- Electronic Supplementary Information (ESI) -

Highly enantioselective hydrogenation of α-aryl-β-substituted acrylic acids catalyzed by Ir-SpinPHOX

Yi Zhang, a,b Zhaobin Han, Fuying Li, Kuiling Ding, b,* Ao Zhang a,*

 ^a Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203 (P.R. China).E-mail: aozhang@mail.shcnc.ac; Fax: (+86) 21 50806035
^b State Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (P.R. China). E-mail: kding@mail.sioc.ac.cn; Fax: (+86) 21 64166128.

General. All reactions and manipulations were performed using standard Schlenk techniques. Anhydrous THF and toluene were distilled from sodium benzophenone ketyl. Anhydrous DCE, Et₃N and isopropyl alcohol were distilled form CaH₂ under an atmosphere of argon. Anhydrous MeOH and EtOH were distilled from magnesium under nitrogen atmosphere. Melting points were measured on a RY-I apparatus and uncorrected. ¹H, ¹³C, ³¹P and ¹⁹F NMR spectra were recorded on Varian Mercury 300 MHz or 400 MHz spectrometers. Chemical shifts (δ values) were reported in ppm downfield from internal TMS (¹H NMR) or CDCl₃ (¹³C NMR), external 85% H₃PO₄ (³¹P NMR) and external CF₃CO₂H (¹⁹F NMR), respectively. Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. EI (70 ev) and MALDI-TOF mass spectra were obtained on Agilent 5973N and MATRIX VOYAGR-DE STR spectrometers, respectively. HRMS(MALDI) were determined on IonSpect 4.7 TESLA FTMS spectrometers. HPLC analyses were performed on a JASCO 2089 or Techcomp N2000 liquid chromatograph.

Materials. (±)-Spiro[4,4]-1,6-nonane-diketone was prepared in >50% overall yield in hundreds-gram scale from industrially available diethyl adipate and ethyl 4-bromobutanoate by following a modified literature procedure. S1 [Ir(COD)Cl]₂ was purchased from Stream Co. and used as received. NaBAr_F was prepared according to the literature procedure. The ligand **2a-e** and their Ir(I) complexes were prepared according to our previous reported procedure. All acids were prepared according to the reported procedures. Acids **1b-d,f,i-k** and products **3b-e,i-j,l** are known compounds and their H NMR data are consistent with those of the literatures. S5~S10

Preparation and Analytical Data of Spiro Phosphino-Oxazoline Ligands. The synthetic pathway of the ligands similar to our previous report is outlined as follow^{S3}:

⁽S1) J. A. Nieman and B. A. Keay, Synth. Commun., 1999, 29, 3829.

⁽S2) D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba and M. D. Smith, *Inorg. Chem*, 2001, **40**, 3810.

⁽S3) Z. Han, Z. Wang, X. Zhang and K. Ding, Angew. Chem., Int. Ed., 2009, 48, 5345.

⁽S4) P. H. Briner, M. C. T. Fyfe, J. P. Madeley, P. J. Murray, M. J. Procter and F. Spindler, *Int. Pat.*, WO 2006/016178, 2006.

⁽S5) G. Argouarch, O. Samuel and H. B. Kagan, Eur. J. Org. Chem., 2000, 39, 2885.

⁽S6) G. Sarakinos and E. J. Corey, *Org. Lett.*, 1999, **1**, 1741.

⁽S7) S. Li, S.-F. Zhu, C.-M. Zhang, S. Song and Q.-L. Zhou, *J. Am. Chem. Soc.*, 2008, **130**, 8584.

⁽S8) M. C. T. Fyfe, L. S. Gardner, M. Nawano, M. J. Procter, C. M. Rasamison, K. L. Schofield, V. K. Shah and K. Yasuda, *Int. Pat.*, WO 2004/072031, 2004.

⁽S9) G. R. Bebernitz and L. Kirman, *Int. Pat.*, WO 2007/041366, 2007.

⁽S10) S. Chen, P. T. W. Cheng and R. A. Smirk, *Int. Pat.*, WO 2008/005914, 2008.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Analytic data for ligand 2f-h (R,S)-2f (R = iBu, Ar = o-Tol)

Colorless oil, yield 68%; ¹H NMR (300 MHz, CDCl₃) δ = 7.26-7.00 (m, 8H), 6.43 (br s, 1H), 5.43 (d, J = 2.7 Hz, 1H), 3.96-3.91 (m, 2H), 3.81-3.74 (m, 1H), 2.82-2.69 (m, 2H), 2.56-2.23 (m, 10H), 1.91-1.81 (m, 2H), 1.56-1.49 (m, 2H), 1.18-1.11 (m, 1H), 0.91 (t, J = 6.6 Hz, 3H), 0.80 (d, J = 6.6 Hz, 3H) ppm; ³¹P NMR (121 MHz, CDCl₃) δ = -43.95 (s) ppm; ESI-MS m/z : 458.2 [M+H⁺]; HRMS (MALDI) m/z: calcd. for C₃₀H₃₇NOP: 458.2607, Found: 458.2603 [M+H⁺].

(R,S)-2g (R = iBu, Ar = 3,5-Xyl)

Colorless oil, yield 21%; ¹H NMR (300 MHz, CDCl₃) δ = 7.03 (d, J = 6.3 Hz, 2H), 6.95-6.93 (m, 2H), 6.86 (s, 1H), 6.42 (s, 1H), 5.68 (t, J = 2.1 Hz, 1H), 4.03-3.97 (m, 2H), 3.82-3.78 (m, 1H), 2.70-2.63 (m, 1H), 2.54-2.36 (m, 3H), 2.33-2.30 (m, 1H), 2.28 (s, 6H), 2.24 (s, 6H), 2.13-2.06 (m, 1H), 1.92-1.82 (m, 2H), 1.55-1.47 (m, 2H), 1.18-1.48 (m, 1H), 0.92 (t, J = 2.7 Hz, 3H), 0.80 (d, J = 4.8 Hz, 3H) ppm; ³¹P NMR (121 MHz, CDCl₃) δ = -26.76 (s) ppm.

(R,S)-2h (R = Ph, Ar = o-Tol)

Colorless oil, yield 41%; ¹H NMR (400 MHz, CDCl₃) δ = 7.32-7.08 (m, 13H), 6.58-6.57 (m, 1H), 5.46-5.44 (m, 1H), 5.15 (t, J = 9.2 Hz, 1H), 4.33 (dt, J = 8.0 Hz, 1H), 3.83 (t, J = 8.2 Hz, 1H), 2.91-2.84 (m, 1H), 2.80-2.74 (m, 1H), 2.61-2.56 (m, 1H), 2.45 (s, 3H), 2.37 (s, 3H), 2.36-2.29 (m, 3H), 1.97-1.88 (m, 2H) ppm; ³¹P NMR (162 MHz, CDCl₃) δ = -45.33 (s) ppm.

Analytic data for Ir complex of 2f-h Ir(I)/(R,S)-2f (R = iBu, Ar = o-Tol)

Red powder, yield 83%; M.p. = 180-183 °C; $[\alpha]_D^{20} = -16.1^\circ$ (c 0.51, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 9.25 (q, J = 7.2 Hz, 1H), 7.72 (br s, 8H), 7.58-7.52 (m, 5H), 7.45-7.34 (m, 4H), 7.19-7.15 (m, 1H), 7.09-7.02 (m, 1H), 6.07-6.00 (m, 2H), 5.27 (br s, 1H), 4.54-4.49 (m, 1H), 4.38-4.35 (m, 2H), 4.24-4.19 (m, 1H), 2.82-2.79 (m, 1H), 2.69 (s, 3H), 2.57-2.29 (m, 5H), 2.13 (s, 3H), 2.09-1.69 (m, 9H), 1.42-1.20 (m, 6H), 0.98 (t, J = 7.2 Hz, 3H), 0.82 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ = 117.6 (d, J = 1.8 Hz), 161.7 (q, J = 49.7 Hz), 144.4 (d, J = 3.7 Hz), 145.3, 143.1, 142.4, 142.1, 140.5, 140.4, 135.2, 134.8, 134.6, 133.1 (d, J = 6.7 Hz), 132.9 (d, J = 2.5 Hz), 132.6 (d, J = 6.1 Hz), 132.1 (d, J = 7.9 Hz), 131.7 (d, J = 2.5 Hz), 130.4, 130.0, 129.5 (m), 129.1 (m), 128.7 (m), 128.3 (m), 126.3, 126.1, 125.9, 125.7 (2 peak), 125.6, 123.7, 123.0, 122.7, 119.1, 117.6-117.3 (m), 89.7 (d, J = 7.9 Hz), 80.0 (d, J = 16.4 Hz), 73.4, 69.1, 68.9, 68.5, 68.0, 59.6, 42.5 (d, J = 6.0 Hz), 38.6, 35.8 (d, J = 4.9 Hz), 34.2, 33.8, 31.7, 31.2 (d, J =

12.1 Hz), 27.9, 26.4, 25.6, 24.6, 24.5, 23.0 (d, J = 3.7 Hz), 12.0, 11.6 ppm; ³¹P NMR (121 MHz, CDCl₃) $\delta = 2.52$ (s) ppm; ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -62.80$ (s) ppm; IR (film) v 2972, 2840, 1671, 1592, 1507, 1458, 1387, 1352, 1275, 1167, 1128, 1030, 900, 886, 834, 776, 716, 681, 668 cm⁻¹;

MS (MALDI) m/z: 648.5 [M-COD-BAr_F]⁺; HRMS (MALDI) m/z calcd. for $C_{38}H_{48}NOP^{191}Ir^+$ [M-BAr_F]⁺: 756.3074, Found: 756.3073.

Ir(I)/(R,S)-2g (R = iBu, Ar = 3,5-Xyl)

Red powder, yield 80%; M.p. = 124-125 °C; $[\alpha]_D^{20}$ = -10.0° (c 0.26, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.71 (s, 8H), 7.52 (s, 4H), 7.43 (d, J = 11.7 Hz, 2H), 7.18-7.09 (m, 4H), 6.24 (s, 1H), 6.16 (d, J = 7.8 Hz, 1H), 5.03 (br s, 1H), 4.47-4.22 (m, 4H), 3.31 (br s, 1H), 3.10-3.05 (m, 1H), 2.48-2.27 (m, 15H), 2.13-1.70 (m, 10H), 1.53-1.16 (m, 6H), 0.97 (t, J = 8.2 Hz, 3H), 0.80 (d, J = 8.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 169.3, 161.7 (q, J = 50.2 Hz), 146.7 (d, J = 2.6 Hz), 140.2, 138.9, 138.8, 138.7, 138.6 (2 peak), 138.1, 134.8, 133.6 (m), 133.1, 133.0, 130.9, 130.8, 130.0, 129.5 (m), 129.2 (m), 128.7 (m), 128.5, 128.3 (m), 126.9, 126.3, 126.2, 122.7, 119.1, 117.6 (m), 90.3 (d, J = 8.7 Hz), 82.1 (d, J = 16.0 Hz), 69.7 (d, J = 2.2 Hz), 69.3, 68.7, 68.5, 60.8, 40.5 (d, J = 6.6 Hz), 38.7, 35.8, 35.6 (d, J = 5.0 Hz), 33.3, 32.5, 31.5, 31.3, 29.7, 28.7, 26.3, 26.1, 21.4, 21.2, 12.8, 11.6; ³¹P NMR (121 MHz, CDCl₃) δ = 2.63 (s); ¹⁹F NMR (282 MHz, CDCl₃) δ = -62.83 (s);

IR (film) v 2963, 1684, 1653, 1608, 1558, 1541, 1507, 1457, 1354, 1277, 1163, 1126, 887, 796, 714, 682, 670 cm⁻¹;

MS (MALDI) m/z: $784.3 \text{ [M-BAr}_F]^+$, $676.2 \text{ [M-COD-BAr}_F]^+$; HRMS (MALDI) m/z calcd. for $C_{40}H_{52}NOP^{191}Ir^+$ [M-BAr $_F$] $^+$: 784.3387, Found: 784.3366.

