B920676K ESI

Experimental Part

General. All commercially available reagents were purchased and used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker spectrometers. UV-Vis absorption spectra were collected at room temperature on a UVIKON XL spectrometer from BIO-TEK instruments. Infrared spectra were measured either in KBr pellet using Perkin Elmer FTIR 1600 spectrometer or on a Shimadzu FTIR-8400S equipped with a Pike Miracle ATR (Ge).
The silica used for chromatography and atropoisomerisation was Geduran, Silica Gel Si60 (40-63 $\mu \mathrm{m}$) from Merck. The aluminium oxide used for chromatography was Aluminium Oxide 90 standardized, from Merck.
The 7-carboxy-8-hydroxyquinoline ${ }^{1}$, meso-tetrakis(o-aminophenyl)porphyrin ${ }^{2}$ and α_{4}-meso-tetrakis(o-aminophenyl)porphyrin $(\mathbf{1})^{3}$ were synthesised as described in literature.

Porphyrin (2)

7-carboxy-8-hydroxyquinoline ($495 \mathrm{mg}, 2.6 \mathrm{mmol}, 6$ eq), compound 1 ($295 \mathrm{mg}, 0.44 \mathrm{mmol}$, $1 \mathrm{eq})$ and DMAP (paraN,N-dimethylaminopyridine) ($323 \mathrm{mg}, 2.6 \mathrm{mmol}, 6 \mathrm{eq}$) are dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$. $\mathrm{HBTU}(989 \mathrm{mg}, 2.6 \mathrm{mmol}, 6 \mathrm{eq})$ is added to the solution, the mixture is protected from light and stirred at room temperature under argon for 4 days. Half of the solvent is evaporated under reduced pressure, methanol $(120 \mathrm{~mL})$ is added and the mixture is stirred overnight. After centrifugation, the solid is filtered, washed with methanol and diethyl ether affording 469 mg of the desired porphyrin 2 as a purple solid ($0.35 \mathrm{mmol}, 80 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-1.87\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{\text {porphyrin }}\right), 5.75(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{d}}\right), 6.39\left(4 \mathrm{H}, \mathrm{dd}, J=7.9 \mathrm{~Hz}\right.$ and $\left.3.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 6.61\left(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 6.83(4 \mathrm{H}, \mathrm{d}, J=$ $\left.7.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.03\left(4 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.60\left(4 \mathrm{H}, \mathrm{dd}, J=7.4 \mathrm{~Hz}\right.$ and $\left.7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{h}}\right), 7.85(4 \mathrm{H}$, $\mathrm{dd}, J=7.4 \mathrm{~Hz}$ and $\left.7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{g}}\right), 8.22\left(4 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 8.59\left(4 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{i}}\right), 8.78$ $\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{\text {amide }}\right)$ and $8.98\left(8 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\beta \text { pyrr. }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{HMBC}-\mathrm{HSQC}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $111.4\left(\mathrm{C}_{\text {III }}\right), 115.7\left(\mathrm{CH}_{\mathrm{d}}\right), 114.6\left(\mathrm{C}_{\mathrm{VI}}\right), 121.9\left(\mathrm{CH}_{\mathrm{b}}\right), 122.2\left(\mathrm{CH}_{\mathrm{f}}\right), 123.2\left(\mathrm{CH}_{\mathrm{h}}\right), 124.9\left(\mathrm{CH}_{\mathrm{e}}\right)$, $127.4\left(\mathrm{C}_{\mathrm{I}}\right), 129.8\left(\mathrm{CH}_{\mathrm{g}}\right), 131.6\left(\mathrm{CH}_{\text {ppyrr }}\right), 133.4\left(\mathrm{CH}_{\mathrm{i}}\right), 133.9\left(\mathrm{CH}_{\mathrm{c}}\right)$, $134.9\left(\mathrm{C}_{\mathrm{IV}}\right), 138.8\left(\mathrm{C}_{\mathrm{V}}\right)$, $147.0\left(\mathrm{CH}_{\mathrm{a}}\right), 148.9\left(\mathrm{C}_{\mathrm{II}}\right)$ and $162.7(\mathrm{CO}) . \lambda_{\text {max }}(\mathrm{nm})\left(\varepsilon \times 10^{-4} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 270(7.7)$, 423 (28.8), 516 (1.7), 548 (0.4), 589 (0.6) and 645 (0.1). $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3300,1666,1581$, 1536, 1449, 1383, 1286, 1229, 1127 and 967. m/z (MALDI) $1359.45\left(\mathrm{MH}^{+} . \mathrm{C}_{84} \mathrm{H}_{55} \mathrm{~N}_{12} \mathrm{O}_{8}\right.$
requires: 1359.43). (Found: C 70.2 ; H 3.9 ; $\mathrm{N} 11.7, \mathrm{C}_{84} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{O}_{8}+\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{CH}_{3} \mathrm{OH}$ requires C 70.0; H 4.1; N 11.4)

