Supporting Information for:

Stereoselective Gold-Catalyzed Cycloaddition of Functionalized Ketoenynes: Synthesis of (+)-Orientalol F

Eloísa Jiménez-Núñez, Kian Molawi, and Antonio M. Echavarren*,[‡]

Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16,

43007 Tarragona, Spain

Contents	
General methods	S1
Experimental procedures	S2
References	S18
GC-MS spectra of compounds 34 and (+)-3	S19
¹ H, ¹³ C and NOESY1D NMR spectra	S23
X-ray crystal structure of compound (±)-3	S51
X-ray crystal structure of compound (±)-17	S56

General methods

All reactions were carried out under Ar unless otherwise specified. Solvents were dried using a Solvent Purification System (SPS) or using standard procedures. NBS was recrystallized from water and dried in a freeze dryer before use. All catalysts were synthesized according to literature procedures.¹ The rest of the reagents were used directly as provided from the commercial sources. Analytical thin layer chromatography was carried out using TLC aluminium sheets with 0.2 mm of silica gel (Merk GF₂₃₄). Flash chromatography purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, 40-60 µm). NMR spectra were recorded at 23°C on the following spectrometers: Bruker Avance 400 Ultrashield (400 MHz for ¹H, and 100 MHz for ¹³C), Bruker Avance 500 Ultrashield (500 MHz for ¹H, and 125 MHz for ¹³C), and Bruker Digital Avance 800 (800 MHz for ¹H). For some compounds PENDANT NMR spectra (Polarization Enhancement Nurtured During Attached Nucleus Testing) are provided

instead of standard ¹³C NMR spectra. ESI mass spectra were recorded on a Waters LCT Premier spectrometer. Elemental analyses were performed on a LECO CHNS 932 micro-analyzer at the Universidad Complutense de Madrid. Melting points were determined using a Büchi melting point apparatus.

Experimental procedures

(E)-9-bromo-10-hydroxy-6,10-dimethylundec-5-en-2-one $(31)^2$

Geranylacetone (10.0 mL, 44.7 mmol) was disolved in a mixture of THF (80 mL) and water (48 mL). The solution was cooled to 0 °C with an ice bath and then a freshly

prepared solutions of NBS (7.96 g, 44.7 mmol) were added dropwise using an addition funnel (10 portions of 796 mg, each dissolved in 12.8 mL of a 5:3 THF/H₂O mixture). When the addition was completed the mixture was diluted with CH_2Cl_2 (100 mL), the phases were separated and the aqueous phase was extracted with CH_2Cl_2 . The combined organic layers were washed with brine and dried over MgSO₄. After removal of the solvents the residue was purified by flash chromatography (5:1 hexane/EtOAc) to give the bromohydrine **31** as a colorless oil (7.35 g, 56%).

¹H NMR (400 MHz, CDCl₃) δ 5.16 (t, *J* = 7.0 Hz, 1H), 3.93 (d, *J* = 11.1 Hz, 1H), 2.47 (t, *J* = 7.3 Hz, 2H), 2.37-2.23 (m, 3H), 2.18-2.03 (m, 2H), 2.14 (s, 3H), 2.02-1.93 (m, 1H), 1.84-1.71 (m, 1H), 1.61 (s, 3H), 1.33 (s, 6H). ¹³C PENDANT (100 MHz, CDCl₃) δ 208.7 (C), 134.5 (C), 124.3 (CH), 72.5 (C), 70.5 (CH), 43.6 (CH₂), 38.0 (CH₂), 31.9 (CH₂), 30.0 (CH₃), 26.5 (CH₃), 26.0 (CH₃), 22.4 (CH₂), 15.8 (CH₃). HRMS-ESI calcd for C₁₃H₂₃O₂BrNa (*M*+Na)⁺: 313.0774; found: 313.0763.

(E)-9-(3,3-dimethyloxiran-2-yl)-3,7-dimethylnon-6-en-1-yn-3-ol (rac-23)

OH An ethynylmagnesium bromide solution (0.5 M in THF, 34.5 mL, 17.3 mmol) was added to a cooled solution of bromohydrine **31** (1.67 g, 5.74 mmol) in THF (40 mL) at 0 °C. Once the addition was completed the cooling bath was removed and the mixture was let to warm up to room temperature. Then it was heated to 50 °C and stirred at that temperature for 3 h. The reaction was monitored by TLC. After 3 hours, the heating was stopped and the mixture was cooled down to room temperature. After quenching the reaction by addition of sat. aq. NH₄Cl solution the aqueous phase was extracted with Et₂O. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvents were removed by evaporation. Chromatographic purification (4:1 to 3:1 hexane/EtOAc) yielded the desired epoxide *rac-23* as a light yellow oil (1.25 g, 92%).

¹H NMR (400 MHz, CDCl₃) δ 5.23 (t, *J* = 7.0 Hz, 1H), 2.70 (t, *J* = 6.1 Hz, 1H), 2.46 (s, 1H), 2.36-2.04 (m, 5H), 1.74-1.68 (m, 2H), 1.68-1.59 (m, 2H), 1.66 (s, 3H), 1.50 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H). ¹³C PENDANT (100 MHz, CDCl₃) δ 135.2 (C), 124.2 (CH), 87.5 (C), 71.5 (CH), 68.2 (C), 64.2 (CH), 58.4 (C), 43.1 (CH₂), 36.3 (CH₂), 29.84 (CH₃, one isomer), 29.82 (CH₃, other isomer), 27.4 (CH₂), 24.9 (CH₃), 23.5 (CH₂), 18.8 (CH₃), 16.03 (CH₃, one isomer), 16.01 (CH₃, other isomer). HRMS-ESI calcd for C₁₅H₂₄O₂Na (*M*+Na)⁺: 259.1669; found: 259.1665.

((2S,3S)-3-((E)-6-(3,3-dimethyloxiran-2-yl)-4-methylhex-3-enyl)-3-methyloxiran-2yl)methanol (32)³

HO (12) (255 mg, 0.897 mmol) was added at 0 °C to a solution of L-(+)-DET (278 mg, 1.35 mmol) in CH₂Cl₂ (14 mL) containing molecular sieves (4 Å, 0.5 g). The mixture was cooled to -20 °C and a solution of TBHP in CH₂Cl₂ (4.5 M, 6.0 mL, 27 mmol) was added. After stirring the solution for 30 min at this temperature (±)-epoxyfarnesol **21**⁴ (4.28 g, 18.0 mmol) was added slowly. After stirring for another 2 h the reaction was quenched with water (5.1 mL) and the mixture was let to warm to room temperature during 40 min. Then aq. NaOH (30%, containing 4% NaCl, 1.0 mL) was added which led to a phase separation upon 20 min of vigorous stirring. The aqueous phase was further extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄ and the solvent were removed under reduced pressure. Chromatographic purification (3:1 hexane/Et₂O) yielded the desired diepoxide **32** as a colorless oil (4.53 g, 99%).

IR (neat): 3431*s*, 2960*m*, 2925*s*, 1453*s*, 1379*s*, 1323*w*, 1249*m*, 1118*m*, 1033*s*, 958*w*, 899*w*, 865*s*, 795*w*, 680*m*, 529*w*, 506*w* cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ 5.16-5.12 (m, 1H), 3.79-3.72 (m, 1H), 3.69-3.63 (m, 1H), 2.96-2.91 (m, 1H), 2.68 (t, *J* = 6.2 Hz, 1H), 2.46-2.37 (m, 1H), 2.17-2.03 (m, 4H), 1.72-1.57 (m, 3H), 1.60 (s, 3H), 1.50-1.40 (m, 1H), 1.28 (s, 6H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl3) δ 134.9 (C, one

isomer), 134.8 (C, other isomer), 124.1 (CH, one isomer), 124.0 (CH, other isomer), 64.3 (CH, one isomer), 64.2 (CH, other isomer), 63.1 (CH, one isomer), 63.0 (CH, other isomer), 61.4 (CH₂), 61.10 (C, one isomer), 61.06 (C, other isomer), 58.6 (C, one isomer), 58.5 (C, other isomer), 38.5 (CH₂, one isomer), 38.4 (CH₂, other isomer), 36.40 (CH₂, one isomer), 36.39 (CH₂, other isomer), 27.4 (CH₂, one isomer), 27.2 (CH₂, other isomer), 24.9 (CH₃), 23.7 (CH₂, one isomer), 23.6 (CH₂, other isomer), 18.8 (CH₃), 16.9 (CH₃, one isomer), 16.8 (CH₃, other isomer), 16.0 (CH₃). HRMS-ESI calcd for $C_{15}H_{26}O_3Na (M+Na)^+$: 277.1774; found: 277.1787.

(2S,3R)-3-(chloromethyl)-2-((E)-6-(3,3-dimethyloxiran-2-yl)-4-methylhex-3-enyl)-2-methyloxirane (22)⁵

Cl Q A mixture of diepoxide **32** (4.28 g, 16.8 mmol), triphenylphosphine (5.29 g, 20.2 mmol) and NaHCO₃ (428 mg, 5.09 mmol) in CCl₄ (34 mL) was refluxed for 6.5 h. After removal of the solvent chromatographic purification (3:1 hexane/Et₂O) of the crude material yielded epoxychloride **22** as a colorless oil (4.26 g, 93%).