Ir(I)/(R,S)-2h (R = Ph, Ar = o-Tol)

Red powder, yield 78%; M.p.= 206-208 °C; $[\alpha]_D^{20} = -13.4^\circ$ (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 9.29$ (q, J = 6.8 Hz, 2H), 7.73 (s, 8H), 7.58-7.42 (m, 9H), 7.37-7.30 (m, 4H), 7.22-7.19 (m, 1H), 7.12-7.07 (m, 1H), 7.01-6.97 (m, 1H), 6.18 (s, 1H), 5.96 (d, J = 8 Hz, 1H), 5.59-5.55 (m, 1H), 5.47-5.40 (m, 1H), 4.88 (t, J = 9.2 Hz, 1H), 4.60-4.56 (m, 1H), 4.45-4.41 (m, 1H), 3.16-3.12 (m, 3H), 2.68-2.52 (m, 4H), 2.30-2.23 (m, 4H), 2.18 (s,3H), 2.12-1.94 (m, 2H), 1.91 (s, 3H), 1.68-1.52 (m, 2H), 1.39-1.21 (m, 3H) ppm; 13 C NMR (100 MHz, CDCl₃) $\delta = 171.5$, 161.7 (g, J = 49.4 Hz), 145.3, 145.1, 143.2, 142.1 (d, J = 27.7 Hz), 140.9 (d, J = 10.9 Hz), 138.6, 134.8, 133.1 (d, J = 6.3 Hz), 132.8 (d J = 1.9 Hz), 132.4 (q, J = 5.8 Hz), 131.9 (d, J = 8.5 Hz), 131.4 (d, J = 1.2 Hz), 130.2, 129.9, 129.7, 129.1 (q, J = 2.9 Hz), 129.0 (q, J = 2.9 Hz), 128.7 (q, J = 2.8 Hz), 128.6, 128.5 (q, J = 2.8 Hz), 127.0, 126.0, 125.9, 125.4 (d, J = 8.1 Hz), 125.0, 124.6, 123.8, 123.2, 123.2, 120.4, 117.5-117.4 (m), 89.1 (d, J = 2.9 Hz), 78.4 (d, J = 18.5 Hz), 75.6, 73.8, 69.4, 69.1 (d, J = 13.6 Hz), 59.1, 42.9 (d, J = 6.8 Hz), 35.4 (d, J = 4.5 Hz), 34.2, 34.1, 31.8, 31.3, 31.1, 29.7, 27.9, 25.4, 24.1 (d, J = 9.7 Hz), 22.9 (d, J = 3.5 Hz) ppm; ³¹P NMR (162 MHz, CDCl₃) $\delta = -1.21$ (s) ppm; ¹⁹F NMR (376 MHz, CDCl₃) $\delta =$ -61.68 (s) ppm;

IR (film) v 2921, 2849, 1668, 1594, 1458, 1386, 1354, 1278, 1161, 1127, 1031, 947, 888, 839, 805, 757, 744, 714, 682, 671, 595 cm⁻¹;

MS (MALDI) m/z: 778.3 [M-BAr_F]⁺; HRMS (MALDI) m/z calcd. For $C_{40}H_{44}NOP^{191}Ir^+$ ([M-BAr_F]⁺): 776.2761, Found: 776.2787.

Spectral data for acids 1a-l

(E)-2-Phenyl-3-(tetrahydro-2H-pyran-4-yl)acrylic acid (1a)

white solid, M.p. = 145-147 °C; ¹H NMR (400 MHz, CDCl₃) δ = 10.96 (br s, 1H), 7.39-7.33 (m, 3H), 7.17-7.14 (m, 2H), 6.94 (d, J = 10.0 Hz, 1H), 3.93-3.89 (m, 2H), 3.30-3.23 (m, 2H), 2.42-2.32 (m, 1H), 1.61-1.55 (m, 2H), 1.50-1.46 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 172.0, 149.6, 134.6, 132.6, 129.4, 128.1, 127.7, 66.7, 35.5, 31.3 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₄H₁₆O₃. 232.1099, found 232.1096.

2-Phenylacrylic acid (1b)^{S5}

white solid, M.p. = 101-103 °C; ¹H NMR (400 MHz, CDCl₃) δ = 10.03 (br s, 1H), 7.44-7.30 (m, 5H), 6.54 (d, J = 0.8 Hz, 1H), 6.01 (d, J = 0.8 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 172.2, 140.6, 136.0, 129.4, 128.4, 128.3, 128.1 ppm; HRMS-EI (m/z) M⁺ calcd. for C₉H₈O₂. 148.0524 found 148.0526.

(E)-2-Phenylbut-2-enoic acid (1c)^{S6}

white solid, M.p. = 143-145 °C; ¹H NMR (400 MHz, CDCl₃) δ = 11.63 (br s, 1H), 7.38-7.27 (m, 4H), 7.19-7.16 (m, 2H), 1.76 (d, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 172.6, 142.7, 134.3, 134.1, 129.7, 128.0, 127.5, 15.7 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₀H₁₀O₂. 162.0681 found 162.0680.

(E)-2,3-Diphenylacrylic acid $(1d)^{S7}$

white solid, M.p. = 174-175 °C; ¹H NMR (400 MHz, CDCl₃) δ = 11.12 (br s, 1H), 7.95 (s, 1H), 7.40-7.32 (m, 3H), 7.24-7.13 (m, 5H), 7.07-7.04 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 173.4, 142.4, 135.2, 134.2, 131.6, 130.8, 129.7, 129.4, 128.6, 128.2, 128.0 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₅H₁₂O₂. 224.0837 found 224.0831.

(E)-3-Cyclopentyl-2-phenylacrylic acid (1e)

white solid, M.p. = 104-106 °C; 1 H NMR (400 MHz, CDCl₃) δ = 11.10 (br s, 1H), 7.38-7.28 (m, 3H), 7.19-7.16 (m, 2H), 7.07 (d, J = 10.8 Hz, 1H), 2.54-2.43 (m, 1H), 1.77-1.64 (m, 4H), 1.56-1.35 (m, 4H) ppm; 13 C NMR (100 MHz, CDCl₃) δ = 172.8, 152.6, 135.0, 131.4, 129.8, 127.9, 127.4, 40.1, 33.4, 25.6 ppm; HRMS-EI (m/z) M^{+} calcd. for $C_{14}H_{16}O_{2}$. 216.1150 found 216.1148.

(E)-2-(4-Methoxyphenyl)-3-(tetrahydro-2H-pyran-4-yl)acrylic acid (1f)^{S8}

white solid, M.p. = 112-114 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.60 (br s, 1H), 7.10 (td, J = 2.0 Hz, J = 8.4 Hz, 2H), 6.93-6.89 (m, 3H), 3.93-3.90 (m, 2H), 3.82 (s, 3H), 3.32-3.26 (m, 2H), 2.46-2.36 (m, 1H), 1.60-1.56 (m, 2H), 1.50-1.47 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 172.3, 159.0, 149.5, 132.1, 130.5, 126.8, 113.6, 66.7, 55.1, 35.5, 31.4 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₅H₁₈O₄. 262.1205 found 262.1208.

(E)-2-(4-Fluorophenyl)-3-(tetrahydro-2H-pyran-4-yl)acrylic acid (1g)

white solid, M.p. = 172-173 °C; ¹H NMR (400 MHz, CDCl₃) δ = 10.58 (br s, 1H), 7.15-7.10 (m, 2H), 7.09-7.03 (m, 2H), 6.96 (d, J = 10.4 Hz, 1H), 3.95-3.91 (m, 2H), 3.32-3.25 (m, 2H), 2.40-2.30 (m, 1H), 1.65-1.54 (m, 2H), 1.49-1.45 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 171.9, 161.7 (d, J = 245.6 Hz), 150.1, 131.6, 131.1 (d, J = 8.2 Hz), 130.4 (d, J = 3.1 Hz), 115.2 (d, J = 21.7 Hz), 66.6, 35.5, 31.2 ppm; ¹⁹F NMR

(376 MHz, CDCl₃) δ = -114.03 (s) ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₄H₁₅O₃F. 250.1005 found 250.1003.

(E)-2-(4-Iodophenyl)-3-(tetrahydro-2H-pyran-4-yl)acrylic acid (1h)

white solid, M.p. = 182-183 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.83 (br s, 1H), 7.71 (td, J = 2.0 Hz, J = 8.8 Hz, 2H), 6.95 (d, J = 10.4 Hz, 1H), 6.91 (td, J = 2.0 Hz, J = 8.4 Hz, 2H), 3.94-3.90 (m, 2H), 3.32-3.25 (m, 2H), 2.40-2.30 (m, 1H), 1.64-1.52 (m, 2H), 1.48-1.44 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 171.5, 150.2, 137.3, 134.0, 131.5, 131.3, 93.7, 66.6, 35.6, 31.2 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₄H₁₅O₃I. 358.0066 found 358.0065.

(*E*)-2-(4-(Methylsulfonyl)phenyl)-3-(tetrahydro-2*H*-pyran-4-yl)acrylic acid (1i)^{S8} white solid, M.p. = 254-256 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.97 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 10.4 Hz, 1H), 5.83 (br s, 1H), 3.97-3.91 (m, 2H), 3.31-3.23 (m, 2H), 3.29 (t, J = 11.2 Hz, 2H), 3.10 (s, 3H), 2.34-2.25 (m, 1H), 1.67-1.57 (m, 2H), 1.49-1.46 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 170.5, 151.2, 140.5, 139.9, 130.9, 130.5, 127.3, 66.5, 44.3, 35.7, 31.1 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₅H₁₈O₅S. 310.0875 found 310.0874.