Complex: [2-Nd] ${ }^{-}$

Porphyrin $2(30.0 \mathrm{mg}, 22 \mu \mathrm{~mol}, 1 \mathrm{eq})$ is dissolved in analytical grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. A solution $(22 \mu \mathrm{~L})$ of $\mathrm{TBAOH}(1 \mathrm{M})$ in $\mathrm{MeOH}(22 \mu \mathrm{~mol}, 1 \mathrm{eq})$ is added and the mixture is degassed during 10 minutes and then heated to reflux under argon. A solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) containing $\mathrm{Nd}(\mathrm{acac})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(10.5 \mathrm{mg}, 22 \mu \mathrm{~mol}, 1 \mathrm{eq})$ is added drop wise. The reaction mixture is refluxed under argon during $7 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL})$ is added and the precipitated solid is recovered by centrifugation and washed with $\mathrm{Et}_{2} \mathrm{O}$. The solid is dried under vacuum to yield $31.6 \mathrm{mg}(18.1 \mu \mathrm{~mol}, 82 \%)$ of a purple solid.
$\lambda_{\text {max }}(\mathrm{nm})\left(\varepsilon \times 10^{-4} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 270(6.9), 427$ (17.0), 520 (1.3), 565 (0.7), 591 (0.7) and $652(0.2) . v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2959,2874,1636,1631,1596,1578,1501,1447,1398$,

1302, 1227, 1187, 1110, 982, 968, 883, 824, 797, 752 and 744. m / z (ESI) $1496.24\left(\mathrm{M}^{-}\right.$. $\mathrm{C}_{84} \mathrm{H}_{40} \mathrm{~N}_{12} \mathrm{O}_{8} \mathrm{Nd}$ requires: 1496.30)

Porphyrin 1-Pd

The metallation of the porphyrin has been performed using the general procedure. ${ }^{4}$ A solution of the meso-tetrakis(o-aminophenyl)porphyrin ${ }^{2}(100 \mathrm{mg}, 0.15 \mathrm{mmol}, 1 \mathrm{eq}$, mixture of atropoisomers) and of $\mathrm{Pd}(\mathrm{OAc})_{2}(50 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.5 \mathrm{eq})$ in a mixture of $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $(2 / 1,15 \mathrm{~mL})$ is refluxed during 9 h under argon and protected from light. The reaction mixture is filtered on a silica pad and the solvents are removed under reduced pressure. The orange residue is dissolved in toluene (60 mL) and 5 g of silica gel is added. The mixture is heated to reflux under argon and protected from light for 20 h . The toluene is filtered off and the silica is washed with 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95-5)$. The solvents are evaporated at room temperature under reduced pressure and the residue is loaded on an aluminium oxide chromatography column and eluted with a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (98:2). Pure α_{4} atropoisomer is obtained as an orange solid: $40 \mathrm{mg}(0.05 \mathrm{mmol}, 24 \%)$.