IR (neat): 2960*m*, 2924*s*, 2859*w*, 1452*s*, 1378*s*, 1323*w*, 1250*m*, 1181*w*, 1119*m*, 1072*w*, 908*m*, 861*s*, 794*w*, 732*s*, 680*m* cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.14 (t, *J* = 7.0 Hz, 1H), 3.66 (dd, *J* = 11.4, 5.9 Hz, 1H), 3.42 (dd, *J* = 11.4, 7.2 Hz, 1H), 3.01 (t, *J* = 6.5 Hz, 1H), 2.67 (t, *J* = 6.2 Hz, 1H), 2.17-2.02 (m, 4H), 1.75-1.57 (m, 3H), 1.61 (s, 3H), 1.49-1.38 (m, 1H), 1.29 (s, 3H), 1.27 (s, 3H), 1.23 (s, 3H). ¹³C PENDANT (100 MHz, CDCl₃) δ 135.1 (C), 123.7 (CH), 64.0 (CH), 62.0 (C), 61.4 (CH, one isomer), 61.4 (CH, other isomer), 58.2 (C, one isomer), 58.2 (C, other isomer), 42.1 (CH₂), 38.1 (CH₂, one isomer), 36.1 (CH₂, other isomer), 36.2 (CH₂), 27.3 (CH₂), 24.8 (CH₃), 23.5 (CH₂), 18.7 (CH₃), 16.2 (CH₃), 15.9 (CH₃). HRMS-ESI calcd for C₁₅H₂₆ClO₂ (*M*+H)⁺ 273.1616; found: 273.1615.

(3*S*,*E*)-9-(3,3-dimethyloxiran-2-yl)-3,7-dimethylnon-6-en-1-yn-3-ol (23)⁵

Epoxychloride **22** (4.26 g, 15.6 mmol) was added slowly at -35 °C to a solution of *n*-BuLi (2.5 M in hexane, 31.2 mL, 78.0 mmol) in THF (45 mL). After stirring for 2 h the reaction was quenched by the addition of sat. aq. NH₄Cl solution. The aqueous phase was extracted with CH_2Cl_2 , the combined organic layers were dried over anhydrous Na_2SO_4 and the solvents were evaporated. Chromatographic purification (2:1 hexane/Et₂O) of the crude material yielded the desired epoxide **23** as a pale yellow oil (3.52 g, 95%).

The analytical data (NMR spectrascopy and mass spectrometry) is identical to the data of *rac-23*.

(3*S*,*E*)-3,7,11-trimethyldodec-6-en-1-yne-3,10-diol (33)

Following a procedure by *Taber and Houze*⁶ for the opening of epoxides sodium cyanoborohydride (33 mg, 0.52 mmol) was added at room temperature to a solution

of epoxide **23** (49 mg, 0.21 mmol) in THF (2 mL) containing a small amount of bromocresol green. The solution became dark blue. Then $BF_3 \cdot OEt_2$ (53 µL, 0.42 mmol) was added dropwise until the solution turned yellow (one drop). The mixture was stirred at room temperature and several additions were made every time the solution turned green. The reaction was monitored by TLC. After 3.5 h more sodium cyanoborohydride was added (15 mg, 0.24 mmol) and the addition of $BF_3 \cdot OEt_2$ continued. After 5 hours the reaction was stopped by addition of aq. HCl (10%, 0.5 mL) and the mixture was stirred for 15 min. at room temperature. Then aq. NaOH (10%) was added until the yellow mixture turned blue. The aqueous phase was extracted with EtOAc several times and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. After evaporation of the solvents the crude oil was purified by flash chromatography (3:1 hexane/EtOAc) to afford **33** as colorless oil (37 mg, 74%).

¹H NMR (400 MHz, CDCl₃) δ 5.25-5.21 (m, 1H), 3.38-3.30 (ddd, J = 8.6, 5.0, 3.2 Hz, 1H), 2.46 (s, 1H), 2.37-2.23 (m, 1H), 2.23-2.11 (m, 3H), 2.09-2.00 (m, 1H), 1.74-1.53 (m, 5H), 1.66 (s, 3H), 1.50 (s, 3H), 1.49-1.40 (m, 1H), 0.92 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H). ¹³C PENDANT (100 MHz, CDCl₃) δ 136.3 (C), 123.9 (CH), 87.5 (C), 76.6 (CH), 71.5 (CH), 68.2 (C), 43.1 (CH₂), 36.3 (CH₂), 33.5 (CH), 32.1 (CH₂), 29.9 (CH₃), 23.5 (CH₂), 18.8 (CH₃), 17.2 (CH₃), 16.0 (CH₃). HRMS-ESI calcd for C₁₅H₂₆O₂Na (*M*+Na)⁺: 261.1825; found: 261.1826. Elem. Anal. calcd for C₁₅H₂₆O₂: C 75.58; H 10.99; found: C 75.25; H 10.88.

(*S*,*E*)-10-hydroxy-2,6,10-trimethyldodec-6-en-11-yn-3-one (34)

Dess-Martin periodinane (6.58 g, 15.5 mmol) was added in one portion to a stirred solution of diol **33** (2.86 g, 12.0 mmol) in CH_2Cl_2 (120 mL) at 0 °C. The cooling

bath was removed and water (216 μ L, 12.0 mmol) was added dropwise. The mixture was stirred at room temperature for 2 h. Then the reaction mixture was filtered through celite (washing with EtOAc). Removal of the solvents from the filtrate and chromatogrphic purification (4:1 hexane/EtOAc) of the crude material yielded ketone **34** as colorless oil (2.43 g, 86%, 95:5 *er*). 78 mg (3%) of the starting material was recovered as well.

¹H NMR (400 MHz, CDCl₃) δ 5.21-5.15 (m, 1H), 2.60 (sept, J = 7.0 Hz, 1H), 2.56-2.51 (m, 2H), 2.45 (s, 1H), 2.35-2.13 (m, 4H), 1.72-1.66 (m, 2H), 1.65 (s, 3H), 1.50 (s, 3H), 1.09 (d, J = 7.0 Hz, 6H). ¹³C PENDANT (100 MHz, CDCl₃) δ 214.4 (C), 135.0 (C), 124.0 (CH), 87.5 (C), 71.5 (CH), 68.2 (C), 43.0 (CH₂), 40.9 (CH), 38.9 (CH₂), 33.5 (CH₂), 29.8 (CH₃), 23.4 (CH₂), 18.2 (2xCH₃), 16.13 (CH₃). HRMS-ESI calcd for C₁₅H₂₄O₂Na (*M*+Na)⁺: 259.1669; found: 259.1670. Elem. Anal. calcd for C₁₅H₂₄O₂: C 76.23; H 10.24; found: C 75.88; H 10.20.

(S,E)-2,6,10-trimethyl-10-(triethylsilyloxy)dodec-6-en-11-yn-3-one ((S)-1)

Triethylamine (1.59 mL, 11.4 mmol) was added to a solution of propargylic alcohol **34** (1.50 g, 6.35 mmol) in CH₂Cl₂ (50 mL). The mixture was cooled to 0 $^{\circ}$ C and

triethylsilyl trifluoromethanesulfonate (1.72 mL, 7.62 mmol) was added dropwise. The cooling bath was removed after the addition and the mixture was stirred for 30 min. Then an aq. NH₄Cl solution (pH = 8) was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic layers were washed with brine and dried over MgSO₄. After evaporation of the solvent the crude material was purified by flash chromatography (10:1 hexane/EtOAc) to give the desired silyl ether (*S*)-1 as colorless oil (2.14 g, 95 % yield).

¹H NMR (400 MHz, CDCl₃) δ 5.15 (tq, J = 7.2, 1.2 Hz, 1H), 2.60 (sept, J = 6.9 Hz, 1H), 2.56-2.51 (m, 2H), 2.40 (s, 1H), 2.26-2.07 (m, 4H), 1.70-1.54 (m, 2H), 1.62 (s, 3H), 1.45 (s, 3H), 1.09 (d, J = 6.9 Hz, 6H), 0.96 (t, J = 7.9 Hz, 9H), 0.72-0.63 (m, 6H).

¹³C PENDANT (100 MHz, CDCl₃) δ 214.6 (C), 134.1 (C), 124.4 (CH), 88.2 (C), 71.8 (CH), 68.8 (C), 45.1 (CH₂), 40.9 (CH), 39.1 (CH₂), 33.5 (CH₂), 30.9 (CH₃), 23.3 (CH₂), 18.2 (CH₃), 16.0 (2xCH₃), 7.0 (CH₃), 6.1 (CH₂). HRMS-ESI calcd for C₂₁H₃₈O₂SiNa (*M*+Na)⁺: 373.2533; found: 373.2531.