(E)-2-(4-(Cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)acrylic acid (1j)^{S8}

white solid, M.p. = 93-95 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.91 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 10.8 Hz, 1H), 3.95-3.91 (m, 2H), 3.32-3.26 (m, 2H), 2.55-2.47 (m, 1H), 2.35-2.25 (m, 1H), 1.67-1.56 (m, 2H), 1.50-1.46 (m, 2H), 1.40-1.30 (m, 2H), 1.10-1.03 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 169.9, 150.5, 140.2, 139.9, 131.1, 130.3, 127.4, 66.4, 35.5, 32.6, 31.1, 5.9 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₇H₂₀O₅S. 336.1031 found 336.1035.

- (*E*)-2-(4-(Methylthio)phenyl)-3-(tetrahydro-2*H*-pyran-4-yl)acrylic acid (1k)^{S8} white solid, M.p. = 168-170 °C; ¹H NMR (400 MHz, CDCl₃) δ = 10.77 (br s, 1H), 7.24 (td, J = 2.0 Hz, J = 8.4 Hz, 2H), 7.09-7.07 (td, J = 2.0 Hz, J = 8.4 Hz, 2H), 6.93 (d, J = 10.4 Hz, 1H), 3.94-3.90 (m, 2H), 3.32-3.25 (m, 2H), 2.49 (s, 3H), 2.45-2.34 (m, 1H), 1.64-1.53 (m, 2H), 1.49-1.45 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 171.9, 149.7, 138.1, 131.9, 131.1, 129.7, 125.8, 66.6, 35.4, 31.2, 15.4 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₅H₁₈O₃S. 278.0977 found 278.0980.
- (*E*)-2-(4-(Cyclopropylthio)phenyl)-3-(tetrahydro-2*H*-pyran-4-yl)acrylic acid (11) white solid, M.p. = 152-154 °C; 1 H NMR (400 MHz, CDCl₃) δ = 10.90 (br s, 1H), 7.36 (td, J = 2.0 Hz, J = 8.4 Hz, 2H), 7.08 (td, J = 2.0 Hz, J = 8.4 Hz, 2H), 6.94 (d, J = 10.4 Hz, 1H), 3.94-3.90 (m, 2H), 3.32-3.27 (m, 2H), 2.47-2.37 (m, 1H), 2.21-2.15 (m, 1H), 1.64-1.54 (m, 2H), 1.50-1.46 (m, 2H), 1.12-1.02 (m, 2H), 0.73-0,69 (m, 2H) ppm; 13 C NMR (100 MHz, CDCl₃) δ = 172.0, 149.7, 138.7, 132.0, 131.0, 129.7, 125.7, 66.6, 35.4, 31.3, 11.6, 8.4 ppm; HRMS-EI (m/z) M⁺ calcd. for C_{17} H₂₀ O_{3} S. 304.1133 found 304.1131.

General procedure for asymmetric hydrogenation of acids 1 using iridium complexes of 2 as the catalysts. To a test tube were charged with a stir bar, acid (0.1 mmol), the catalyst Ir(I)/2 (0.001 mmol), base (0.1 mmol) and 1mL MeOH under Ar atmosphere. The test tube was placed in a Parr steel autoclave in a glove box, which was purged three times with hydrogen and finally pressurized to 10 or 30 atm. The reaction mixture was stirred for 20 h at 30-50°C. Then the hydrogen gas was released and the conversion was determined by 1H NMR. The reaction mixture was then treated with CH_2N_2 in ether for 2 h. After a flash column chromatography separation on silica gel with EtOAc as eluent, the desired methyl ester was obtained. The ee value of the product was determined by chiral HPLC using its methyl ester derivative.

Characterization data for product corresponding derivatives 3a-l (-)-Methyl 2-phenyl-3-(tetrahydro-2*H*-pyran-4-yl)propanoate (3a)

pale yellow oil, 96% ee, $[\alpha]_D^{20}$ = -44.4° (c 1.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.34-7.24 (m, 5H), 3.93-3.90 (m, 2H), 3.70-3.65 (m, 4H), 3.29 (t, J = 11.2 Hz, 2H), 2.07-2.00 (m, 1H), 1.77-1.56 (m, 4H), 1.40-1.27 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 174.4, 138.9, 128.6, 127.8, 127.2, 67.8, 67.7, 52.0, 48.2, 40.4, 32.9, 32.7, 32.6 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₅H₂₀O₃. 248.1412 found 248.1409. HPLC condition for corresponding methyl ester: Chiralcel AD-H column (hexane: isopropanol = 99: 1, flow rate = 1.0 mL/min, UV detection at λ = 230 nm) t_R = 12.0 min (minor), t_R = 15.8 min (major).

(R)-Methyl 2-phenylpropanoate(3b)^{S5}

pale yellow oil, 88% ee, $[\alpha]_D^{20}$ = -15.2° (c 0.83, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.34-7.22 (m, 5H), 3.73 (q, J = 7.2 Hz, 1H), 3.65 (s, JH), 1.50 (d, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 174.9, 140.5, 128.6, 127.4, 127.1, 51.9, 45.3, 18.5 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₀H₁₂O₂. 164.0837 found 164.0841. HPLC condition for corresponding methyl ester: Chiralcel OJ column (hexane: isopropanol = 99: 1, flow rate = 1.0 mL/min, UV detection at λ = 230 nm) t_R = 12.8 min (minor), t_R = 16.1 min (major).

(R)-Methyl 2-phenylbutanoate(3c)^{S6}

pale yellow oil, 94% ee, $[\alpha]_D^{20}$ = -38.8° (c 1.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.33-7.23 (m, 5H), 3.65 (s, 3H), 3.45(t, J = 7.6 Hz, 1H), 2.13-2.06 (m, 1H), 1.83-1.76 (m, 1H), 0.89 (t, J = 6.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 174.5, 139.0, 128.5, 127.9, 127.1, 53.3, 51.8, 26.7, 12.1 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₁H₁₄O₂. 178.0994 found 178.0996. HPLC condition for corresponding methyl ester: Chiralcel OD-H column (hexane: isopropanol = 99: 1, flow rate = 1.0 mL/min, UV detection at λ = 230 nm) t_R = 5.3 min (major), t_R = 5.9 min (minor).

(R)-Methyl 2,3-diphenylpropanoate (3d)^{S7}

pale yellow oil, 94% ee, $[\alpha]_D^{20} = -53.3^{\circ}$ (*c* 1.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.30-7.10$ (m, 10H), 3.87-3.81 (m, 1H), 3.59 (s, 3H), 3.44-3.38 (m, 1H), 3.02 (dd, J = 6.8 Hz, J = 13.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 173.8$, 139.0, 138.6, 128.8, 128.6, 128.3, 127.9, 127.3, 126.3, 53.5, 51.9, 39.7 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₆H₁₆O₂. 240.1150 found 240.1153. HPLC condition for corresponding methyl ester:

Chiralcel OD-H column (hexane : isopropanol = 99 : 1, flow rate = 1.0 mL/min, UV detection at $\lambda = 230$ nm) $t_R = 7.0$ min (major), $t_R = 7.9$ min (minor).

(-)-Methyl 3-cyclopentyl-2-phenylpropanoate (3e)^{S9}

pale yellow oil, 95% ee, $[\alpha]_D^{20}$ = -41.1° (c 1.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.32-7.25 (m, 5H), 3.64 (s, 3H), 3.60 (t, J = 10.4 Hz, 1H), 2.09-2.02 (m, 1H), 1.82-1.43 (m, 8H), 1.12-1.07 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 174.7, 139.3, 128.5, 127.9, 127.1, 51.9, 50.7, 39.8, 37.8, 32.6, 32.2, 25.0 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₅H₂₀O₂. 232.1463 found 232.1461. HPLC condition for corresponding methyl ester: Chiralcel OJ-H column (hexane: isopropanol = 90: 10, flow rate = 0.7 mL/min, UV detection at λ = 230 nm) t_R = 8.4 min (major), t_R = 8.8 min (minor).

(-)-Methyl 2-(4-methoxyphenyl)-3-(tetrahydro-2*H*-pyran-4-yl)propanoate (3f)

pale yellow oil, 95% ee, $[\alpha]_D^{20} = -43.0^{\circ}$ (c 0.76, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.21$ (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 3.92-3.89 (m, 2H), 3.79 (s, 3H), 3.64-3.61 (m, 4H), 3.29 (t, J = 11.6 Hz, 2H), 2.03-1.96 (m, 1H), 1.74-1.55 (m, 4H), 1.41-1.25 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 174.7$, 158.8, 130.9, 128.8, 114.0, 67.8, 67.7, 55.2, 51.9, 47.3, 40.4, 33.0, 32.6, 32.6 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₆H₂₂O₄. 278.1518 found 278.1520. HPLC condition for corresponding methyl ester: Chiralcel AD-H column (hexane: isopropanol = 92: 8, flow rate = 0.7 mL/min, UV detection at $\lambda = 230$ nm) $t_R = 9.8$ min (minor), $t_R = 11.8$ min (major).

(-)-Methyl 2-(4-fluorophenyl)-3-(tetrahydro-2*H*-pyran-4-yl)propanoate (3g)

pale yellow oil, 95% ee, $[\alpha]_D^{20} = -38.7^\circ$ (c 0.62, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.28-7.25$ (m, 2H), 7.01 (t, J = 8.4 Hz, 2H), 3.93-3.90 (m, 2H), 3.69-3.65 (m, 4H), 3.29 (t, J = 12.0 Hz, 2H), 2.05-1.97 (m, 1H), 1.73-1.55 (m, 4H), 1.41-1.24 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 174.3$, 162.0 (d, J = 244.2 Hz), 134.6, 129.3 (d, J = 8.3 Hz), 115.5 (d, J = 21.2 Hz), 67.7, 67.7, 52.0, 47.5, 40.5, 32.9, 32.6 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₅H₁₉O₃F. 266.1318 found 266.1319. HPLC condition for corresponding methyl ester: Chiralcel AD-H column (hexane: isopropanol = 99: 1, flow rate = 1.0 mL/min, UV detection at $\lambda = 230$ nm) $t_R = 12.4$ min (minor), $t_R = 15.9$ min (major).

(-)-Methyl 2-(4-iodophenyl)-3-(tetrahydro-2*H*-pyran-4-yl)propanoate (3h)

yellow solid, M.p. = 61-63 °C; 91% ee, $[\alpha]_D^{20}$ = -39.5° (c 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 3.92-3.89 (m, 2H), 3.65-3.61 (m, 4H), 3.29 (t, J = 11.6 Hz, 2H), 2.03-1.96 (m, 1H), 1.73-1.54 (m, 4H), 1.43-1.25 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 173.9, 138.5, 137.7, 129.8, 92.8, 67.7, 67.7, 52.1, 47.8, 40.2, 32.9, 32.5 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₅H₁₉O₃I. 374.0379 found 374.0375. HPLC condition for corresponding dehalogenated methyl ester: Chiralcel AD-H column (hexane : isopropanol = 99 : 1, flow rate = 1.0 mL/min, UV detection at λ = 230 nm) t_R = 9.8 min (minor), t_R = 12.0 min (major).