${ }^{1} \mathrm{H}-\mathrm{NMRP}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.5\left(8 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.04(4 \mathrm{H}, \mathrm{dd}, J=7.6 \mathrm{~Hz}$ and 1.0 $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.13\left(4 \mathrm{H}\right.$, ddd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}$ and $\left.1.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.56(4 \mathrm{H}$, ddd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}$ and $\left.1.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.79\left(4 \mathrm{H}, \mathrm{dd}, J=7.6 \mathrm{~Hz}\right.$ and $\left.1.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$ and $8.86\left(8 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\beta-\mathrm{pyr}}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 115.3(\mathrm{CH}), 117.5(\mathrm{C}), 117.7(\mathrm{CH}), 126.6(\mathrm{C}), 129.7(\mathrm{CH}), 131.3$ $(\mathrm{CH}), 134.6(\mathrm{CH}), 141.9(\mathrm{C})$ and $146.6(\mathrm{C})$

Porphyrin 2-Pd

78 mg of 7 -carboxy-8-hydroxyquinoline ($0.41 \mathrm{mmol}, 8 \mathrm{eq}$), 40 mg of $\mathbf{1 - P d}(0.05 \mathrm{mmol}, 1 \mathrm{eq})$ and 50 mg of DMAP ($0.41 \mathrm{mmol}, 8 \mathrm{eq}$) are dissolved in 10 mL of analytical grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and degassed. 156 mg of $\operatorname{HBTU}(0.16 \mathrm{mmol}, 8 \mathrm{eq})$ are added to the solution, the mixture is protected from light and stirred at room temperature under argon for 5 days. Half of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is evaporated under reduced pressure and 50 mL of methanol are added. The mixture is centrifugated and the solid is washed with $2 \times 30 \mathrm{~mL} \mathrm{MeOH}$ and dried with diethylether. 49 mg of an orange solid is obtained ($0.03 \mathrm{mmol}, 67 \%$).

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.62\left(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 6.42(4 \mathrm{H}, \mathrm{dd}, J=8.2 \mathrm{~Hz}$ and $\left.4.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 6.48\left(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 6.77\left(4 \mathrm{H}, \mathrm{dd}, J=8.2 \mathrm{~Hz}\right.$ and $\left.1.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.17$ $\left(4 \mathrm{H}, \mathrm{dd}, J=4.1 \mathrm{~Hz}\right.$ and $\left.1.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.60\left(4 \mathrm{H}, \mathrm{ddd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}\right.$ and $\left.1.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{h}}\right), 7.84$ $\left(4 \mathrm{H}, \mathrm{ddd}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}\right.$ and $\left.1.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{g}}\right), 8.21\left(4 \mathrm{H}, \mathrm{dd}, J=7.6 \mathrm{~Hz}\right.$ and $\left.1.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{i}}\right), 8.54$ $\left(4 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 8.56\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{\text {amide }}\right)$ and $8.95\left(8 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\beta \text { pyrr }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (HSQC HMBC, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 111.4\left(\mathrm{C}_{\text {III }}\right), 115.7\left(\mathrm{CH}_{\mathrm{d}}\right), 116.7\left(\mathrm{C}_{\mathrm{VI}}\right), 121.9\left(\mathrm{CH}_{\mathrm{b}}\right), 122.2\left(\mathrm{CH}_{\mathrm{f}}\right)$, $123.2\left(\mathrm{CH}_{\mathrm{h}}\right)$, $124.9\left(\mathrm{CH}_{\mathrm{e}}\right)$, $127.4\left(\mathrm{C}_{\mathrm{I}}\right)$, $129.8\left(\mathrm{CH}_{\mathrm{g}}\right)$, $131.6\left(\mathrm{CH}_{\text {ppyrr }}\right)$, $133.4\left(\mathrm{CH}_{\mathrm{i}}\right), 133.9\left(\mathrm{CH}_{\mathrm{c}}\right)$, $134.9\left(\mathrm{C}_{\text {IV }}\right), 138.8\left(\mathrm{C}_{\mathrm{V}}\right), 141.4\left(\mathrm{C}_{\text {Porph }}\right), 147.0\left(\mathrm{CH}_{\mathrm{a}}\right), 148.9\left(\mathrm{C}_{\mathrm{II}}\right)$ and $162.7(\mathrm{CO}) . \lambda_{\max }(\mathrm{nm})$ $\left(\varepsilon \times 10^{-4} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 274$ (5.7), 421 (24.1), 527 (2.2) and $559(0.5) . v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-}$ ${ }^{1} 3300,1666,1581,1536,1461,1441,1383,1350,1309,1281,1229,1195,1127,1102$, 1072, 1014 and 939. $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 1485.3110\left(\mathrm{MNa}^{+} \mathrm{C}_{84} \mathrm{H}_{52} \mathrm{~N}_{12} \mathrm{O}_{8} \mathrm{PdNa}^{+}\right.$requires: 1485.2983).