General procedure for the cyclization of enyne 1 with metal catalysts

To a solution of enyne **1** in CH₂Cl₂ (0.1-0.05 M) containing activated molecular sieves (4 Å), was added the metal catalyst (3 mol%) in one portion. In the case of gold chlorides a preformed catalyst solution was added to enyne solution (the gold chloride and the silver salt were stirred in CH₂Cl₂ for 2 min and after settling of the solids the supernatant was used). The reaction mixtures were stirred for the time given in **Table 1** after which the catalyst was quenched by addition of a few drops of Et₃N. The mixture was then filtered through SiO₂ (eluting with CH₂Cl₂ and Et₂O). After evaporation the crude material was purified by flash chromatography (60:1 to 40:1 pentane/Et₂O) providing the oxatricycle **2** as a colorless oil and the methyl ketone **11** as a pale yellow oil. For yields and product distribution see **Table 1**.

Oxatricycle (2)

¹H NMR (400 MHz, C₆D₆) δ 5.85 (d, J = 2.7 Hz, 1H), 2.80-2.72 (m, 1H), 2.02 (sept, J = 6.9 Hz, 1H), 1.88 (dd, J = 12.0, 8.1 Hz, 1H), 1.80 (ddd, J = 10.8, 8.9, 1.7 Hz, 1H), 1.76-1.67 (m, 2H), 1.56 (ddd, J = 12.6, 7.9, 5.9 Hz, 1H), 1.50-1.40 (m, 1H), 1.38-1.28 (m, 1H), 1.34 (s,

3H), 1.32 (s, 3H), 1.28-1.18 (m, 1H), 1.16 (d, J = 6.8 Hz, 3H), 1.08-1.02 (m, 12 H), 0.67-0.60 (m, 6H). ¹H NMR (400 MHz, CDCl₃) δ 5.59 (d, J = 2.6 Hz, 1H), 2.74-2.66 (m, 1H), 1.94-1.82 (m, 2H), 1.79-1.62 (m, 5H), 1.47-133 (m, 2H), 1.31 (s, 3H), 1.30 (s, 3H), 0.99-0.93 (m, 15 H), 0.63-0.54 (m, 6H). ¹³C PENDANT (100 MHz, C₆D₆) δ 149.5 (C), 118.6 (CH), 86.1 (C), 82.6 (C), 80.0 (C), 48.8 (CH), 41.5 (CH₂), 39.1 (CH₂), 34.7 (CH), 31.3 (CH₂), 29.0 (CH₃), 26.4 (CH₃), 23.1 (CH₂), 18.3 (CH₃), 18.2 (CH₃), 7.5 (CH₂+CH₃). ¹³C PENDANT (100 MHz, CDCl₃) δ 148.9 (C), 117.6 (CH), 86.0 (C), 82.6 (C), 79.5 (C), 48.3 (CH), 41.1 (CH₂), 38.3 (CH₂), 34.0 (CH), 30.8 (CH₂), 28.7 (CH₃), 26.1 (CH₃), 22.8 (CH₂), 18.1 (CH₃), 17.8 (CH₃), 7.1 (CH₃), 6.7 (CH₂). The structure assignment of this compound was confirmed by 2D COSY, HSQC, HMBC and

NOESY spectra. HRMS-ESI calcd for $C_{21}H_{38}O_2SiNa$ (*M*+Na)⁺: 373.2533; found: 373.2497.

(E)-6-methyl-5-((5-methyl-5-(triethylsilyloxy)cyclopent-1-enyl)methylene)heptan-2-one (11)

¹H NMR (400 MHz, C_6D_6) δ 6.01 (s, 1H), 5.58 (bs, 1H), 2.66-2.52 (m, 2H), 2.36-2.17 (m, 4H), 2.16-2.05 (m, 1H), 2.04-1.93 (m, 1H), 1.89-1.81 (ddd, J = 12.5, 8.0, 3.0 Hz, 1H), 1.67 (s, 3H), 1.33 (s, 3H), 1.09-1.02 (m, 15 H), 0.70-0.61 (m, 6H). ¹³C-NMR (100 MHz, C_6D_6) δ 205.9, 150.1, 146.6, 125.2, 116.7, 86.5, 42.7, 40.8, 35.7, 30.00, 29.3, 28.1, 25.6, 22.4, 22.3, 7.5, 7.0. HRMS-ESI calcd for $C_{21}H_{38}O_2SiNa$ (*M*+Na)⁺: 373.2533; found: 373.2491.

Oxatricyclic alcohol (4)

A TBAF solution (1.0 M in THF, 650 µL, 0.650 mmol) was added at 0 °C to a cooled solution of protected oxatricyle 2 (190 mg, 0.542 mmol) in THF (5 mL). The mixture was stirred and warmed up to room temparature during 2 h. Then an aq. NH_4Cl solution (pH = 8)

was added and the aqueous phase was extracted with Et₂O and EtOAc. The combined organic layers were dried over Na_2SO_4 and the solvents were removed under reduced pressure. Chromatographic purification (5:1 hexane/Et₂O) of the crude material yielded alcohol 4 as colorless oil (122 mg, 88%).

¹H NMR (800 MHz, C_6D_6) δ 5.64 (d, J = 2.7 Hz, 1H), 2.71-2.67 (m, 1H), 1.98 (sept, J =6.9 Hz, 1H), 1.79 (dt, J = 12.7, 8.5 Hz, 1H), 1.67-1.60 (m, 3H), 1.47 (ddd, J = 13.0, 9.1, 7.4 Hz, 1H), 1.39 (m_c 1H), 1.33-1.26 (m, 1H), 1.31 (s, 3H), 1.28 (s, 3H), 1.22-1.15 (m, 1H), 1.12 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H, overlapping with bs, 1H). ¹H NMR (400 MHz, CDCl₃) δ 5.72 (d, J = 2.6 Hz, 1H), 2.77-2.69 (m, 1H), 1.95-1.85 (m, 2H), 1.81-1.60 (m, 5H), 1.49-1.33 (m, 2H), 1.36 (s, 3H), 1.34 (s, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H). ¹³C PENDANT (100 MHz, C₆D₆) δ 150.7 (C), 119.4 (CH), 85.8 (C), 82.4 (C), 77.2 (C), 51.4 (CH), 41.7 (CH₂), 39.1 (CH₂), 34.6 (CH), 31.0 (CH₂), 28.2 (CH₃), 26.3 (CH₃), 23.9 (CH₂), 18.3 (CH₃), 18.2 (CH₃). ¹³C PENDANT (100 MHz, CDCl₃) δ 150.1 (C), 119.1 (CH), 85.8 (C), 82.3 (C), 77.5 (C), 51.1 (CH), 41.3 (CH₂), 38.6 (CH₂), 34.00 (CH), 30.6 (CH₂), 28.0 (CH₃), 26.0 (CH₃), 23.8 (CH₂), 18.1 (CH₃), 17.8 (CH₃). The structure assignment of this compound was confirmed by 2D COSY, HSQC, HMBC and NOESY spectra. HRMS-ESI calcd for $C_{15}H_{24}O_2Na$ (*M*+Na)⁺: 259.1669; found: 259.1676.

1-((4*R*,7*R*,7a*S*)-7-hydroxy-3,7-dimethyl-2,4,5,6,7,7a-hexahydro-1H-inden-4-yl)-2methylpropan-1-one (15)

To a solution of the oxatricyclic alcohol **4** (10 mg, 0.042 mmol) in CH_2Cl_2 (1 mL) was added one drop of TFA at -20°C. The solution turned orange after one minute and completion was observed by TLC after 2 min. Then an aq. NaHCO₃ solution (5%) was added and the mixture was extracted with EtOAc. The combined organic layers were washed with

brine, dried over Na_2SO_4 and the solvent was evaporated. Chromatographic purification (4:1 hexane/EtOAc) of the crude material yielded the product **15** as a yellow oil (8 mg, 80%).

¹H NMR (400 MHz, CDCl₃) δ 3.51 (d, J = 5.6 Hz, 1H), 2.76 (sept, J = 6.8 Hz, 1H), 2.55-2.48 (m, 1H), 2.41-2.22 (m, 2H), 2.14 (bd, J = 13.8 Hz, 1H), 1.89-1.82 (m, 2H), 1.82-1.72 (m, 1H) 1.75 (s, 3H), 1.60 (ddd, J = 12.8, 4.0, 3.0 Hz, 1H), 1.42-1.28 (m, 2H), 1.05 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.96 (s, 3H). ¹³C PENDANT (100 MHz, CDCl₃) δ 214.5 (C), 134.3 (C), 132.4 (C), 74.6 (C), 57.1 (CH), 45.5 (CH), 38.7 (CH₂), 37.7 (CH), 37.6 (CH₂), 24.2 (CH₂), 21.5 (CH₂), 19.6 (CH₃), 19.2 (CH₃), 18.5 (CH₃), 14.3 (CH₃). The structure assignment of this compound was confirmed by 2D COSY, HSQC, HMBC and NOESY spectra. HRMS-ESI calcd for C₁₅H₂₄O₂Na (*M*+Na)⁺: 259.1669; found: 259.1672.

