Room temperature Aldol reactions using magnetic $Fe_3O_4(a)$ Fe(OH)₃ composite microspheres in Hydrogen-bond catalysis

Fang Niu, Long Zhang, San-Zhong, Luo, and Wei-Guo Song*

Beijing National Laboratory for Molecular Sciences (BNLMS); Laboratory for Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China Fax: (+86) 10-62557908 E-mail: <u>wsong@iccas.ac.cn</u>

Supporting Information

Experimental Details:

Preparation of Fe₃O₄@Fe(OH)₃ composite microspheres: Fe₃O₄ microspheres were prepared according to the reported method with minor modifications.¹ FeCl₃·6H₂O (2.0 mmol) and sodium acetate (17.4 mmol) were dissolved in 20 ml of ethylene glycol with magnetic stirring at room temperature for 2h. The resulted yellow solution was then transferred to a Teflon stainless-steel autoclave and sealed. After a reaction at 200 °C for 10 h, the resulted Fe₃O₄ microspheres were magnetically gathered and washed with water and ethanol three times. Then, 0.2 g of the as-prepared Fe₃O₄ microspheres and 12.4 mmol of Fe(NO₃)₃·9H₂O were ultrasonically dispersed into 5 ml of ethanol. After totally dissolution and dispersion, the Fe₃O₄ microspheres were magnetically separated from the ethanol solution and dried at 80 °C for 5h. Fe₃O₄@Fe(OH)₃ composite microspheres were then prepared via adding 2 ml of NH₃·H₂O aqueous solution (17%) to the dried brown Fe₃O₄ microspheres under vigorous stirring. The as-prepared Fe₃O₄@Fe(OH)₃ composite microspheres were magnetically gathered and washed with water 5 times, and was dried at 110 °C overnight for further usage.

Preparation of Fe₃O₄@Fe(OD)₃ composite micropheres:

At first, 100 ml/min of ammonia gas was bubbled into 10 ml D₂O for 10 minutes to prepare NH₃.D₂O solution at room temperature. Then 0.2 g of the dried Fe₃O₄ microspheres and 12.4 mmol of anhydrous Fe(NO₃)₃ was ultrasonically dispersed into 5 ml of ethanol. After totally dispersion and dissolution, the Fe₃O₄ microspheres were magnetically separated from the ethanol solution and dried at 80 °C for 5h. Fe₃O₄@Fe(OD)₃ composite microspheres were

then prepared via adding 2 ml of self-prepared $NH_3 \cdot D_2O$ solution to the dried brown Fe_3O_4 microspheres under vigorous stirring. The as-prepared $Fe_3O_4@Fe(OD)_3$ composite microspheres were magnetically separated and washed with D_2O several times, followed dry at 110 °C overnight for reaction.

Characterization of $Fe_3O_4@Fe(OH)_3$ composite microspheres: The as-obtained $Fe_3O_4@Fe(OH)_3$ composite microspheres were characterized by transmission electron microscopy (TEM, JEOL JEM-1011), X-ray diffraction (XRD, D/max-2500), and Thermo Gravimetric Analyzer (TGA).

General procedure for Aldol reactions in Table 1:

Under air atmosphere, 2 ml of acetone and 0.2 mmol of aromatic aldehydes were mixed together with 128 mg of $Fe_3O_4@Fe(OH)_3$ composite microspheres under vigorous stirring at room temperature. After 24 h of reaction, $Fe_3O_4@Fe(OH)_3$ composite microspheres were magnetically separated from the reaction mixture and the resulted solution was purified by flash column chromatography on silica gel (mixture of petroleum ether/ethyl acetate) to give the desired product.

¹H NMR and MS data for products in Table 1:

(E)-4-phenylbut-3-en-2-one (Table 1, entry 1): ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H), 6.67 (d, J = 16.2 Hz, 1H), 7.3-7.5 (m, 5H), 7.6 (d, J = 16.3 Hz, 1H); GC-MS m/z: 146 (C₁₀H₁₀O, 146.07).

4-hydroxy-4-(4-nitrophenyl)butan-2-one (Table 1, entry 2): ¹H NMR (400 MHz, CDCl₃) δ 2.22 (s, 3H), 2.84 (d, 2H), 3.5 (br s, 1H), 5.25 (q, 1H), 7.53 (d, 2H), 8.21 (d, 2H); GC-MS m/z: 209 (C₁₀H₁₁NO₄).

(E)-4-(4-chlorophenyl)but-3-en-2-one (Table 1, entry 3): ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H), 6.71 (d, J = 16.1 Hz, 1H), 7.40 (d, 2H), 7.58 (d, 2H), 7.65 (d, J = 16.3 Hz, 1H); GC-MS m/z: 180 (C₁₀H₉ClO).