Complex [(2-Pd)Nd]

$16.3 \mathrm{mg}(11.1 \mu \mathrm{~mol}, 1 \mathrm{eq})$ of porphyrin 2-Pd in $17 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{CN}(8-2)$ are degassed. 11 $\mu \mathrm{L}$ of 1 M TBAOH solution in $\mathrm{MeOH}(11 \mu \mathrm{~mol}, 1 \mathrm{eq})$ are added and the mixture is heated to reflux under argon. $5.3 \mathrm{mg}(11.1 \mu \mathrm{~mol}, 1 \mathrm{eq})$ of neat $\mathrm{Nd}(\mathrm{acac})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ are added. The reaction mixture is refluxed under argon during 7 h . The desired product is precipitated with 60 mL $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum: $11.3 \mathrm{mg}(6.1 \mu \mathrm{~mol}, 55 \%)$ of a orange solid is isolated.
$\lambda_{\text {max }}(\mathrm{nm})\left(\varepsilon \times 10^{-4} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 278$ (9.5), 424 (17.6), 529 (2.1) and 561 (0.7). $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2960,1635,1500,1447,1397,1354,1306,1233,1191,1102,1013,825,794$ and 749. $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{-}\right) 1600.1968\left(\mathrm{M}^{-} . \mathrm{C}_{84} \mathrm{H}_{48} \mathrm{~N}_{12} \mathrm{O}_{8} \mathrm{PdNd}\right.$ requires: 1600.1825)

7-(phenylcarboxamide)-8-hydroxyquinoline (3)

In a flask under argon and protected from light: 100 mg of 7 -carboxy-8-hydroxyquinoline ($0.53 \mathrm{mmol}, 1 \mathrm{eq}$), 65 mg of $\operatorname{DMAP}(0.53 \mathrm{mmol}, 1 \mathrm{eq}), 48 \mu \mathrm{~L}$ of aniline ($0.53 \mathrm{mmol}, 1 \mathrm{eq}$) and 200 mg of $\mathrm{HBTU}(0.53 \mathrm{mmol}, 1 \mathrm{eq})$ in 20 mL of analytical grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are stirred at room temperature during 3 days. The solvent is evaporated under reduced pressure and the residue is washed with 20 mL MeOH and dried in air. 130 mg of an orange solid is obtained (0.49 mmol, 93\%).