cis-epoxyalcohol $((\pm)-17)^7$

To a cooled solution of oxatricyclic alcohol **4** (16 mg, 0.069 mmol) in CH_2Cl_2 (1 mL) at 0 °C were sequentially added molecular sieves (4 Å), $VO(acac)_2$ (2.8 mg, 0.011 mmol) and a *tert*-butylhydroperoxide solution (5 M in decane, 0.054 mL, 0.27 mmol). After the addition the

mixture was warmed up to room temperature during 30 min. and stirred at room temparature for 2.5 h. When no remaning starting material was observed by TLC two drops of a sat. aq. Na₂SO₃ solution were added to the mixture and stirring was continued

for 10 min. Then Na_2SO_4 was added and the mixture was filtered through a short pad of SiO_2 (eluting with CH_2Cl_2 and EtOAc). After evaporation of the solvents epoxyalcohol (±)-17 was obtained as colorless oil (18 mg, 100 % yield). After storing the compounds several days in the fridge colorless crystals were formed.

m.p.: 44-46 °C. ¹H NMR (400 MHz, C₆D₆) δ 3.41 (s, 1H), 2.68 (bs, 1H), 2.16-2.03 (m, 3H), 1.99-1.82 (m, 2H), 1.78 (dt, *J* = 13.9, 8.6 Hz, 1H), 1.50-1.18 (m, 4H), 1.37 (s, 3H), 1.16 (s, 3H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, C₆D₆) δ 86.2, 80.9, 73.9, 72.7, 61.4, 48.5, 41.2, 34.4, 34.3 , 32.1, 26.9, 26.4, 21.8, 17.6, 17.3. HRMS-ESI calcd for C₁₅H₂₄O₃Na (*M*+Na)⁺: 275.1618; found: 275.1630. Structure confirmed by X-ray diffraction.

(Z)-9-bromo-10-hydroxy-6,10-dimethylundec-5-en-2-one (35)

Same procedure as for geranylacetone and as described by *Watanabe et al.*⁸ using nerylacetone as substrate. Chromatographic purification (5:1 hexane/EtOAc) yielded

compound **35** as colorless oil (33%) as well as 21% of recovered nervlacetone.

¹H NMR (400 MHz, CDCl₃) δ 5.15 (t, *J* = 7.1 Hz, 1H), 3.96 (dd, *J* = 11.3, 1.3 Hz, 1H), 2.47 (t, *J* = 7.2 Hz, 2H), 2.36-2.25 (m, 4H), 2.14 (s, 3H), 2.05-1.95 (m, 1H), 1.84-1.72 (m, 1H), 1.66 (s, 3H), 1.35 (s, 3H), 1.34 (s, 3H). ¹³C PENDANT (100 MHz, CDCl₃) δ 208.6 (C), 134.6 (C), 125.2 (CH), 72.5 (C), 70.7 (CH), 43.9 (CH₂), 32.1 (CH₂), 30.5 (CH₂), 30.00 (CH₃), 26.5 (CH₃), 25.9 (CH₃), 23.1 (CH₃), 22.3 (CH₂). HRMS-ESI calcd for C₁₃H₂₃BrO₂Na (*M*+Na)⁺: 313.0774; found: 313.0784.

(Z)-9-(3,3-dimethyloxiran-2-yl)-3,7-dimethylnon-6-en-1-yn-3-ol (36)

An ethynylmagnesium bromide solution (0.5 M in THF, 12.7 mL, 6.37 mmol) was added to a cooled solution of the bromohydrine **35** (843 mg, 2.89 mmol) in THF (20 mL) at 0 °C. After the addition the cooling bath was removed and

the mixture was heated to 50° C for 5 h. Then it was cooled to room temperature and stirred overnight. After 20 h the reaction was quenched by the addition of a sat. aq. NH₄Cl solution followed by extraction with EtOAc. The combined organic layers were

dried over Na_2SO_4 and solvents were evaporated. Chromatographic purification (5:1 hexane/EtOAc) of the crude material yielded epoxid **36** as pale yellow oil (463 mg, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.22 (t, J = 7.2 Hz, 1H), 2.76-2.69 (m, 1H), 2.44 (s, 1H), 2.37-2.13 (m, 5H), 1.77-1.55 (m, 4H), 1.70 (s, 3H), 1.49 (s, 3H), 1.31 (s, 3H), 1.27 (s, 3H). ¹³C PENDANT (100 MHz, CDCl₃) δ 135.03 (C, one isomer), 134.95 (C, other isomer), 125.2 (CH, one isomer), 125.1 (CH, other isomer), 87.7 (C, one isomer), 87.5 (C, other isomer), 71.41 (CH, one isomer), 71.36 (CH, other isomer), 68.0 (C, one isomer), 67.9 (C, other isomer), 64.02 (CH, one isomer), 64.00 (CH, other isomer), 58.62 (C, one isomer), 58.60 (C, other isomer), 43.39 (CH₂, one isomer), 43.35 (CH₂, other isomer), 30.0 (CH₃, one isomer), 29.7 (CH₃, other isomer), 28.5 (CH₂), 27.2 (CH₂, one isomer), 27.1 (CH₂, other isomer), 24.9 (CH₃), 23.30 (CH₃, one isomer), 23.27 (CH₃, other isomer), 23.25 (CH₂, one isomer), 23.18 (CH₂, other isomer), 18.72 (CH₃). HRMS-ESI calcd for C₁₅H₂₄O₂Na (*M*+Na)⁺: 259.1669; found: 259.1669.

(Z)-3,7,11-trimethyldodec-6-en-1-yne-3,10-diol (37)

Same procedure as for compound **33** using epoxyalcohol **36** as substrate.⁶ Chromatographic purification (2:1 hexane/EtOAc) yielded diol **37** as colorless oil (75%).

¹H NMR (400 MHz, CDCl₃) δ 5.20 (t, J = 7.2 Hz, 1H), 3.38-3.29 (m, 1H), 2.50-2.11 (m, 4H), 2.45 (s, 1H), 1.77-1.52 (m, 6H), 1.69 (s, 3H), 1.51-1.39 (m, 1H), 1.49 (s, 3H), 0.94-0.88 (m, 6H). ¹³C PENDANT (100 MHz, CDCl₃) δ 136.12 (C, one isomer), 136.06 (C, other isomer), 124.82 (CH, one isomer), 124.76 (CH, other isomer), 87.7 (C, one isomer), 87.6 (C, other isomer), 76.4 (CH, one isomer), 76.3 (CH, other isomer), 71.42 (CH, one isomer), 71.35 (CH, other isomer), 68.1 (C, one isomer), 68.0 (C, other isomer), 43.5 (CH₂, one isomer), 43.4 (CH₂, other isomer), 33.6 (CH), 32.1 (CH₂, one isomer), 32.0 (CH₂, other isomer), 30.0 (CH₃, one isomer), 29.8 (CH₃, other isomer), 28.11 (CH₂, one isomer), 18.83 (CH₃, one isomer), 18.82 (CH₃, other isomer), 17.3 (CH₃, one isomer), 17.2 (CH₃, other isomer). HRMS-ESI calcd for C₁₅H₂₆O₂Na (*M*+Na)⁺: 261.1825; found: 261.1814.

(Z)-10-hydroxy-2,6,10-trimethyldodec-6-en-11-yn-3-one (38)

OH Same procedure as for compound **34** using diol **37** as substrate. Chromatographic purification (6:1 hexane/EtOAc) yielded ketone **38** as colorless oil (73%).

¹H NMR (400 MHz, CDCl₃) δ 5.18 (t, J = 7.2 Hz, 1H), 2.60 (sept, J = 6.9 Hz, 1H), 2.55-2.48 (m, 2H), 2.44 (s, 1H), 2.35-2.13 (m, 5H), 1.72-1.64 (m, 2H), 1.69 (s, 3H), 1.49 (s, 3H), 1.09 (d, J = 6.9 Hz, 6H). ¹³C PENDANT (100 MHz, CDCl₃) δ 214.4 (C), 134.9 (C), 125.3 (CH), 87.5 (C), 71.5 (CH), 68.1 (C), 43.3 (CH₂), 40.9 (CH), 38.6 (CH₂), 29.8 (CH₃), 26.0 (CH₂), 23.3 (CH₂), 23.2 (CH₃), 18.2 (2xCH₃). HRMS-ESI calcd for C₁₅H₂₄O₂Na (*M*+Na)⁺: 259.1669; found: 259.1662.

(Z)-2,6,10-trimethyl-10-(triethylsilyloxy)dodec-6-en-11-yn-3-one ((±)-18)

Same procedure as for compound **1** using ketone **38** as substrate. Chromatographic purification (40:1 hexane/ Et_2O) yielded silyl ether (±)-**18** as colorless oil (94%).

¹H NMR (400 MHz, CDCl₃) δ 5.16 (t, J = 7.2 Hz, 1H), 2.61 (sept, J = 6.9 Hz, 1H), 2.53-2.47 (m, 2H), 2.40 (s, 1H), 2.32-2.25 (m, 2H), 2.25-2.07 (m, 2H), 1.70-1.57 (m, 2H), 1.67 (d, J = 1.2 Hz, 3H), 1.45 (s, 3H), 1.10 (d, J = 6.9 Hz, 6H), 0.95 (t, J = 7.8 Hz, 9H), 0.71-0.63 (m, 6H). ¹³C PENDANT (100 MHz, CDCl₃) δ 214.4 (C), 134.2 (C), 125.6 (CH), 88.1 (C), 71.8 (CH), 68.8 (C), 45.4 (CH₂), 40.8 (CH), 38.9 (CH₂), 30.9 (CH₃), 26.0 (CH₂), 23.3 (CH₃), 23.2 (CH₂), 18.3 (2xCH₃), 7.0 (CH₃), 6.1 (CH₂). HRMS-ESI calcd for C₂₁H₃₈OSiNa (*M*+Na)⁺: 373.2533; found: 373.2524.