(E)-4-(4-bromophenyl)but-3-en-2-one (Table 1, entry 4): ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H), 6.67 (d, J = 16.4 Hz, 1H), 7.5 (d, 2H), 7.63 (d, 2H), 7.65 (d, J = 16.1 Hz, 1H); GC-MS m/z: 224 (C₁₀H₉BrO, 225.08).

(E)-4-(3-oxobut-1-enyl)benzonitrile (Table 1, entry 5): ¹H NMR (400 MHz, CDCl₃) δ 2.30 (s, 3H), 6.8 (d, *J* = 16.3 Hz, 1H), 7.5 (d, *J* = 16.2 Hz, 1H), 7.63 (d, 2H), 7.70 (d, 2H); GC-MS

m/z: 171 (C₁₁H₉NO, 171.20).

(E)-4-p-tolylbut-3-en-2-one (Table 1, entry 6): ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 6H), 6.69 (d, J = 16.2 Hz, 1H), 7.23 (d, 2H), 7.45 (d, 2H), 7.51 (d, J = 16.3 Hz, 1H); GC-MS m/z 160 (C₁₁H₁₂O, 160.21).

(E)-4-(4-methoxyphenyl)but-3-en-2-one (Table 1, entry 7): ¹H NMR (400 MHz, CDCl₃) δ
2.35 (s, 3H), 3.84 (s, 3H), 6.63 (d, J = 16.2 Hz, 1H), 6.92 (d, 2H), 7.49 (d, J = 16.2 Hz, 1H),
7.51 (d, 2H); GC-MS m/z: 176 (C₁₁H₁₂O₂, 176.21).

(E)-4-(3-(trifluoromethyl)phenyl)but-3-en-2-one (Table 1, entry 10): ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 6.74 (d, *J* = 16.3 Hz, 1H), 7.2-7.6 (m, 4H), 7.62 (d, *J* = 16.1 Hz, 1H); GC-MS m/z: 214 (C₁₁H₉F₃O, 214.18).

Figure S1 TGA results of (1) Fe_3O_4 microspheres and (2) $Fe_3O_4@Fe(OH)_3$ composite microspheres under nitrogen atmosphere

 Table S1
 Aldol reaction between acetone and 4-chlorobenzaldehyde catalyzed by

Entry ^a	Catalyst	Cycle ^b	Reaction time	Yields (%)
			(h)	
1	42 mg Fe ₃ O ₄ @Fe(OH) ₃	-	24	46
2	84 mg Fe ₃ O ₄ @Fe(OH) ₃	-	24	76
3	128 mg Fe ₃ O ₄ @Fe(OH) ₃	1	24	88
4	128 mg Fe ₃ O ₄ @Fe(OH) ₃	2	24	93
5	128 mg Fe ₃ O ₄ @Fe(OH) ₃	3	24	91
6	128 mg Fe ₃ O ₄ @Fe(OH) ₃	4	24	89
7	128 mg Fe ₃ O ₄ @Fe(OH) ₃	5	24	87
8	No catalyst	-	120	ND^{c}
9 ^d	Fe_3O_4	-	30	trace

Fe₃O₄@Fe(OH)₃ composite microspheres and Fe₃O₄ microspheres

^a Reaction conditions: 0.2 mmol of 4-chlorobenzaldehyde, 2 ml of acetone, certain amount of $Fe_3O_4@Fe(OH)_3$ composite microspheres, room temperature, 24-120h. ^b The $Fe_3O_4@Fe(OH)_3$ composite microspheres were magnetically recovered and reused for several times. ^c Not detected. ^d 128 mg of Fe_3O_4 microsphere was used.

Figure S2 Molecular ion mass patterns for water in reaction 1 using (a) $Fe_3O_4@Fe(OH)_3$ composite microspheres and (b) $Fe_3O_4@Fe(OD)_3$ composite microspheres as catalysts, respectively.

Figure S3 Molecular ion mass patterns for product 3 in reaction 2 using (a) $Fe_3O_4@Fe(OH)_3$ composite microspheres and (b) $Fe_3O_4@Fe(OD)_3$ composite microspheres as catalysts, respectively.

Figure S4 $^{3/2}$ D NMR spectrum of product 3 in reaction 2 using Fe₃O₄@Fe(OD)₃ composite microspheres as catalysts. $\delta = 7.251$ is signal from CDCl₃ (impurity in the CHCl₃ solvent).

Reference

1. S.-H. Xuan, Y.-X. J. Wang, J. C. Yu and K. C.-F. Leung, *Langmuir*, 2009, **25**, 11835-11843.