(R)-Methyl 2-(4-(methylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanoate (3i) $^{\rm S8}$

white solid, M.p. = 143-145 °C; 91% ee, $[\alpha]_D^{20}$ = -41.1° (c 0.87, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.91 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 3.94-3.91 (m, 2H),

3.62-3.78 (m, 1H), 3.68 (s, 3H), 3.30 (t, J = 11.2 Hz, 2H), 3.06 (s, 3H), 2.10-2.05 (m, 1H), 1.77-1.72 (m, 2H), 1.60-1.58 (m, 2H), 1.40-1.25 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 173.3$, 145.1, 139.5, 128.9, 127.8, 67.6, 67.6, 52.3, 48.2, 44.4, 40.3, 32.8, 32.6, 32.5 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₆H₂₂O₅S. 326.1188 found 326.1186. HPLC condition for corresponding methyl ester: Chiralcel OD-H column (hexane: isopropanol = 80: 20, flow rate = 1.0 mL/min, UV detection at $\lambda = 230$ nm) $t_R = 24.4$ min (minor), $t_R = 27.8$ min (major).

(R)-Methyl 2-(4-(cyclopropylsulfonyl)phenyl)-3-(tetrahydro-2H-pyran-4-yl) propanoate $(3j)^{S8}$

yellow solid, M.p. = 54-56 °C; 89% ee, $[\alpha]_D^{20}$ = -28.1° (c 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.86 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 3.94-3.91 (m, 2H), 3.79 (t, J = 8.0 Hz, 1H), 3.68 (s, 3H), 3.30 (t, J = 12.6 Hz, 2H), 2.48-2.44 (m, 1H), 2.12-2.04 (m, 1H), 1.77-1.58 (m, 6H), 1.06-1.02 (m, 2H), 0.88-0.82 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 173.4, 144.7, 139.7, 128.8, 128.0, 67.7, 67.6, 52.3, 48.2, 40.4, 32.8, 32.7, 32.6, 29.6, 5.9 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₈H₂₄O₅S. 352.1344 found 352.1349. HPLC condition for corresponding methyl ester: Chiralcel OD-H column (hexane: isopropanol = 80: 20, flow rate = 0.7 mL/min, UV detection at λ = 230 nm) t_R = 32.8 min (minor), t_R = 36.1 min (major).

(-)-Methyl 2-(4-(methylthio)phenyl)-3-(tetrahydro-2*H*-pyran-4-yl)propanoate (3k) yellow solid, M.p. = 79-81 °C; 94% ee, $[\alpha]_D^{20}$ = -32.4° (c 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.21 (s, 4H), 3.92-3.90 (m, 2H), 3.66-3.62 (m, 4H), 3.29 (t, J = 11.6 Hz, 2H), 2.47 (s, 3H), 2.03-1.96 (m, 1H), 1.75-1.55 (m, 3H), 1.41-1.21 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 174.3, 137.4, 135.6, 128.3, 126.8, 67.8, 67.7, 52.0, 47.7, 40.3, 33.0, 32.6, 32.6, 15.7 ppm; HRMS-EI (m/z) M⁺ calcd. for C₁₆H₂₂O₃S. 294.1290 found 294.1294. HPLC condition for corresponding sulfone methyl ester after oxidation with mCPBA: Chiralcel AD-H column (hexane: isopropanol = 80: 20, flow rate = 1.0 mL/min, UV detection at λ = 230 nm) t_R = 24.5 min (minor), t_R = 28.1 min (major).

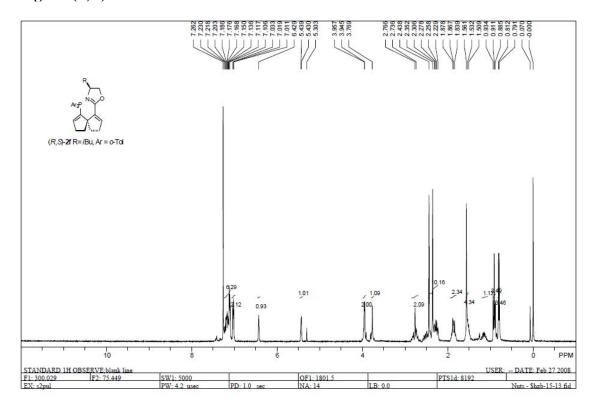
(R)-Methyl 2-(4-(cyclopropylthio)phenyl)-3-(tetrahydro-2H-pyran-4-yl)propanoate (3I) S10

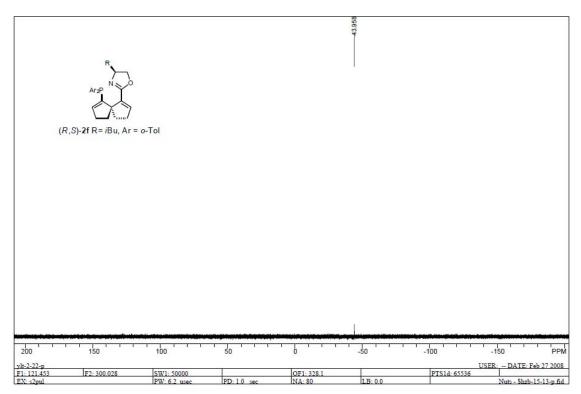
pale yellow oil, 95% ee, $[\alpha]_D^{20} = -45.8^{\circ}$ (c 0.52, CHCl₃); 1 H NMR (400 MHz, CDCl₃) $\delta = 7.31$ (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 3.93-3.90 (m, 2H), 3.65-3.62 (m, 4H), 3.30 (t, J = 11.6 Hz, 2H), 2.19-2.14 (m, 1H), 2.04-1.97 (m, 1H), 1.75-1.68 (m, 1H), 1.60-1.56 (m, 2H), 1.43-1.25 (m, 3H), 1.08-1.05 (m, 2H), 0.69-0.67 (m, 2H) ppm; 13 C NMR (100 MHz, CDCl₃) $\delta = 174.4$ 137.9, 135.5, 128.2, 126.6, 67.8, 67.7, 52.0, 47.7, 40.3, 32.9, 32.6, 32.6, 11.9, 8.4 ppm; HRMS-EI (m/z) M^+ calcd. for $C_{18}H_{24}O_3S$. 320.1439 found 320.1442. HPLC condition for corresponding sulfone methyl ester after oxidation with mCPBA: Chiralcel OD-H column (hexane: isopropanol = 80: 20, flow rate = 0.7 mL/min, UV detection at $\lambda = 230$ nm) $t_R = 26.7$ min (minor), $t_R = 29.0$ min (major).

Table S1. Optimization of reaction conditions for the asymmetric hydrogenation of acid 1a catalyzed by Ir(I) complex of (R,S)-2a^a

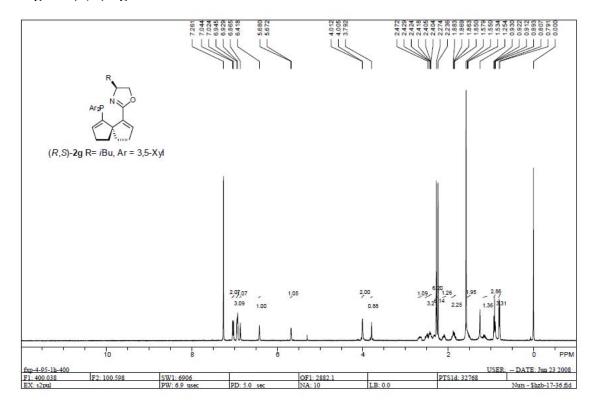
		1a		3a	
entry	Solvent	[sub] (M)	PH_2 (atm)	conv. (%) ^b	ee (%) ^c
1	Toluene	0.1	30	43	71 (-)
2	DCE	0.1	30	41	91 (-)
3	THF	0.1	30	87	95 (-)
4	EA	0.1	30	35	92 (-)
5	MeOH	0.1	30	92	93 (-)
6	MeOH	0.2	30	84	93 (-)
7	MeOH	0.05	30	92	93 (-)
8	EtOH	0.1	30	92	93 (-)
9	i-PrOH	0.1	30	92	93 (-)
10	MeOH	0.1	10	91	93 (-)
11 ^d	MeOH	0.1	30	61	92 (-)

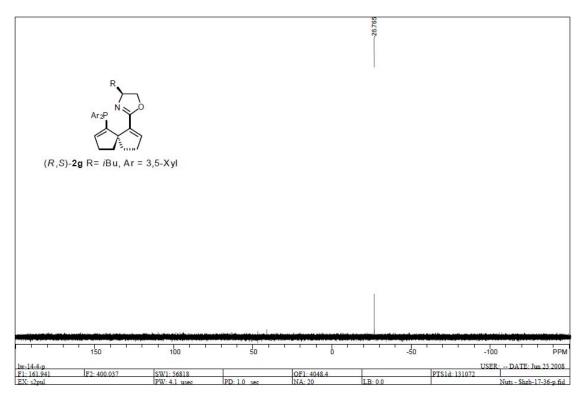
Table S2. Optimization of addatives for the asymmetric hydrogenation of acid 1a catalyzed by Ir(I) complex of (R,S)-2 a^a

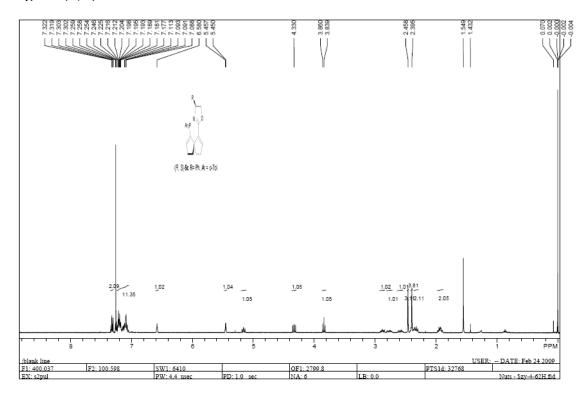

	1a		3a	
entry	base	[base] (eq.)	conv. (%) ^b	ee (%) ^c
1	Et ₃ N	1	92	93 (-)
2	DIPEA	1	74	93 (-)
3	Pyridine	1	trace	N.D.
4	Me_3N	1	75	93 (-)
5	NaHCO ₃	1	trace	N.D.
6	K_2CO_3	1	trace	N.D.
7	Cs_2CO_3	1	trace	N.D.
8	KOH	1	63	92 (-)
9	Et_3N	0.5	90	93 (-)
10	Et_3N	2	40	92 (-)

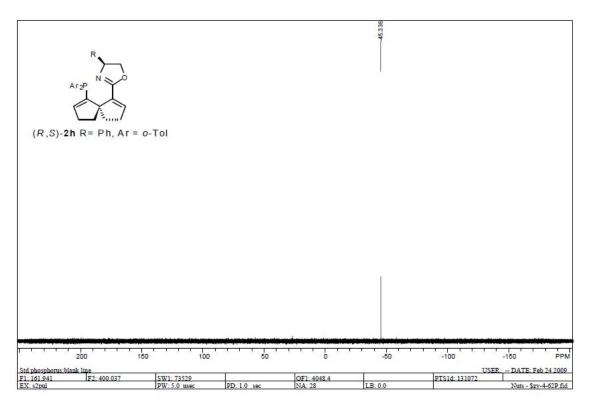

^a Reaction condition: 0.1 mmol scale, [substrate] = 0.1 mol L⁻¹ in MeOH, s/c = 100.