Pubinernoid B ((±)-19)

Gold catalyst **12** (3.3 mg, 0.0043 mmol) was added at room temperature to a solution of enyne (\pm)-**18** (30 mg, 0.086 mmol) in CH₂Cl₂ (1 mL) containing activated molecular sieves (4 Å). The mixture was stirred for 1 h and was then quenched by addition of one

drop of Et_3N . After filtration through SiO_2 the solvent was removed under reduced pressure. Chromatographic purification (40:1 hexane/ Et_2O) of the crude material

yielded a mixture of isomers as colorless oil (9.6 mg, 32%). This mixture was used in the following deprotection without further purification.

A TBAF solution (1.0 M in THF, 86 μ L, 0.086 mmol) was added slowly to a cooled solution of the previous mixture in THF (1 mL) at 0 °C. After 10 min the cooling bath was removed and the solution was let to warm to room temperature. After 3 h the reaction was stopped by addition of a sat. aq. NH₄Cl solution. The mixture was extracted with Et₂O, the combined organic layers were dried over Na₂SO₄ and the solvents were removed under reduced pressure. Chromatographic purification (8:1 hexane/EtOAc) of the crude material yielded Pubinernoid B ((±)-19) as pale yellow oil (3.2 mg, 50%).

¹H NMR (400 MHz, CDCl₃) δ 6.08 (d, J = 2.04 Hz, 1H), 2.02 (ddd, J = 12.3, 6.6, 2.4 Hz, 1H), 1.92 (sept, J = 6.9 Hz, 1H), 1.87-1.69 (m, 6H), 1.63 (dtd, J = 11.6, 7.0, 1.9 Hz, 1H), 1.50-1.36 (m, 1H), 1.35 (s, 3H), 1.33 (s, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.7 (C), 122.5 (CH), 84.4 (C), 78.9 (C), 76.4 (C), 51.6 (CH), 40.0 (CH₂), 40.0 (CH₂), 36.8 (CH₂), 34.6 (CH), 29.1 (CH₃), 24.8 (CH₂), 23.4 (CH₃), 17.9 (CH₃), 17.1 (CH₃). HRMS-ESI calcd for C₁₅H₂₄O₂Na (*M*+Na)⁺: 259.1669; found: 259.1680.

Epoxyalcohol (24)

 CrO_3 (76 mg, 0.76 mmol) was added at 0 °C to a solution of pyridine (123 µL, 1.52 mmol) in CH_2Cl_2 (2 mL). The mixture was warmed to room temperature during 15 min until most of the CrO_3 was dissolved. Then alcohol **4** (30 mg, 0.13 mmol) was added at once and the

suspension was stirred for another 30 min. The reaction mixture was then directly transfered to a chromatographic column (15:1 hexane/Et₂O) yielding epoxyalcohol **24** as colorless oil (25 mg, 78%).

¹H NMR (400 MHz, CDCl₃) δ 4.10 (dd, J = 10.3, 1.2 Hz, 1H), 2.25 (d, J = 10.3 Hz, 1H), 2.16-2.07 (m, 1H), 2.06-1.85 (m, 4H), 1.69 (tdd, J = 12.8, 3.9, 1.2 Hz, 1H), 1.55-1.47 (m, 1H), 1.52 (s, 3H), 1.44-1.32 (m, 2H), 1.23 (s, 3H), 1.09-0.97 (m, 1H) 1.06 (d, J = 6.9 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H). ¹³C PENDANT (100 MHz, CDCl₃) δ 87.6 (C), 82.9 (C), 71.3 (C), 67.2 (CH), 65.0 (C), 50.3 (CH), 33.3 (CH), 32.9 (CH₂), 31.4 (CH₂), 28.2 (CH₂), 24.3 (CH₃), 20.1 (CH₂), 18.2 (CH₃), 17.3 (CH₃), 15.2 (CH₃). The structure

assignment of this compound was confirmed by 2D COSY, HSQC, HMBC and NOESY spectra. HRMS-ESI calcd for $C_{15}H_{24}O_3Na$ (*M*+Na)⁺: 275.1618; found: 275.1622.

Enone (25)

PDC (53 mg, 0.14 mmol) was added to a solution of alcohol **4** (8.3 mg, 0.035 mmol) in CH₂Cl₂ (0.5 mL). The mixture was stirred at 40 °C for 24 h. Then Et₂O (0.5 mL) was added, the mixture was filtered through a short pad of SiO₂ (eluting with Et₂O and EtOAc) and

solvents were evaporated. Chromatographic purification (10:1 pentane/ Et_2O) of the crude material yielded enone **25** as colorless oil (12 mg, 37%) together with epoxyalcohol **24** (13 mg, 37%).

¹H NMR (400 MHz, CDCl₃) δ 3.26-3.16 (bs, 1H), 2.57-2.43 (m, 1H), 2.35-2.25 (m 1H), 2.19 (sept, J = 6.9 Hz, 1H), 2.10-1.95 (m, 5H), 1.94-1.86 (m, 1H), 1.67-1.58 (m, 1H), 1.53-1.35 (m, 2H), 1.33 (s, 3H), 1.04 (d, J = 6.9 Hz, 3H), 1.02 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.9 (C), 154.4 (C), 131.9 (C), 91.1 (C), 84.4 (C), 57.9 (CH), 38.8 (CH₂), 33.3 (CH₂), 30.6 (CH), 30.0 (CH₂), 26.0 (CH₂), 24.6 (CH₃), 18.4 (CH₃), 17.3 (CH₃), 15.9 (CH₃). The structure assignment of this compound was confirmed by 2D COSY, HSQC, HMBC and NOESY spectra. HRMS-ESI calcd for C₁₅H₂₂O₂Na (*M*+Na)⁺: 257.1512; found: 257.1514.

Orientalol F ((+)-3)

Method A^9 (from Epoxyalcohol 24): A schlenck flask was charged with WCl₆ (69 mg, 0.17 mmol) in the glovebox. THF (1.7 mL) was added, the suspension was cooled to -78 °C and *n*-BuLi (2.2 M in hexanes, 158 µL, 0.349 mmol) was added. After the addition the

cooling bath was replaced by an ice bath. In a different flask a solution of the epoxyalcohol **24** (11 mg, 0.044 mmol) in THF (0.5 mL) was cooled to 0 °C and 0.6 mL of the preformed $[W^{4+}]$ solution was added. The reaction mixture was warmed up to room temperature during 30 min followed by stirring at 45°C for another 30 min. The initial brown solution turned to green. As TLC showed completion the reaction was quenched by addition of an aq. solution of sodium/potassium tartrate (1.5 M) and NaOH

(2M). The mixture was extracted with Et_2O . The combined organic phases were washed with brine, dried over Na_2SO_4 and solvents were evaporated. Chromatographic purification (14:1 hexane/EtOAc) of the crude material yielded Orientalol F ((+)-3) as a colorless oil (7.5 mg, 73%, 94:6 *er*). (±)-3 was obtained as pale yellow solid in an analog fashion.

Method B (from Enone **25**): NaBH₄ (4 mg, 0.1 mmol) was added at room temperature to a solution of Enone **25** (26 mg, 0.11 mmol) and CeCl₃·(H₂O)₇ (41 mg, 0.11 mmol) in MeOH (3 mL). After stirring the mixture for 36 h the reaction was quenched by the addition of brine. The mixture was extracted with EtOAc, the combined organic phases were dried over Na₂SO₄ and solvents were evaporated. Chromatographic purification (10:1 hexane/Et₂O) of the crude material yielded Orientalol F ((+)-**3**) as a colorless oil (26 mg, 100%, 94:6 *er*).

 $[\alpha]_D^{25} = +12.2 \text{ (CH}_2\text{Cl}_2, c \ 0.5); \ [\alpha]_D^{25} = +11.0 \text{ (1:1 MeOH/CH}_2\text{Cl}_2, c \ 0.5).^{10} \ ^1\text{H NMR}$ (400 MHz, CDCl₃) δ 4.48-4.40 (m, 1H), 2.74-2.64 (m, 1H), 2.40-2.27 (m 1H), 2.27-2.14 (m, 1H), 1.95 (sept, J = 6.9 Hz, 1H), 1.89 (s, 3H), 1.86-1.75 (m, 2H), 1.75-1.58 (m, 2H), 1.43 (d, J = 7.3 Hz, 1H), 1.36-1.16 (m, 2H), 1.19 (s, 3H), 1.05 (d, J = 7.0 Hz, 3H), 1.02 (d, J = 7.0 Hz, 3H). $^{13}\text{C NMR}$ (100 MHz, CDCl₃) δ 133.5 (C), 133.0 (C), 86.6 (C), 84.4 (C), 73.9 (CH), 57.6 (CH), 39.0 (CH₂), 31.5 (CH), 31.6 (CH₂), 28.6 (CH₂), 24.0 (CH₂), 23.9 (CH₃), 18.1 (CH₃), 17.2 (CH₃), 14.6 (CH₃). HRMS-ESI calcd for C₁₅H₂₅O₂ (*M*+H)⁺: 237.1849; found: 237.1851.

