Multiport logic operations triggered by protonation - a trisphenanthroline as a 3-Input AND - NOR - OR circuit

Michael Schmittel, ${ }^{*}$ Prasenjit Mal, Alejandra de los Rios

Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Str. 2, D-57068 Siegen, Germany
E-mail: schmittel@chemie.uni-siegen.de
Fax: (+49) 271-740-3270

Chart S1. Compounds used for the present study.

Experimental:

General. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker Avance $400(400 \mathrm{MHz})$. NMR analysis was conducted at room temperature in deuterated solvents. Positive ESI-MS spectra were recorded on the LCQ Deca Thermo Quest instrument, scanning over the m / z range 200-4000. Binding constants were calculated by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (4:1) as the solvent. In a typical run, 2.000 mL of a $1.0 \times 10^{-5} \mathrm{M}$ solution of the mixture of phenanthroline was taken and a solution of methanesulfonic acid $\left(1.0 \times 10^{-3} \mathrm{M}\right)$ was added in small portions $(5.00 \mu \mathrm{~L})$. Absorption spectra were recorded at $25.0(\pm 0.1)^{\circ} \mathrm{C}$ taking into account the wavelength region from 250 nm to 700 nm . Fluorescence spectra were recorded at $25.0(\pm 0.1)^{\circ} \mathrm{C}$ taking into account the wavelength region from 350 nm to 700 nm . Subsequently, binding affinities were determined using the SPECFIT/32 ${ }^{\mathrm{TM}}{ }^{1}$ global analysis system by Spectrum Software Associates (Marlborough, MA). The SPECFIT program analyzes equilibrium data sets using singular value decomposition and linear regression modeling by the LevenbergMarquardt method to determine cumulative binding constants. UV/Visible and Fluorescence spectra were recorded on a Varian Cary 100 Bio UV/visible Spectrometer and Varian Cary Eclipse Fluorescence Spectrometer, respectively. For fluorescence quantum yield

[^0]determination quininine sulphate was used as the standard $\left(\Phi_{\mathrm{Fl}}=0.54\right.$ in $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, Irradiation wavelength was 350 nm).

Synthesis. Chart S1 depicts the three phenanthrolines 1-3 investigated in the present study. Synthesis of compounds 2 and $\mathbf{3}$ has been published earlier by our group. ${ }^{2}$ In Scheme S1, the preparation of $\mathbf{1}$ is described. Sonogashira coupling ${ }^{3}$ of iodobenzene and 3,8-diethynyl-2,9-dimesityl-[1,10]-phenanthroline ${ }^{2}$ in presence of $\operatorname{Pd}(0)$ as catalyst led to formation of $\mathbf{1}$.

Scheme S1. Synthesis of 1 .

Procedure for the synthesis of 2,9-dimesityl-3,8-bis(phenylethynyl)-[1,10]phenanthroline (1). Iodobenzene ($0.93 \mathrm{~g}, 4.6 \mathrm{mmol}$), 3,8-diethynyl-2,9-dimesityl-[1,10]-phenanthroline $(0.21 \mathrm{~g}, 0.45 \mathrm{mmol})^{2}, \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1 \mathrm{~g}, 0.09 \mathrm{mmol})$ were suspended in benzene $(15.0 \mathrm{~mL})$ and triethylamine $(7.5 \mathrm{~mL})$ under nitrogen. The reaction mixture was heated at 60 ${ }^{\circ} \mathrm{C}$ for 6 h and monitored by ESI-MS. It was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with saturated NaCl solution. The organic layer was dried over anhydrous MgSO_{4}. After evaporation of the solvent and purification via column chromatography with ethylacetatehexane (10:90, silica gel) 259 mg of $\mathbf{1}$ (yield 93%) were afforded as a colourless solid. mp $252-254{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left[\mathrm{D}_{2}\right]$ Dichloromethane, 400 MHz): $\delta=8.49(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.28-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.00(\mathrm{~s}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.05 \mathrm{ppm}(\mathrm{s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ([D $\left.\mathrm{D}_{2}\right]$ Dichloromethane, 100 MHz): $\delta=162.5,145.1,138.8,137.9,137.4,136.3,131.9$, 129.0, 128.7, 128.2, 127.6, 126.8, 123.0, 120.3, 95.3, 87.1, 21.3, $20.0 \mathrm{ppm} . \operatorname{IR}(\mathrm{KBr}): v=$ 2951, 2917, 2855, 2360, 1614, $1404 \mathrm{~cm}^{-1}$. MS (ESI): $m / z(\%)\left[\mathrm{C}_{46} \mathrm{H}_{36} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}:$Calcd. 617.3, found 617.4. Elemental analysis, calcd. (\%) for $\mathrm{C}_{46} \mathrm{H}_{36} \mathrm{~N}_{2}$: C 89.58, H 5.88, N 4.54; found C 88.99, H 5.87, N 4.49.