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.16\left(1 \mathrm{H}, \mathrm{tt}, J=7.6 \mathrm{~Hz}\right.$ and $\left.1.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{h}}.\right), 7.36-7.42$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{g}}\right), 7.45\left(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 7.57\left(1 \mathrm{H}, \mathrm{dd}, J=8.5 \mathrm{~Hz}\right.$ and $\left.4.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.75-$ $7.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{f}}\right), 8.22\left(1 \mathrm{H}, \mathrm{dd}, J=8.5 \mathrm{~Hz}\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 8.31\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.86$ $\left(1 \mathrm{H}, \mathrm{dd}, J=4.2 \mathrm{~Hz}\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right)$ and $9.90\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{\text {amide }}\right)$, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 118.0(\mathrm{CH}), 120.5(\mathrm{CH}), 123.5(\mathrm{CH}), 124.3(\mathrm{CH}), 127.9(\mathrm{CH}), 129.1(\mathrm{CH}), 130.1(\mathrm{C})$, $\left.136.4(\mathrm{CH}), 138.2^{\prime} \mathrm{C}\right), 138.4(\mathrm{C}), 148.4(\mathrm{CH}), 151.0(\mathrm{C})$ and $163.3(\mathrm{C}) . \lambda_{\max }(\mathrm{nm})\left(\varepsilon \times 10^{-4} / \mathrm{L} \mathrm{mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 271$ (18000). $v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1} 3019,1657,1692,1551,1525,1500,1471$, $1445,1423,1377,1334,1285,1232,1213,1183,1175,1124,1109,1077,1039,1016,943$,

889, 824, 810, 754, 735, 689, 651 and 607. (Found: C 71.64; H 4.55; N 10.56, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C} 71.52 ; \mathrm{H} 4.70 ; \mathrm{N} 10.42$)

Complex [(3) $\left.{ }_{4} \mathrm{Nd}\right]^{-}$

$40.0 \mathrm{mg}(151 \mu \mathrm{~mol}, 4 \mathrm{eq})$ of 3 , and $18.0 \mathrm{mg}(37.8 \mu \mathrm{~mol}, 1 \mathrm{eq}) \mathrm{Nd}(\mathrm{acac})_{3}$ are dissolved in 30 mL of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{CN}$ mixture (8-2). $37.8 \mu \mathrm{~L}$ of 1 M TBAOH solution in MeOH (37.8 $\mu \mathrm{mol}, 1 \mathrm{eq})$ is added. The mixture is stirred at room temperature for 1 day and concentrated to $5 \mathrm{~mL} .40 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ are added and the yellow precipitate is recovered by centrifugation and dried under vacuum: $40.0 \mathrm{mg}(27.8 \mu \mathrm{~mol}, 73 \%)$.
$\lambda_{\text {max }}(\mathrm{nm})\left(\varepsilon \times 10^{-4} / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 277$ (9.0) and 352 (2.5). $v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1} 3027$, 2963, 1655, 1594, 1544, 1497, 1445, 1393, 1305, 1230, 1193, 1109, 1076, 843, 827, 755, 745, 692, 664 and $612 . \mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{-}\right) 1194.28\left(\mathrm{M}^{-} . \mathrm{C}_{64} \mathrm{H}_{44} \mathrm{~N}_{8} \mathrm{NdO}_{8}\right.$ requires: 1194.24).
$\mathrm{Nd}(\mathrm{acac})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}:$
It is formed by the addition of 3.0 equiv of HAcac to an aqueous solution of $\mathrm{NdCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ with stirring at room temperature. A solution of concentrated $(35 \%) \mathrm{NH}_{3}$ is added drop wise until a white precipitate appears. Once no more precipitate is formed, the solid is filtered, washed with water and dried under vacuum to afford the product quantitatively.

References

${ }^{1}$ W. H. Meek and C. H. Fuchsmann, J. Chem. Eng.Data, 1969, 14, 388
${ }^{2}$. J.P Collman, R.R. Gagne, C. Reed, T.R. Halbert, G. Lang and W.T. Robinson, J. Am. Chem. Soc., 1975, 97, 1427.
${ }^{3}$ J. Lindsey, J. Org. Chem., 1980, 45, 5215.
${ }^{4}$.K.M. Smith, in the "Porphyrins and metalloporphyrins", Ed. Elsevier, 1975.