(*E*)-7-phenylhept-6-en-1-yn-3-ol (39)

Ethynylmagnesium bromide (0.5 M in THF, 34 mL) was added over 30 min to a solution of (*E*)-5-phenylpent-4-enal (2.15 g, 13.4 mmol) in THF (20 mL) at 0 $^{\circ}$ C. The mixture

was stirred at room temperature for 3 h before the reaction was quenched by addition of sat. aq. NH_4Cl solution. The aqueous phase was extracted with Et_2O . The combined organic layers were dried over Na_2SO_4 and solvents were evaporated. Chromatographic purification (5:1 pentane/ Et_2O) of the crude material yielded alcohol **39** as a yellow oil (1.35 g, 54%).

IR (neat): 3288*s*, 3024*w*, 2924*m*, 2114*w*, 1650*w*, 1597*w*, 1494*m*, 1446*m*, 1284*m*, 1157*w*, 1095*w*, 1067*s*, 1014*s*, 963*s*, 910*w*, 740*s*, 691*s* cm⁻¹. ¹H NMR (400 MHz,

CDCl₃) δ 7.36-7.28 (m, 4H), 7.21 (t, *J* = 7.1 Hz, 1H), 6.45 (d, *J* = 15.8 Hz, 1H), 6.23 (dt, *J* = 15.8, 6.9 Hz, 1H), 4.45 (dq, *J* = 6.5, 1.9 Hz, 1H), 2.51 (d, *J* = 2.1 Hz, 1H), 2.42 (dt, *J* = 7.9, 7.0 Hz, 2H), 1.94-1.81 (m, 2H), 1.85 (d, *J* = 5.6 Hz, 1H). ¹³C PENDANT (100 MHz, CDCl₃) δ 137.5 (C), 130.8 (CH), 129.2 (CH), 128.5 (CH), 127.0 (CH), 126.0 (CH), 84.6 (C), 73.3 (CH), 61.7 (CH), 37.0 (CH₂), 28.5 (CH₂). HRMS-ESI calcd for C₁₃H₁₅O (*M*+H)⁺: 187.1117; found: 187.1110.

(E)-(5-(benzyloxy)hept-1-en-6-ynyl)benzene (26)

NaH (60% in mineral oil, 129 mg, 3.22 mmol) was added to a solution of (*E*)-7-phenylhept-6-en-1-yn-3-ol (**39**, 400 mg, 2.15 mmol) in THF (7 mL) at 0 °C. After 45 min NBu₄I (40

mg, 0.11 mmol) and benzyl bromide (551 mg, 3.22 mmol) were added and the reaction mixture was stirred for 4 h at room temperature. After quenching the reaction by addition of water the aqueous phase was extracted with Et_2O . The combined organic layers were dried over Na_2SO_4 and solvents were evaporated. Chromatographic purification (100:1 pentane/Et₂O) of the crude material yielded benzyl ether **26** as a yellow oil (560 mg, 94%).

IR (neat): 3287*m*, 3026*w*, 2924*m*, 2858*m*, 2110*w*, 1650*w*, 1597*w*, 1495*m*, 1453*m*, 1390*w*, 1332*m*, 1206*w*, 1178*w*, 1089*m*, 1070*s*, 1027*m*, 963*s*, 911*w*, 735*s*, 692*s* cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.22 (m, 9H), 7.18-7.13 (m, 1H), 6.35 (d, *J* = 15.8 Hz, 1H), 6.14 (dt, *J* = 15.8, 6.9 Hz, 1H), 4.80 (d, *J* = 11.7 Hz, 1H), 4.48 (d, *J* = 11.7 Hz, 1H), 4.12 (dt, *J* = 6.5, 2.0 Hz, 1H), 2.46 (d, *J* = 2.0 Hz, 1H), 2.38 (q, *J* = 7.5 Hz, 2H), 1.95 (dq, *J* = 13.9, 7.2 Hz, 1H), 1.90 (dq, *J* = 13.7, 7.0 Hz, 1H). ¹³C PENDANT (100 MHz, CDCl₃) δ 137.7 (C), 137.5 (C), 130.6 (CH), 129.4 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.7 (CH), 126.9 (CH), 125.9 (CH), 82.6 (C), 74.1 (CH), 70.5 (CH₂), 67.6 (CH), 35.2 (CH₂), 28.6 (CH₂). HRMS-ESI calcd for C₂₀H₂₀ONa (*M*+Na)⁺: 299.1406; found: 299.1410.

((R^*)-(($1S^*, 3R^*$)-3-(benzyloxy)-2-methylenecyclopentyl)(methoxy)methyl)benzene (27)

A solution of (*E*)-(5-(benzyloxy)hept-1-en-6-ynyl)benzene (26, 50 mg, 0.18 mmol) and gold catalyst 12 (2.8 mg, 0.0036 mmol) in a mixture of
^h CH₂Cl₂ (0.9 mL) and methanol (0.9 mL) was heated in a microwave to
^a 100 °C for 20 min. The reaction mixture was then filtered through SiO₂

and the solvents were evaporated. Chromatographic purification (30:1 pentane/ Et_2O) of the crude material yielded the product **27** as colorless oil (53 mg, 95%).

IR (neat): 3063*w*, 3028*w*, 2924*m*, 2819*w*, 1494*m*, 1453*s*, 1329*w*, 1306*w*, 1236*w*, 1201*w*, 1155*w*, 1105*m*, 1087*s*, 1066*s*, 1027*m*, 967*w*, 942*w*, 911*s*, 761*w*, 733*s*, 698*s* cm⁻¹. ¹H NMR (500 MHz, C₆D₆) δ 7.39 (d, *J* = 7.2 Hz, 2H), 7.30 (d, *J* = 7.1 Hz, 2H), 7.23-7.09 (m, 6H), 4.94 (s, 1H), 4.53 (d, *J* = 12.2 Hz, 1H), 4.38 (s, 1H), 4.28 (d, *J* = 12.1 Hz, 1H), 4.11 (d, *J* = 8.7 Hz, 1H), 3.91 (dd, *J* = 5.2, 2.1 Hz, 1H), 3.04 (s, 3H), 2.85 (ddd, *J* = 12.4, 9.6, 5.0 Hz, 1H), 2.40-2.33 (m, 1H), 2.01-1.94 (m, 2H), 1.58 (dddd, *J* = 20.0, 9.7, 5.4, 0.6 Hz, 1H). ¹³C PENDANT (100 MHz, CDCl₃) δ 149.9 (C), 141.1 (C), 139.0 (C), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 113.7 (CH₂), 87.7 (CH), 82.6 (CH), 69.3 (CH₂), 56.8 (CH₃), 49.2 (CH), 31.7 (CH₂), 27.2 (CH₂). HRMS-ESI calcd for C₂₁H₂₄O₂Na (*M*+Na)⁺: 331.1669; found: 331.1682.

References

- [1] a) C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer and A. M. Echavarren, *J. Org. Chem.*, 2008, **73**, 7721-7730; b) C. Ferrer, M. Raducan, C. Nevado, C. K. Claviere and A. M. Echavarren, *Tetrahedron*, 2007, **63** (27), 6306-6316.
- [2] E. J. Corey and M. Sodeoka, *Tetrahedron Lett.*, 1991, **32**, 7005-7008.
- [3] Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765-5780.
- [4] E. J. Corey and R. S. Kania, J. Am. Chem. Soc., 1996, 118, 1229-1230.
- [5] a) S. Takano, K. Samizu, T. Sugihara and K. Ogasawara, *J. Chem. Soc., Chem. Commun.*, 1989, 1344-1345; b) J. S. Yadav, P. K. Deshpande and G. V. M. Sharma, *Tetrahedron*, 1990, 46 (20), 7033-7046; c) D. K. Mohapatra, C. Pramanik, M. S. Chorghade and M. K. Gurjar, *Eur. J. Org. Chem.*, 2007, 5059-5063.
- [6] D. F. Taber and J. B. Houze, J. Org. Chem., 1994, 59, 4004-4006.
- [7] J. D. Winkler, K. J. Quinn, C. H. MacKinnon, S. D. Hiscock and E. C. McLaughlin, *Org. Lett.*, 2003, 5, 1805-1808.
- [8] Y. Watanabe, S. Laschat, M. Budde, O. Affolter, Y. Shimada and V. B. Urlacher, *Tetrahedron*, 2007, 63, 9413-9422.
- [9] M. A. Umbreit and K. B. Sharpless, *Org Synth.*, 1981, **60**, 29-32.
- [10] G.-P. Peng, G. Tian, X.-F. Huang and F.-C. Lou, *Phytochemistry*, 2003, 63, 877-881.