[^1]Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}\left(\left[\mathrm{D}_{2}\right]\right.$ Dichloromethane, 400 MHz$)$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}\left(\left[\mathrm{D}_{2}\right]\right.$ Dichloromethane, 100 MHz$)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of $\mathbf{3}$ (top) and $\mathbf{3}+$ methanesulfonic acid (bottom: 5.0 equivalents of methanesulfonic acid were used) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{3} \mathrm{OD}(4: 1)$.

3

$3+\mathbf{H}^{+}$

Figure S4. UV-Vis and luminescence spectra of $\mathbf{1}\left(1.0 \times 10^{-5} \mathrm{M}\right)$ upon progressive addition of methanesulfonic acid $\left(1.0 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(4: 1)$ at rt (a total of 2.0 equivalents of acid was added). Excitation wavelength: 308 nm .

Figure S5. UV-Vis and luminescence spectra of $2\left(1.0 \times 10^{-5} \mathrm{M}\right)$ upon progressive addition of methanesulfonic acid $\left(1.0 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(4: 1)$ at rt (a total of 3.0 equivalents of acid was added). Excitation wavelength: 275 nm .

Figure S6. The speciation curves of $\mathbf{2}$ in presence of methanesulfonic acid.

Figure S7. UV-Vis and luminescence spectra of $\mathbf{3}\left(1.0 \times 10^{-5} \mathrm{M}\right)$ upon progressive addition of methanesulfonic acid $\left(1.0 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(4: 1)$ at rt (a total of 4.0 equivalents of acid was added). Excitation wavelength: 330 nm .

Figure S8. Change in the luminescence intensity of $\mathbf{3}\left(1.0 \times 10^{-5} \mathrm{M}\right)$ at 414 nm upon addition of methanesulfonic acid $\left(1.0 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (4:1) at rt . Excitation wavelength: 330 nm .

Figure S9. The speciation curves of $\mathbf{3}$ in presence of methanesulfonic acid.

Figure S10. Luminescence spectra of $\mathbf{1}\left(2.0 \times 10^{-5} \mathrm{M}\right)$ upon progressive addition of methanesulfonic acid $\left(2.0 \times 10^{-3} \mathrm{M}\right)$ and 1,4-benzoquinone $\left(1 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (4:1) at rt. Excitation wavelength: 308 nm .

Figure S11. Luminescence spectra of a mixture of $\mathbf{3}\left(1.0 \times 10^{-5} \mathrm{M}\right)$ and 1,4-hydroquinone $\left(3.0 \times 10^{-5} \mathrm{M}\right)$ upon progressive addition of tris(4-bromophenyl)aminium hexachloroantimonate ($5.0 \times 10^{-3} \mathrm{M}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (4:1) at rt . Excitation wavelength: 330 nm .