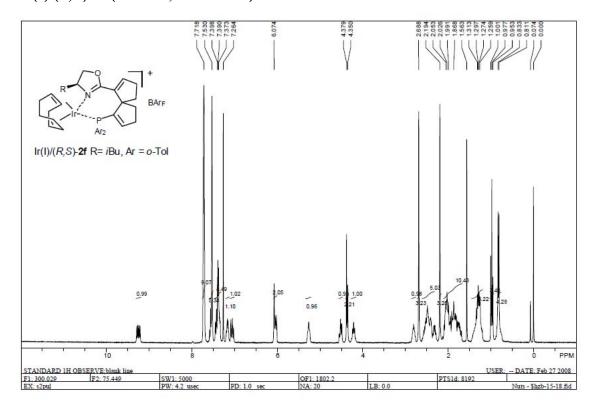
^a Reaction condition: 0.1 mmol scale, [substrate] = 0.1 mol L⁻¹ in solvent, s/c = 100. ^b Determined by ¹H NMR. ^c Determined by chiral HPLC analysis of the corresponding methyl ester on Chiralcel AD-H column. d Reaction temperature is 30°C.

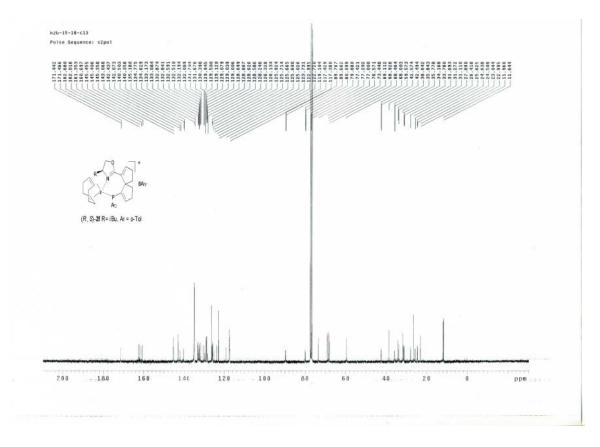

^b Determined by ¹H NMR. ^c Determined by chiral HPLC analysis of the corresponding methyl ester on Chiralcel AD-H column.

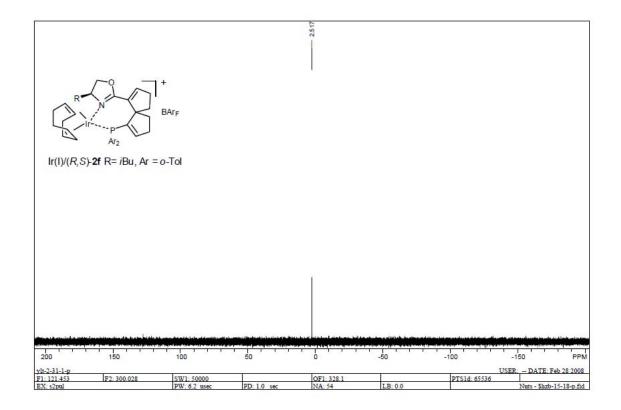

NMR data for new compounds Ligand (*R*,*S*)-2f

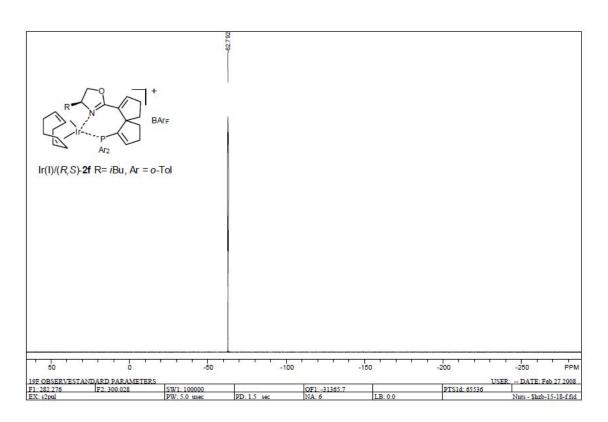



Ligand (R,S)-2g

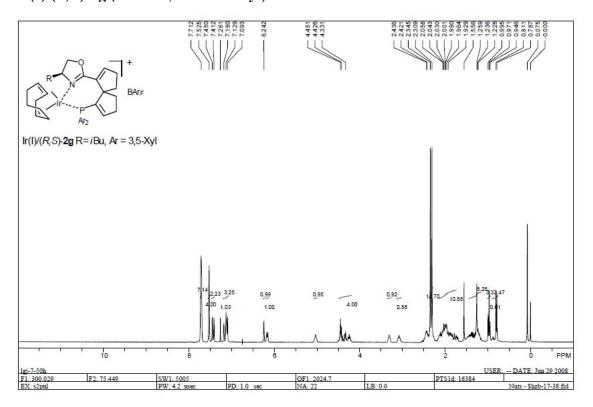


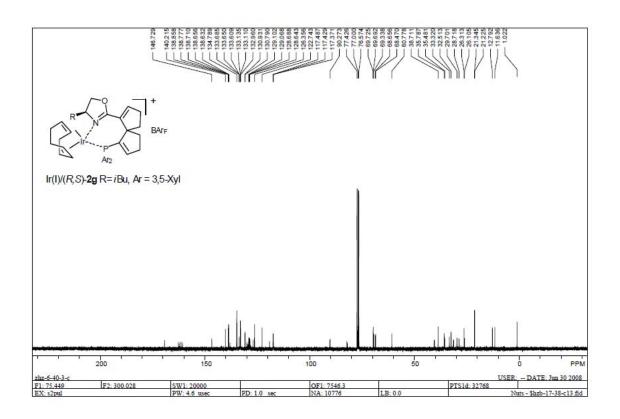

Ligand (R,S)-2h

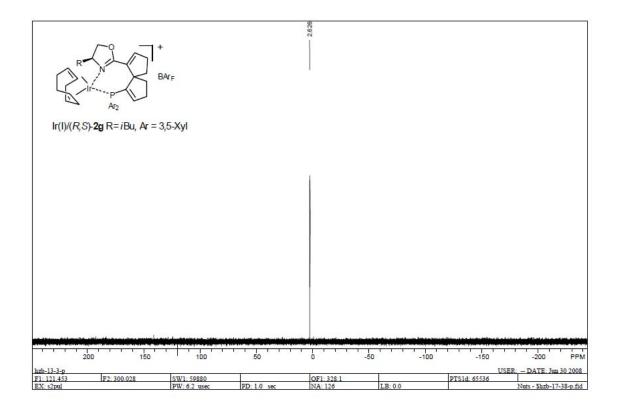


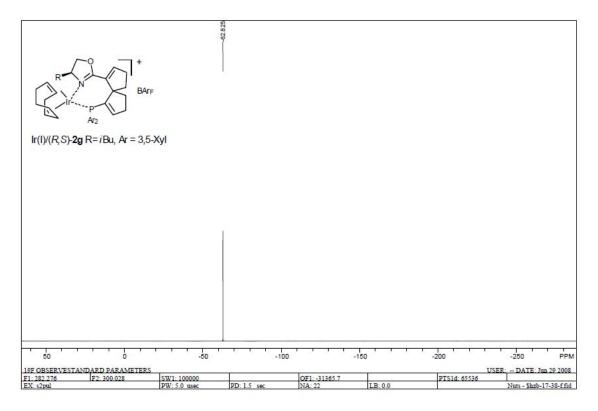


Ir(I)/(R,S)-2f(R=iBu, Ar=o-Tol)

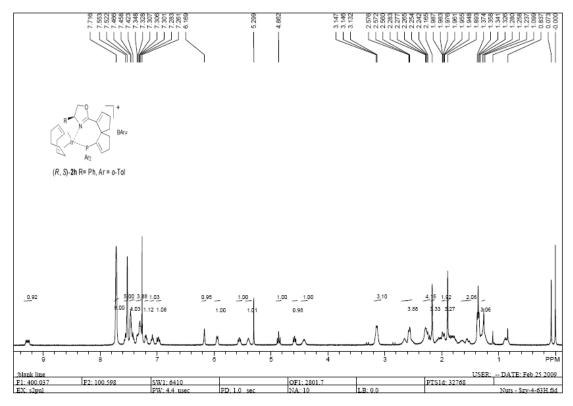


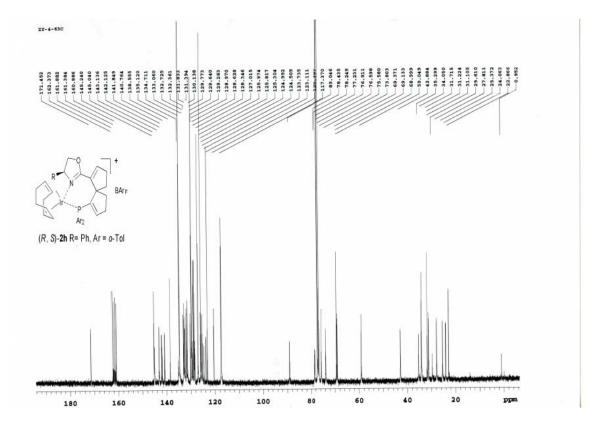


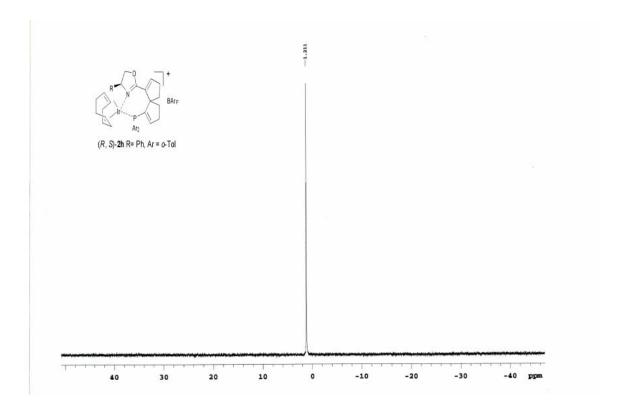


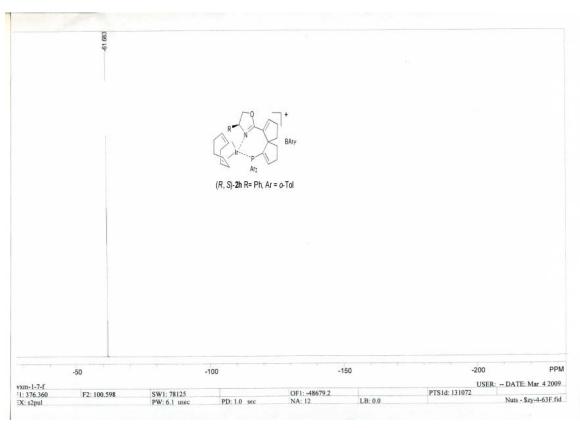


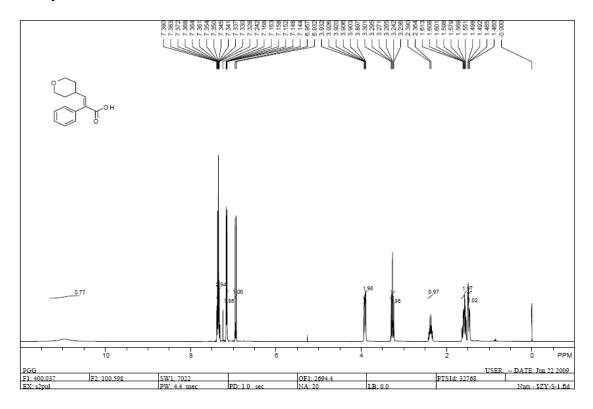
Ir(I)/(R,S)-2g (R = iBu, Ar = 3.5-Xyl)