GC / MS Sample (S,E)-10-hydroxy-2,6,10-trimethyldodec-6-en-11-yn-3-one (34) Method Column: HP-CHIRAL-20B 30 m x 0.25 mm, 0.25µm Inj vol: 1 µL split 1:100 split 1:100 Tinj/aux: 220/250 °C He flow: 1.5 mL/min oven: 50 °C up to 170°C at 10°C/min, 20 min at 170°C and 170-230°C at 10°C/min Chromatogram Chromatogram

Abundance TIC: KM016FC13-CHIRAL4.D 26.28 260000 240000 220000 200000 180000 160000 140000 120000 100000 80000 60000 40000 25 20000 C 0 15.00 10.00 20.00 30.00 5.00 25.00 35.00 Time-->

Signal : TIC

peak	R.T.	first	max	last	ΡK	peak	corr.	corr.	% of	
#	min	scan	scan	scan	ΤY	height	area	% max.	. total	
1	25.892	14668	14736	14839	PΒ	14162 9	952754		5.19%	4.937%
2	26.280	14862	14987	15184	BB	248317 1	8345162	100.00	95.0	63%

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

GC / MS					
Sample	Orientalol F ((+)-3)				
Method	Column: GTA 30mx0.25mm, 0.12µm				
Inj vol: 1 µL					
split 1:100					
	Tinj/aux: 170/170 ºC				
	He flow: 1.5 mL/min				
	split 100:1 (1µL)				
	145°C				
Chromatogram					

peak R.T. first max last PK peak corr. corr. % of # min scan scan scan TY height area % max. total

1 17.950 2077 2106 2133 M 26648 1965215 100.00% 93.805% 2 18.268 2134 2151 2176 M2 1563 129791 6.60% 6.195%

Sum of corrected areas: 2095007

Abundance

m/z-->

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

S-47

NOESY1D-experiments on $((R^*)-((1S^*,3R^*)-3-(benzyloxy)-2-methylenecyclopentyl)$

(methoxy)methyl)benzene (27)

Crystallographic data for compound (±)-3

Table 1. Crystal data and structure refinement for e20849P21c.

Identification code	e20849p21c	
Empirical formula	C15 H24 O2	
Formula weight	236.34	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 15.8542(4) Å	$\alpha = 90^{\circ}$.
	b = 7.8544(2) Å	$\beta = 108.2520(10)^{\circ}.$
	c = 11.0204(3) Å	$\gamma = 90^{\circ}.$
Volume	1303.27(6) Å3	
Z	4	
Density (calculated)	1.205 Mg/m3	
Absorption coefficient	0.077 mm-1	

F(000)	520
Crystal size	0.60 x 0.60 x 0.20 mm3
Theta range for data collection	3.74 to 39.32°.
Index ranges	-28<=h<=27, -13<=k<=13, -14<=l<=19
Reflections collected	30679
Independent reflections	7505 [R(int) = 0.0191]
Completeness to theta = 39.32°	97.1 %
Absorption correction	SADABS (Broker-Nonius)
Max. and min. transmission	0.9847 and 0.9550
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	7505 / 0 / 159
Goodness-of-fit on F2	1.081
Final R indices [I>2sigma(I)]	R1 = 0.0374, wR2 = 0.1092
R indices (all data)	R1 = 0.0430, wR2 = 0.1137
Largest diff. peak and hole	0.556 and -0.227 e.Å-3

Table 2. Bond lengths [Å] and angles [°] for e20849P21c.

O(1)-C(1)	1.4478(5)
O(1)-C(8)	1.4522(6)
C(1)-C(11)	1.5367(7)
C(1)-C(10)	1.5452(7)
C(1)-C(2)	1.5496(6)
O(2)-C(2)	1.4194(6)
C(2)-C(3)	1.5066(6)
C(3)-C(4)	1.3424(6)
C(3)-C(7)	1.5163(6)
C(4)-C(14)	1.4936(7)
C(4)-C(5)	1.5151(7)
C(5)-C(6)	1.5353(7)
C(6)-C(7)	1.5387(7)
C(7)-C(8)	1.5360(6)
C(8)-C(15)	1.5164(7)
C(8)-C(9)	1.5374(7)
C(9)-C(10)	1.5380(7)
C(11)-C(12)	1.5319(9)
C(11)-C(13)	1.5326(7)

C(1)-O(1)-C(8)	106.03(3)
O(1)-C(1)-C(11)	109.54(4)
O(1)-C(1)-C(10)	104.33(4)
C(11)-C(1)-C(10)	114.24(4)
O(1)-C(1)-C(2)	106.91(3)
C(11)-C(1)-C(2)	112.16(4)
C(10)-C(1)-C(2)	109.14(4)
O(2)-C(2)-C(3)	113.99(4)
O(2)-C(2)-C(1)	107.47(4)
C(3)-C(2)-C(1)	109.39(4)
C(4)-C(3)-C(2)	131.39(4)
C(4)-C(3)-C(7)	111.42(4)
C(2)-C(3)-C(7)	117.12(4)
C(3)-C(4)-C(14)	130.03(4)
C(3)-C(4)-C(5)	110.55(4)
C(14)-C(4)-C(5)	119.29(4)
C(4)-C(5)-C(6)	103.77(4)
C(5)-C(6)-C(7)	104.35(4)
C(3)-C(7)-C(8)	111.32(4)
C(3)-C(7)-C(6)	103.14(4)
C(8)-C(7)-C(6)	118.26(4)
O(1)-C(8)-C(15)	107.62(4)
O(1)-C(8)-C(7)	105.58(4)
C(15)-C(8)-C(7)	112.28(4)
O(1)-C(8)-C(9)	102.65(4)
C(15)-C(8)-C(9)	114.38(4)
C(7)-C(8)-C(9)	113.28(4)
C(8)-C(9)-C(10)	104.46(4)
C(9)-C(10)-C(1)	104.48(4)
C(12)-C(11)-C(13)	109.78(5)
C(12)-C(11)-C(1)	113.68(4)
C(13)-C(11)-C(1)	111.79(4)

Symmetry transformations used to generate equivalent atoms:

Table 3. Torsion angles [°] for e20849P21c.

C(8)-O(1)-C(1)-C(11)	-161.49(4)
C(8)-O(1)-C(1)-C(10)	-38.79(4)
C(8)-O(1)-C(1)-C(2)	76.77(4)
O(1)-C(1)-C(2)-O(2)	-179.56(4)
C(11)-C(1)-C(2)-O(2)	60.37(5)
C(10)-C(1)-C(2)-O(2)	-67.26(5)
O(1)-C(1)-C(2)-C(3)	-55.31(5)
C(11)-C(1)-C(2)-C(3)	-175.39(4)
C(10)-C(1)-C(2)-C(3)	56.98(5)
O(2)-C(2)-C(3)-C(4)	-24.74(7)
C(1)-C(2)-C(3)-C(4)	-145.08(5)
O(2)-C(2)-C(3)-C(7)	158.74(4)
C(1)-C(2)-C(3)-C(7)	38.40(5)
C(2)-C(3)-C(4)-C(14)	-1.17(9)
C(7)-C(3)-C(4)-C(14)	175.51(5)
C(2)-C(3)-C(4)-C(5)	-176.91(5)
C(7)-C(3)-C(4)-C(5)	-0.24(6)
C(3)-C(4)-C(5)-C(6)	-15.77(6)
C(14)-C(4)-C(5)-C(6)	167.97(4)
C(4)-C(5)-C(6)-C(7)	24.69(5)
C(4)-C(3)-C(7)-C(8)	143.87(4)
C(2)-C(3)-C(7)-C(8)	-38.93(5)
C(4)-C(3)-C(7)-C(6)	16.06(5)
C(2)-C(3)-C(7)-C(6)	-166.74(4)
C(5)-C(6)-C(7)-C(3)	-24.66(5)
C(5)-C(6)-C(7)-C(8)	-147.98(4)
C(1)-O(1)-C(8)-C(15)	164.39(4)
C(1)-O(1)-C(8)-C(7)	-75.51(4)
C(1)-O(1)-C(8)-C(9)	43.38(4)
C(3)-C(7)-C(8)-O(1)	54.66(5)
C(6)-C(7)-C(8)-O(1)	173.79(4)
C(3)-C(7)-C(8)-C(15)	171.66(4)
C(6)-C(7)-C(8)-C(15)	-69.21(6)
C(3)-C(7)-C(8)-C(9)	-56.90(5)
C(6)-C(7)-C(8)-C(9)	62.24(5)
O(1)-C(8)-C(9)-C(10)	-30.15(5)

C(15)-C(8)-C(9)-C(10)	-146.40(4)
C(7)-C(8)-C(9)-C(10)	83.20(5)
C(8)-C(9)-C(10)-C(1)	7.38(5)
O(1)-C(1)-C(10)-C(9)	18.09(5)
C(11)-C(1)-C(10)-C(9)	137.66(4)
C(2)-C(1)-C(10)-C(9)	-95.89(4)
O(1)-C(1)-C(11)-C(12)	-72.94(5)
C(10)-C(1)-C(11)-C(12)	170.46(4)
C(2)-C(1)-C(11)-C(12)	45.60(5)
O(1)-C(1)-C(11)-C(13)	52.03(6)
C(10)-C(1)-C(11)-C(13)	-64.57(6)
C(2)-C(1)-C(11)-C(13)	170.57(4)

Symmetry transformations used to generate equivalent atoms:

Crystallographic data for compound (±)-17

Table 1	Convetel dete	and atm	atura rafinanaa	+ for E20047	0
Table 1.	Crystal data	and stru	icture refinemen	It IOF E20847	_0m.