Figure S12. The schematic diagram of the 3-input AND - NOR - OR circuit and its operating truth table (a) on the basis of fundamental 2-input gates, and (b) on the basis of non-fundamental 3 -input gates.
(a)

Input 1	Input 2	Input 3	AND_{1}	AND_{2}	OR_{1}	NOR_{1}	OR_{2}
0	0	0	0	0	0	1	1
0	0	1	0	0	0	0	0
0	1	0	0	0	1	0	0
0	1	1	0	0	1	0	0
1	0	0	0	0	1	0	0
1	0	1	0	0	1	0	0
1	1	0	1	0	1	0	0
1	1	1	1	1	1	0	1

(b)

Input 1	Input 2	Input 3	AND	NOR	OR
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	0	1

Table S1. Calculation of the intensity of each protonated species of $\mathbf{2}$ (normalised).
1 equiv. of acid added
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Detected species } & \begin{array}{c}\text { \% (Calculated from } \\ \text { speciation curve) }\end{array} & \begin{array}{c}I_{\mathrm{em}}{ }^{a} \\ (\mathrm{a} . \mathrm{u} .)\end{array} & \begin{array}{c}I_{\text {em-norm. }}=I_{\mathrm{em}} / \% \\ (\text { a. u. })\end{array} & I_{\text {em-norm. }} / I_{\mathrm{em}}{ }^{00 \mathrm{~b}}\end{array}\right]$

2 equiv. of acid added
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Detected species } & \begin{array}{c}\text { \% (Calculated from } \\ \text { speciation curve) }\end{array} & \begin{array}{c}I_{\mathrm{em}}{ }^{a} \\ (\mathrm{a} . \mathrm{u} .)\end{array} & \begin{array}{c}I_{\text {em-norm. }}=I_{\mathrm{em}} / \% \\ (\mathrm{a} . \mathrm{u} .)\end{array} & I_{\text {em-norm. }} / I_{\mathrm{em}}{ }^{\text {00b }}\end{array}\right]$

3 equiv. of acid added

Detected species	\% (Calculated from speciation curve)	$I_{\mathrm{em}}{ }^{a}$ $(\mathrm{a} . \mathrm{u})$.	$I_{\mathrm{em} \text {-norm. }}=I_{\mathrm{em}} / \%$ $(\mathrm{a} . \mathrm{u})$.	$I_{\mathrm{em}-\mathrm{norm} .} / I_{\mathrm{em}}{ }^{00 b}$
$\mathbf{2}$	0	--	--	--
$[\mathbf{2}(\mathrm{H})]^{+}$	0.18	$20(\lambda=530 \mathrm{~nm})$	111	0.13
$\left[\mathbf{2}(\mathrm{H})_{2}\right]^{2+}$	0.80	$242(\lambda=484 \mathrm{~nm})$	302	0.36

${ }^{a}$ Intensity data for each species after deconvolution, ${ }^{b} I_{\mathrm{em}}{ }^{00}=843$ a. u. $(\lambda=392 \mathrm{~nm})$

Table S2. (a) XNOR logic operation of $\mathbf{2}$ with progressive addition of methanesulfonic acid (b) truth table of a molecular XNOR gate

(a)				
entry	substrate	$\lambda_{\max }{ }^{\text {em }}$ nm	$I_{\mathrm{em}} / I_{\mathrm{o}}{ }^{[\text {a] }}$	output $^{\text {b }}$ b]
1	00	392	$\equiv 1.00$	1
2	$10 / 01$	531	0.12 ± 0.03	0
3	11	494	0.32 ± 0.04	1

(b)

Input 1	Input 2	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Table S3. Calculation of the intensity of each protonated species of $\mathbf{3}$ (normalised).

1 equiv. of acid added
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Detected species } & \begin{array}{c}\text { \% (Calculated from } \\ \text { speciation curve) }\end{array} & \begin{array}{c}I_{\mathrm{em}}{ }^{a} \\ (\mathrm{a} . \mathrm{u} .)\end{array} & \begin{array}{c}I_{\mathrm{em}-\mathrm{norm.}}=I_{\mathrm{em}} / \% \\ (\mathrm{a} . \mathrm{u} .)\end{array} & I_{\mathrm{em} \text {-norm } /} / I_{\mathrm{em}}{ }^{000 b}\end{array}\right]$

2 equiv. of acid added
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Detected species } & \begin{array}{c}\% \text { (Calculated from } \\ \text { speciation curve) }\end{array} & \begin{array}{c}I_{\mathrm{em}}{ }^{a} \\ (\mathrm{a} . \mathrm{u.})\end{array} & \begin{array}{c}I_{\mathrm{em}-\mathrm{norm.}}=I_{\mathrm{em}} / \% \\ (\mathrm{a} . \mathrm{u} .)\end{array} & I_{\mathrm{em} \text {-norm. }} / I_{\mathrm{em}}{ }^{000 \mathrm{~b}}\end{array}\right]$

3 equiv. of acid added

Detected species	\% (Calculated from speciation curve)	$\begin{gathered} I_{\mathrm{em}}{ }^{a} \\ (\mathrm{a} . \mathrm{u} .) \\ \hline \end{gathered}$	$\begin{gathered} I_{\text {em-norm. }}=I_{\mathrm{em}} / \% \\ \text { (a. u.) } \end{gathered}$	$I_{\text {em-norm. }} / I_{\text {em }}{ }^{000 b}$
3	0	--	--	--
$[3(\mathrm{H})]^{+}$	0.15	$10(\lambda=535 \mathrm{~nm})$	67	0.073
$\left[3(\mathrm{H})_{2}\right]^{2+}$	0.32	$20(\lambda=634 \mathrm{~nm})$	63	0.069
$\left[3(\mathrm{H})_{3}\right]^{3+}$	0.51	118 ($\lambda=517 \mathrm{~nm})$	231	0.25

4.0 equiv. of acid added

Detected species	\% (Calculated from speciation curve)	$\begin{gathered} I_{\mathrm{em}}{ }^{a} \\ (\mathrm{a} . \mathrm{u} .) \end{gathered}$	$\begin{gathered} I_{\text {em-norm. }}=I_{\mathrm{em}} / \% \\ \text { (a. u.) } \end{gathered}$	$I_{\text {em-norm. }} / I_{\text {em }}{ }^{000} b$
3	0	--	--	--
$[3(\mathrm{H})]^{+}$	0.05	$3.4(\lambda=535 \mathrm{~nm})$	68	0.074
$\left[3(\mathrm{H})_{2}\right]^{2+}$	0.22	$14(\lambda=634 \mathrm{~nm})$	64	0.070
$\left[3(\mathrm{H})_{3}\right]^{3+}$	0.72	$141(\lambda=518 \mathrm{~nm})$	196	0.21

[^2]
[^0]: ${ }^{1}$ a) H. Gampp, M. Maeder, C. J. Meyer and A. D. Zuberbühler, Talanta, 1985, 32, 257; b) H. Gampp, M. Maeder, C. J. Meyer and A. D. Zuberbühler, Talanta, 1986, 33, 943.

[^1]: ${ }^{2}$ M. Schmittel, C. Michel and A. Wiegrefe, Synthesis, 2005, 367.
 ${ }^{3}$ M. Schmittel, V. Kalsani, P. Mal and J. W. Bats, Inorg. Chem., 2006, 45, 6370.

[^2]: ${ }^{a}$ Intensity data for each species after deconvolution, ${ }^{b} I_{\mathrm{em}}{ }^{000}=913(\lambda=414 \mathrm{~nm}),{ }^{c}$ This value was not used for the determination of the arithmetic mean value of $I_{\text {em-norm }} / I_{\mathrm{em}}{ }^{000}$ of $\left[\mathbf{3}(\mathrm{H})_{3}\right]^{3+}$.