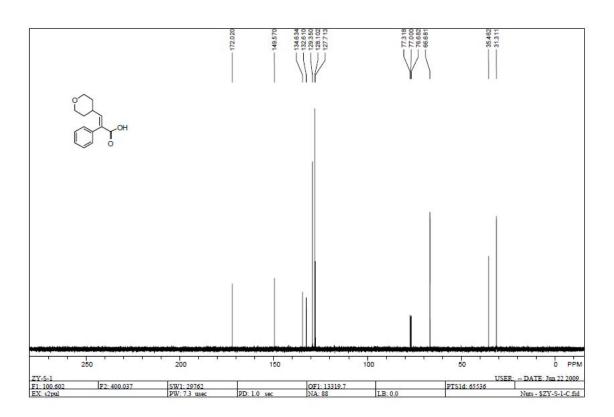


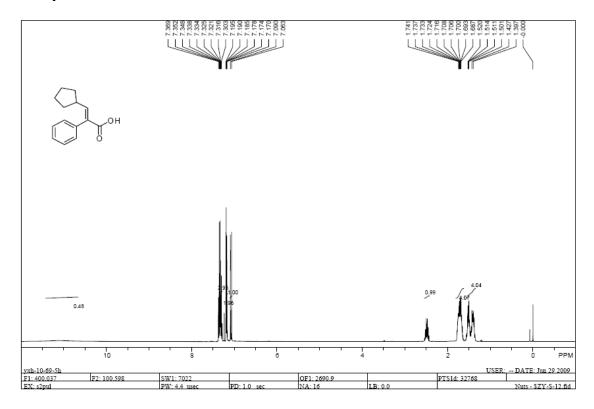


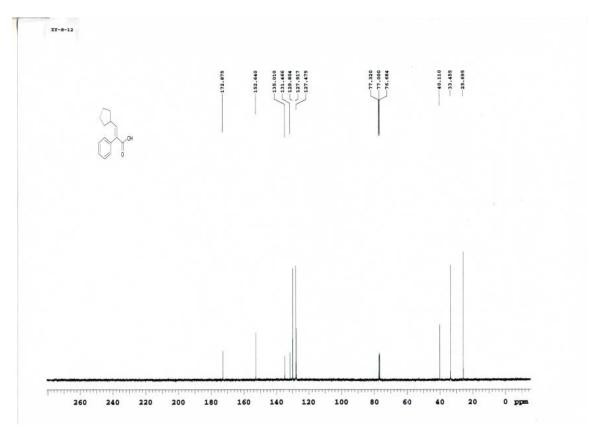


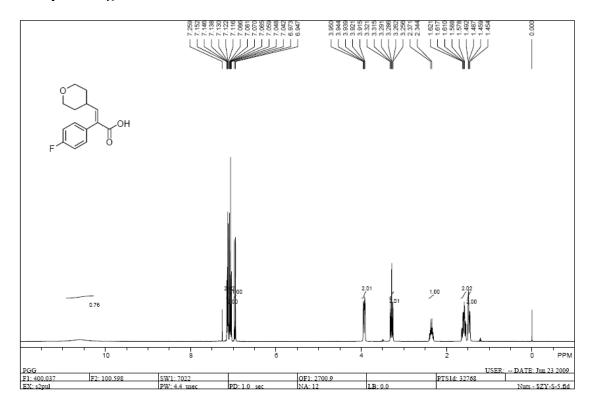

Ir(I)/(R,S)-2h (R = Ph, Ar = o-Tol)