Identification code	e20847_0m	
Empirical formula	C15 H24 O3	
Formula weight	252.34	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.7861(5) Å	$\alpha = 106.620(3)^{\circ}.$
	b = 8.9090(5) Å	$\beta = 93.492(4)^{\circ}.$
	c = 9.9947(6) Å	$\gamma = 109.880(3)^{\circ}.$
Volume	694.03(7) Å ³	
Z	2	
Density (calculated)	1.208 Mg/m ³	
Absorption coefficient	0.082 mm ⁻¹	
F(000)	276	
Crystal size	$0.20 \text{ x} 0.10 \text{ x} 0.02 \text{ mm}^3$	
Theta range for data collection	2.77 to 32.29°.	
Index ranges	-12<=h<=13, -13<=k<=13, -14	-<=l<=13

Reflections collected	11917
Independent reflections	4520 [R(int) = 0.0462]
Completeness to theta = 32.29°	91.4 %
Absorption correction	SADABS (Bruker-Nonius)
Max. and min. transmission	0.9984 and 0.9838
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4520 / 0 / 168
Goodness-of-fit on F ²	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0616, wR2 = 0.1632
R indices (all data)	R1 = 0.0928, wR2 = 0.1838
Largest diff. peak and hole	0.606 and -0.324 e.Å ⁻³

Table 2. Bond lengths [Å] and angles [°] for E20847_0m.

O(1)-C(6)	1.4432(17)	
O(1)-C(5)	1.4538(19)	
C(1)-O(3)	1.4134(19)	
C(1)-C(11)	1.518(2)	
C(1)-C(8)	1.5273(19)	
C(1)-C(2)	1.562(2)	
O(2)-C(8)	1.4517(17)	
O(2)-C(7)	1.4535(19)	
C(2)-C(3)	1.553(2)	
C(3)-C(4)	1.537(2)	
C(4)-C(8)	1.500(2)	
C(4)-C(5)	1.542(2)	
C(5)-C(12)	1.511(2)	
C(5)-C(9)	1.547(2)	
C(6)-C(13)	1.528(2)	
C(6)-C(10)	1.535(2)	
C(6)-C(7)	1.540(2)	
C(7)-C(8)	1.460(2)	
C(9)-C(10)	1.542(2)	
C(13)-C(15)	1.525(2)	
C(13)-C(14)	1.534(2)	
C(6)-O(1)-C(5)	104.88(11)	
O(3)-C(1)-C(11)	106.25(12)	
O(3)-C(1)-C(8)	112.19(11)	

C(11)-C(1)-C(8)	112.88(13)
O(3)-C(1)-C(2)	113.51(14)
C(11)-C(1)-C(2)	112.43(12)
C(8)-C(1)-C(2)	99.75(11)
C(8)-O(2)-C(7)	60.36(9)
C(3)-C(2)-C(1)	107.87(13)
C(4)-C(3)-C(2)	104.52(13)
C(8)-C(4)-C(3)	101.19(13)
C(8)-C(4)-C(5)	112.28(11)
C(3)-C(4)-C(5)	123.51(13)
O(1)-C(5)-C(12)	107.64(14)
O(1)-C(5)-C(4)	104.19(11)
C(12)-C(5)-C(4)	111.23(12)
O(1)-C(5)-C(9)	103.81(11)
C(12)-C(5)-C(9)	113.34(12)
C(4)-C(5)-C(9)	115.59(13)
O(1)-C(6)-C(13)	107.75(12)
O(1)-C(6)-C(10)	102.11(11)
C(13)-C(6)-C(10)	113.91(11)
O(1)-C(6)-C(7)	109.33(10)
C(13)-C(6)-C(7)	112.92(12)
C(10)-C(6)-C(7)	110.17(13)
O(2)-C(7)-C(8)	59.76(9)
O(2)-C(7)-C(6)	112.97(11)
C(8)-C(7)-C(6)	116.47(12)
O(2)-C(8)-C(7)	59.88(9)
O(2)-C(8)-C(4)	115.95(11)
C(7)-C(8)-C(4)	119.84(13)
O(2)-C(8)-C(1)	111.62(12)
C(7)-C(8)-C(1)	131.79(13)
C(4)-C(8)-C(1)	106.57(11)
C(10)-C(9)-C(5)	104.38(12)
C(6)-C(10)-C(9)	103.26(11)
C(15)-C(13)-C(6)	112.56(11)
C(15)-C(13)-C(14)	111.84(13)
C(6)-C(13)-C(14)	110.75(13)

Symmetry transformations used to generate equivalent atoms:

Table 3. Torsion angles [°] for E20847_0m.

O(3)-C(1)-C(2)-C(3)	-138.02(13)
C(11)-C(1)-C(2)-C(3)	101.34(15)
C(8)-C(1)-C(2)-C(3)	-18.50(16)
C(1)-C(2)-C(3)-C(4)	-7.96(17)
C(2)-C(3)-C(4)-C(8)	31.71(15)
C(2)-C(3)-C(4)-C(5)	158.19(14)
C(6)-O(1)-C(5)-C(12)	-160.77(11)
C(6)-O(1)-C(5)-C(4)	81.04(12)
C(6)-O(1)-C(5)-C(9)	-40.35(13)
C(8)-C(4)-C(5)-O(1)	-51.42(16)
C(3)-C(4)-C(5)-O(1)	-172.94(13)
C(8)-C(4)-C(5)-C(12)	-167.11(14)
C(3)-C(4)-C(5)-C(12)	71.36(19)
C(8)-C(4)-C(5)-C(9)	61.79(17)
C(3)-C(4)-C(5)-C(9)	-59.73(19)
C(5)-O(1)-C(6)-C(13)	167.86(10)
C(5)-O(1)-C(6)-C(10)	47.60(13)
C(5)-O(1)-C(6)-C(7)	-69.07(13)
C(8)-O(2)-C(7)-C(6)	-108.26(13)
O(1)-C(6)-C(7)-O(2)	95.05(13)
C(13)-C(6)-C(7)-O(2)	-145.02(12)
C(10)-C(6)-C(7)-O(2)	-16.40(15)
O(1)-C(6)-C(7)-C(8)	28.62(17)
C(13)-C(6)-C(7)-C(8)	148.56(13)
C(10)-C(6)-C(7)-C(8)	-82.83(15)
C(7)-O(2)-C(8)-C(4)	110.94(15)
C(7)-O(2)-C(8)-C(1)	-126.78(14)
C(6)-C(7)-C(8)-O(2)	102.38(13)
O(2)-C(7)-C(8)-C(4)	-104.50(14)
C(6)-C(7)-C(8)-C(4)	-2.1(2)
O(2)-C(7)-C(8)-C(1)	93.03(17)
C(6)-C(7)-C(8)-C(1)	-164.59(15)
C(3)-C(4)-C(8)-O(2)	78.89(14)
C(5)-C(4)-C(8)-O(2)	-54.68(18)
C(3)-C(4)-C(8)-C(7)	147.53(13)
C(5)-C(4)-C(8)-C(7)	14.0(2)

C(3)-C(4)-C(8)-C(1)	-46.02(15)
C(5)-C(4)-C(8)-C(1)	-179.59(12)
O(3)-C(1)-C(8)-O(2)	32.97(17)
C(11)-C(1)-C(8)-O(2)	152.97(12)
C(2)-C(1)-C(8)-O(2)	-87.51(14)
O(3)-C(1)-C(8)-C(7)	-35.3(2)
C(11)-C(1)-C(8)-C(7)	84.7(2)
C(2)-C(1)-C(8)-C(7)	-155.81(16)
O(3)-C(1)-C(8)-C(4)	160.48(13)
C(11)-C(1)-C(8)-C(4)	-79.51(16)
C(2)-C(1)-C(8)-C(4)	40.01(16)
O(1)-C(5)-C(9)-C(10)	16.65(14)
C(12)-C(5)-C(9)-C(10)	133.14(14)
C(4)-C(5)-C(9)-C(10)	-96.78(14)
O(1)-C(6)-C(10)-C(9)	-35.08(14)
C(13)-C(6)-C(10)-C(9)	-150.94(13)
C(7)-C(6)-C(10)-C(9)	80.99(14)
C(5)-C(9)-C(10)-C(6)	10.99(15)
O(1)-C(6)-C(13)-C(15)	63.33(15)
C(10)-C(6)-C(13)-C(15)	175.84(13)
C(7)-C(6)-C(13)-C(15)	-57.51(17)
O(1)-C(6)-C(13)-C(14)	-170.65(11)
C(10)-C(6)-C(13)-C(14)	-58.14(16)
C(7)-C(6)-C(13)-C(14)	68.51(15)

Symmetry transformations used to generate equivalent atoms: