms were calculated using the riding model.

References:

- 1 a) M. J. Plater, S. Kemp, E. Lattmann, *J. Chem. Soc.*, *Perkin Trans. 1*, 2000, **6**, 971-979. b) R. P. Thummel, F. Lefoulon, R. Mahadevan, *J. Org. Chem.* 1985, **50**, 3824.
- 2 S. K. Sharma, V. K. Srivastava, R. V. Jasra, J. Mol. Catal. A: Chem. 2006, 245, 200.
- 3 R. Abbel, K. Abdur-Rashid, M. Faatz, A. Hadzovic, A. J. Lough, R. H. Morris, *J. Am. Chem. Soc.* 2005, **127**, 1870.
- 4 Z. Otwinowski, W. Minor in *Methods in Enzymology, Macromolecular Crystallography, Part A* (Eds.: C. W. Carter, R. M. Sweet) Academic Press: London, 1997; vol. **276**, pp. 307-326.
- 5 Apex 2 Software Package; Bruker AXS Inc. 2008.
- 6 Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 Appendix NMR Spectra of Compounds 2 and 3

¹H NMR spectrum of 2

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 $^{13}C\ NMR\ Spectrum\ of\ 2$

Because of the incomplete decoupling in the hydride region, the ³¹P signal has some residual splitting pattern.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 $^1H~NMR~Spectrum~of~{\bf 3}$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 $^{13}C\ NMR\ Spectrum\ of\ 3$