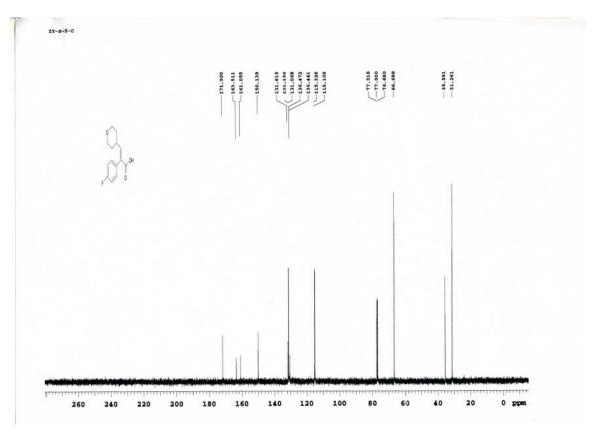


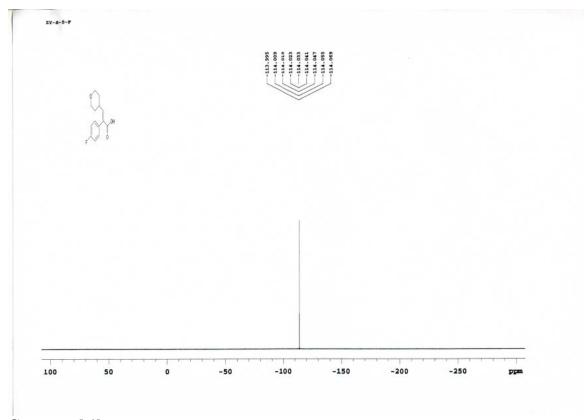

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

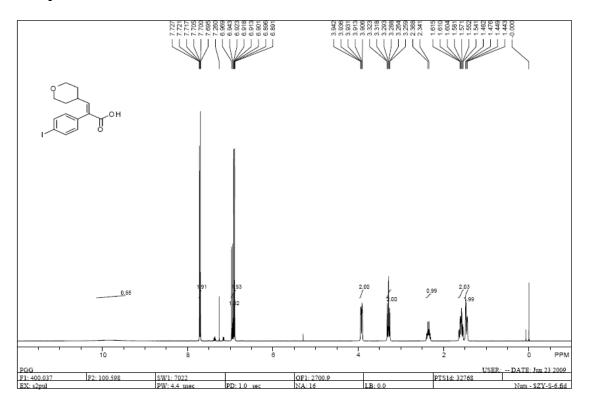


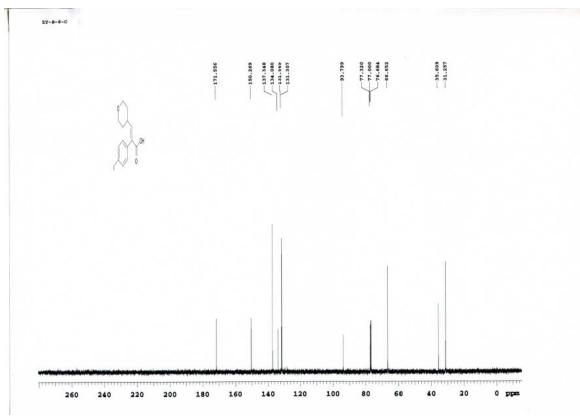

Compound 1a

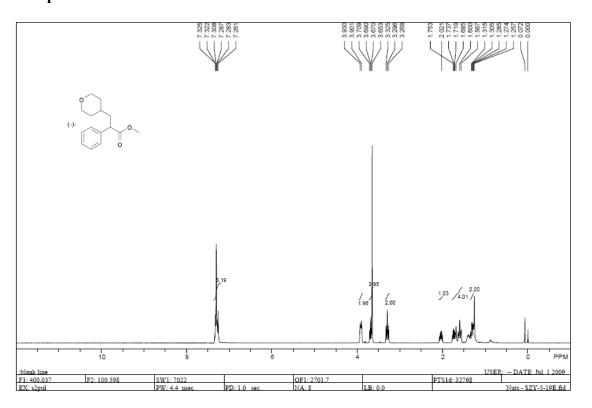


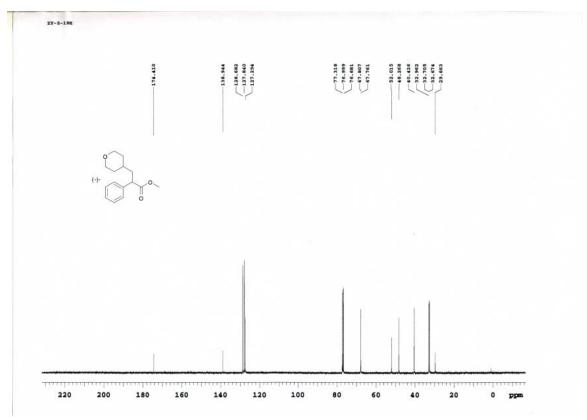

Compound 1e

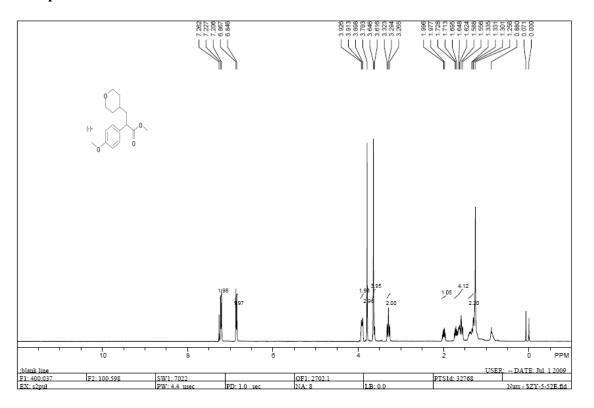


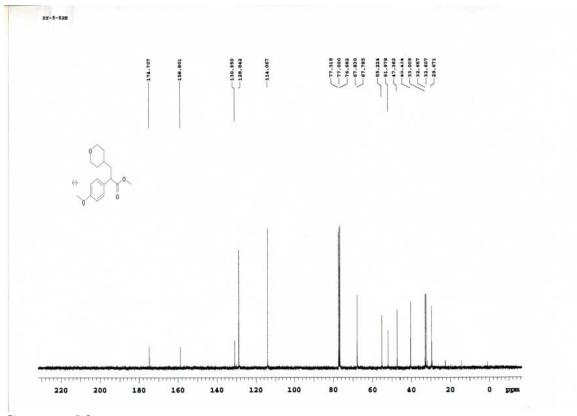

Compound 1g

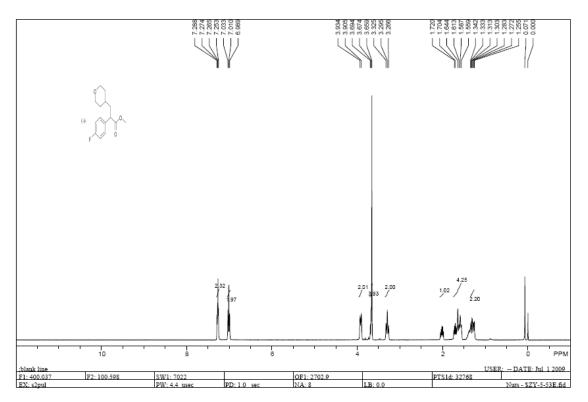


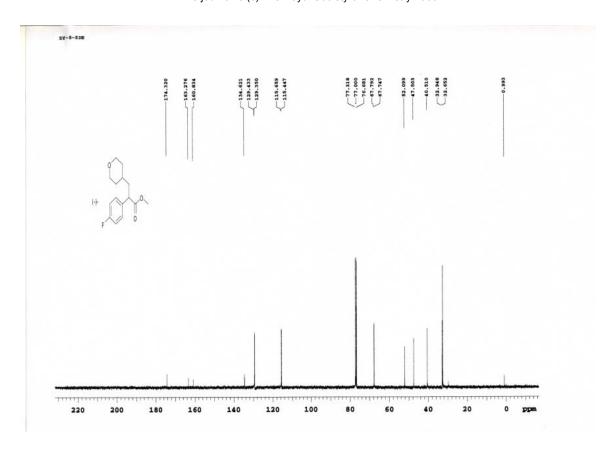


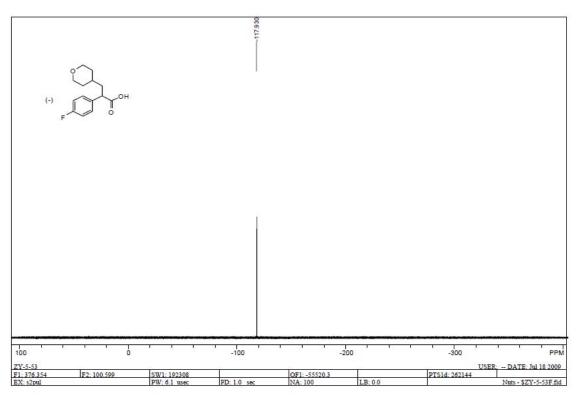

Compound 1h

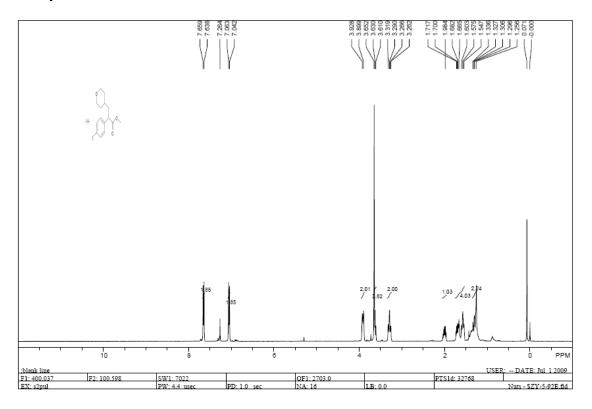


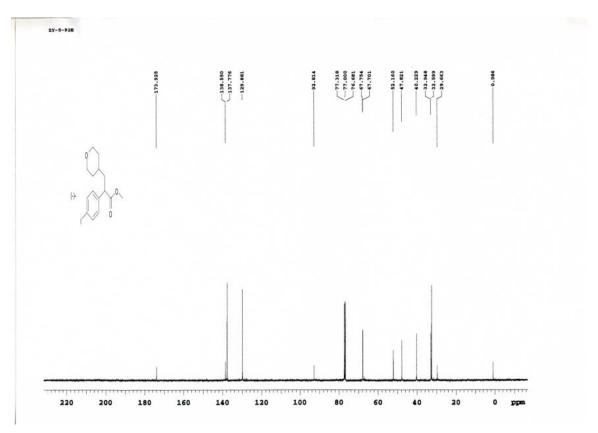

Compound 3a

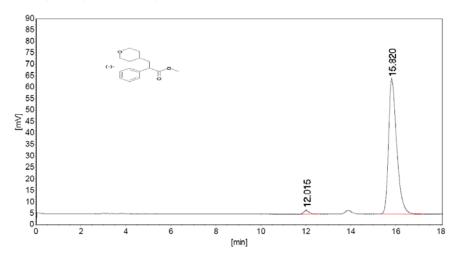



Compound 3f

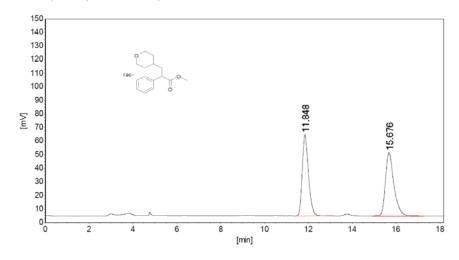



Compound 3g




Compound 3h

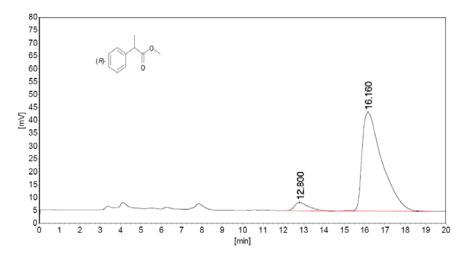
HPLC Chromatograms for the asymmetric hydrogenation reactions Reaction of 1a


Notes:AD-H, 99:1, 1.0 mL/min, 230 nm $\,$

General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Are a %	Conc. (%)	Type
1		12.015	1528	26514	1.75736	1.75736	ВВ
2		15.820	58805	1482219	98.24264	98.24264	BB
Total	:		60333	1508733	100.00000	100.00000	

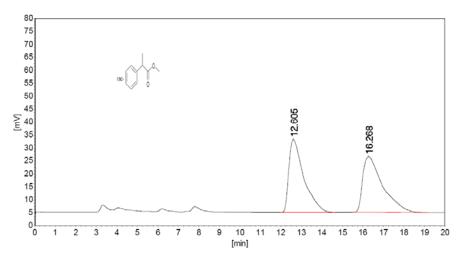
Notes:AD-H, 99:1, 1.0 mL/min, 230 nm



General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Area%	Conc. (%)	Type
1		11.848	59475	1197678	48.68448	48.68448	BB
2		15.676	46377	1262403	51.31552	51.31552	ВВ
Total	:		105852	2460081	100.00000	100.00000	

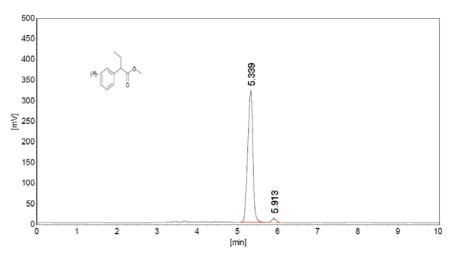
Reaction of 1b


Notes:0J, 99:1, 1.0 mL/min, 230 nm $\,$

General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Area%	Type
1		12.800	3176	158492	5.69386	BB
2		16.160	38230	2625064	94.30614	BB
Total:			41406	2783556	100.00000	

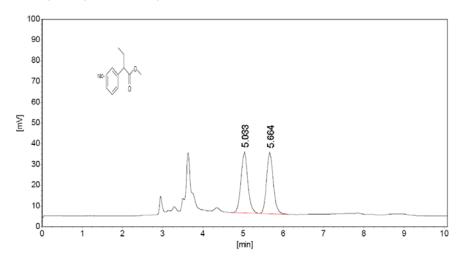
Notes:0J, 99:1, 1.0 mL/min, 230 nm $\,$



General Results

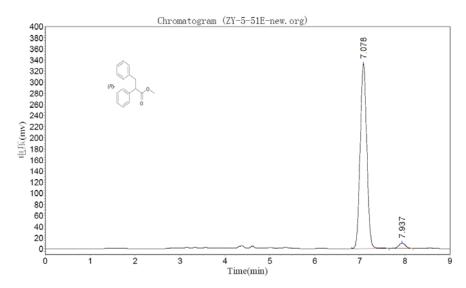
Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Are a %	Туре
1		12.605	28013	1422835	49.55247	BB
2		16.268	21362	1448536	50.44753	BB
Total:			49375	2871371	100.00000	

Reaction of 1c

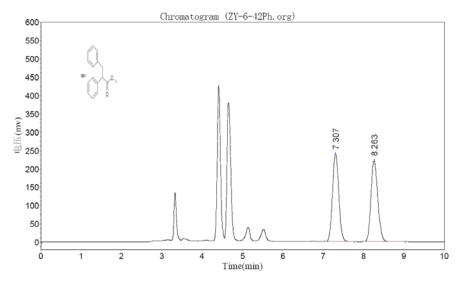

Notes:OD-H, 99:1, 1.0 mL/min, 230 nm $\,$

General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Are a %	Conc. (%)	Type
1		5.339	317946	2888718	97.41819	97.41819	ВВ
2		5.913	8918	76558	2.58181	2.58181	ВВ
Total	:		326864	2965276	100.00000	100.00000	

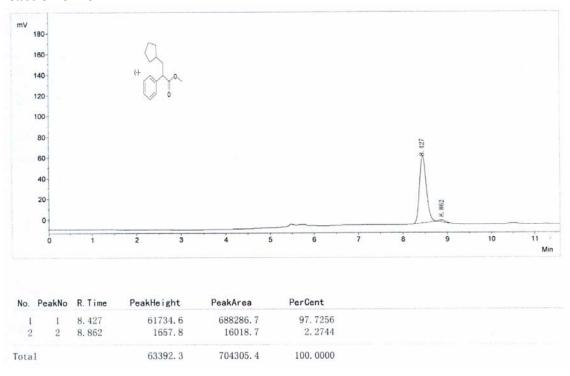

Notes:OD-H, 99:1, 1.0 $\mathrm{mL/min}$, 230 nm

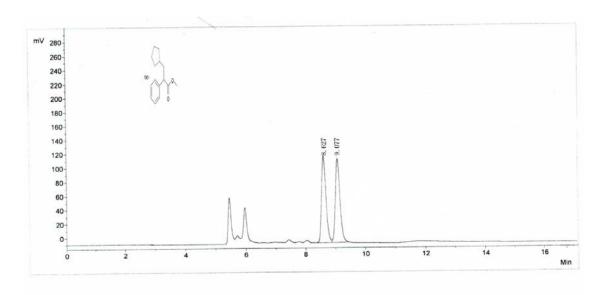
General Results


Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Are a %	Conc. (%)	Type
1		5.033	28800	346976	50.43784	50.43784	ВВ
2		5.664	28979	340952	49.56216	49.56216	BB
Total:	:		57779	687928	100.00000	100.00000	

Reaction of 1d

Results

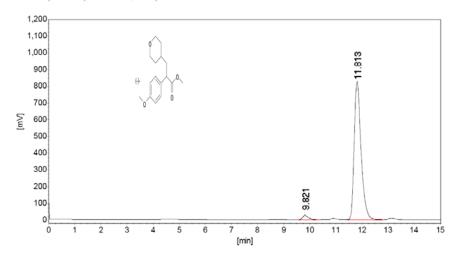

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		7.078	332953.813	3402421.250	97.0954
2		7.937	9867.821	101784.297	2.9046
Total			342821.634	3504205.547	100.0000



Results

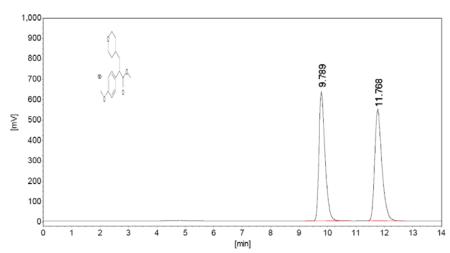
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		7.307	239132.984	2610626.000	49.8525	
2		8.263	220567.641	2626079.250	50.1475	
Total			459700.625	5236705.250	100.0000	

Reaction of 1e



No.	PeakNo	R. Time	PeakHeight	PeakArea	PerCent	
1	1	8. 627	120107. 0	1287527.6	49. 8823	
2	2	9.077	119461.8	1293604.0	50. 1177	
ota	1		239568. 8	2581131.5	100. 0000	

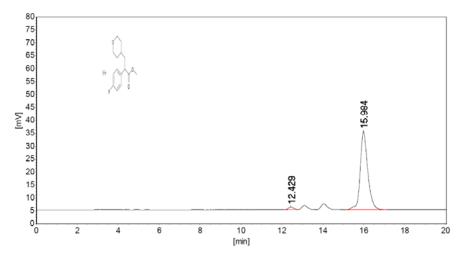
Reaction of 1f


Notes:AD-H, 92:8, 0.7 mL/min, 230 nm

General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Are a %	Type
1		9.821	25241	363686	2.36019	ВВ
2		11.813	819035	15045487	97.63981	BB
Total:			844276	15409173	100.00000	

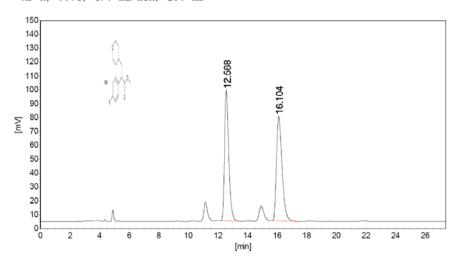
Notes:AD-H, 92:8, 0.7 mL/min, 230 nm



General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Area%	Type	
1		9.789	627888	9394519	49.26728	ВВ	-
2		11.768	544496	9673955	50.73272	BB	
Total:			1172384	19068474	100.00000		_

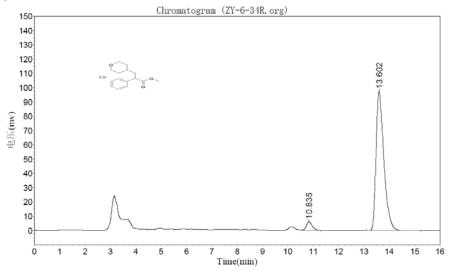
Reaction of 1g


Notes:AD-H, 99:1, 1.0 mL/min, 230 nm

General Results

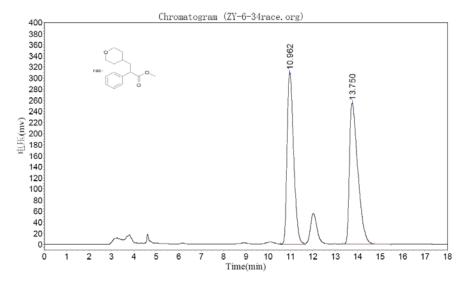
Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Are a %	Type
1		12.429	1018	17583	2.22281	BB
2		15.984	30181	773462	97.77719	BB
Total:			31199	791045	100.00000	

Notes:AD-H, 99:1, 1.0 mL/min, 230 nm



General Results

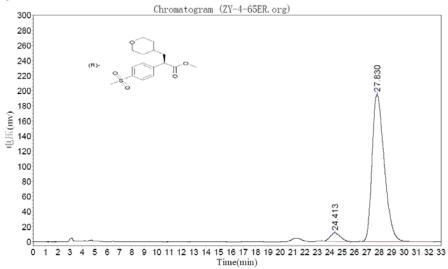
Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Are a %	Type
1		12.568	93315	1854932	48.93168	BB
2		16.104	74691	1935930	51.06832	BB
Total:			168006	3790862	100.00000	


Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Reaction of 1h

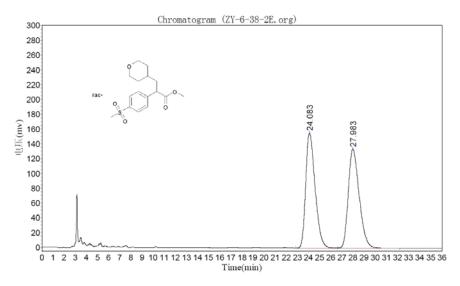
Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		10.835	5994.114	93924.797	4.3097
2		13.602	97307.961	2085458.125	95.6903
Total			103302.075	2179382.922	100.0000



Results

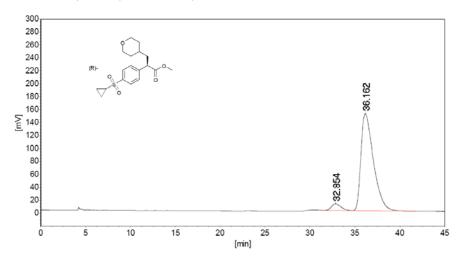
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		10.962	309558.438	6258053.500	48.6340	
2		13.750	255178.297	6609609.500	51.3660	
Total			564736.734	12867663.000	100.0000	


Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Reaction of 1i

Results

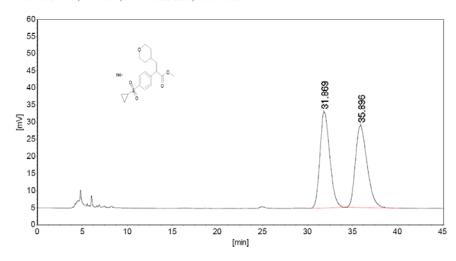
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		24.413	10977.248	625055.313	4.4857
2		27.830	195013.750	13309214.000	95.5143
Total			205990.998	13934269.312	100.0000



Results

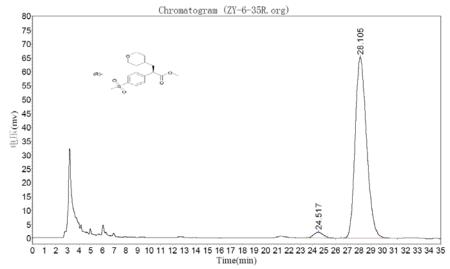
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		24.083	155066.469	9099944.000	49.9911	_
2		27.983	133297.188	9103187.000	50.0089	
Total			288363.656	18203131.000	100.0000	

Reaction of 1j

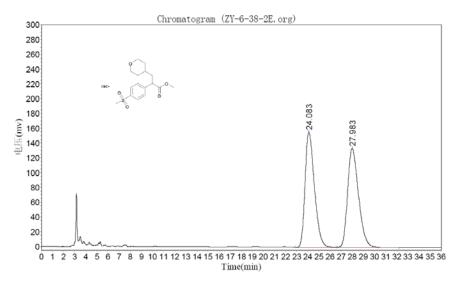

Notes:OD-H(New), 80:20, 0.7 mL/min, 230 nm

General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Are a %	Conc. (%)	Type
1		32.854	10150	777317	5.08358	5.08358	BB
2		36.162	149602	14513427	94.91642	94.91642	BB
Total	:		159752	15290744	100.00000	100.00000	


Notes:OD-H(New), 80:20, 0.7 mL/min, 230 nm $\,$

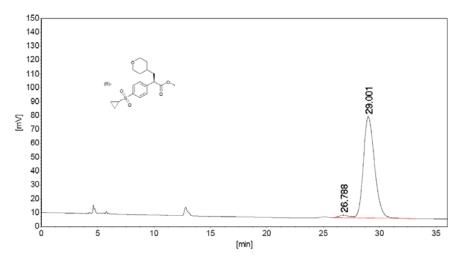
General Results


Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Area%	Conc. (%)	Type
1		31.869	28013	2123052	49.65721	49.65721	BB
2		35.896	23937	2152363	50.34279	50.34279	BB
Total	:		51950	4275415	100.00000	100.00000	

Reaction of 1k

Results

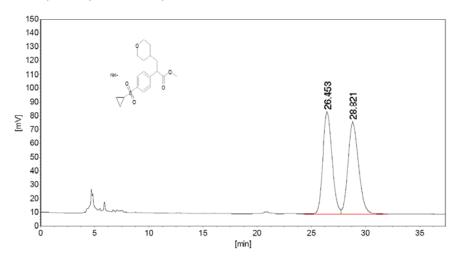
Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		24.517	2097.542	122911.805	2.6956
2		28.105	65150.445	4436835.500	97.3044
Total			67247.987	4559747.305	100.0000



Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		24.083	155066.469	9099944.000	49.9911	_
2		27.983	133297.188	9103187.000	50.0089	
Total			288363.656	18203131.000	100.0000	_

Reaction of 11


Notes:OD-H, 80:20, 0.7 $\mathrm{mL/min},$ 230 nm

General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Area%	Type
1		26.788	1622	102639	2.01144	BV
2		29.001	72449	5000111	97.98856	VB
Total:			74071	5102750	100.00000	

Notes:OD-H, 80:20, 0.7 $\mathrm{mL/min},$ 230 nm

General Results

Nos.	Compound	R.Time	Height[uV]	Area[uV*S]	Area%	Type
1		26.453	73416	4350209	49.19520	BV
2		28.821	66124	4492542	50.80480	VB
Total:			139540	8842751	100.00000	