Electronic Supplementary Information (ESI)

Multiport logic operations triggered by protonation - a trisphenanthroline as a 3-Input AND – NOR – OR circuit

Michael Schmittel,^{*} Prasenjit Mal, Alejandra de los Rios

Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein Str. 2, D-57068 Siegen, Germany E-mail: <u>schmittel@chemie.uni-siegen.de</u> Fax: (+49) 271-740-3270 Chart S1. Compounds used for the present study.

Experimental:

General. ¹H NMR and ¹³C NMR spectra were measured on a Bruker Avance 400 (400 MHz). NMR analysis was conducted at room temperature in deuterated solvents. Positive ESI-MS spectra were recorded on the LCQ Deca Thermo Quest instrument, scanning over the *m/z* range 200-4000. Binding constants were calculated by using CH₂Cl₂-MeOH (4:1) as the solvent. In a typical run, 2.000 mL of a 1.0×10^{-5} M solution of the mixture of phenanthroline was taken and a solution of methanesulfonic acid (1.0×10^{-3} M) was added in small portions (5.00 µL). Absorption spectra were recorded at 25.0 (±0.1) °C taking into account the wavelength region from 250 nm to 700 nm. Fluorescence spectra were recorded at 25.0 (±0.1) °C taking into account the wavelength region from 350 nm to 700 nm. Subsequently, binding affinities were determined using the SPECFIT/32^{TM 1}global analysis system by Spectrum Software Associates (Marlborough, MA). The SPECFIT program analyzes equilibrium data sets using singular value decomposition and linear regression modeling by the Levenberg-Marquardt method to determine cumulative binding constants. UV/Visible and Fluorescence spectra were recorded on a Varian Cary 100 Bio UV/visible Spectrometer and Varian Cary Eclipse Fluorescence Spectrometer, respectively. For fluorescence quantum yield

¹ a) H. Gampp, M. Maeder, C. J. Meyer and A. D. Zuberbühler, *Talanta*, 1985, **32**, 257; b) H. Gampp, M. Maeder, C. J. Meyer and A. D. Zuberbühler, *Talanta*, 1986, **33**, 943.

determination quininine sulphate was used as the standard ($\Phi_{Fl} = 0.54$ in 1N H₂SO₄, Irradiation wavelength was 350 nm).

Synthesis. Chart S1 depicts the three phenanthrolines **1-3** investigated in the present study. Synthesis of compounds **2** and **3** has been published earlier by our group.² In Scheme S1, the preparation of **1** is described. Sonogashira coupling³ of iodobenzene and 3,8-diethynyl-2,9-dimesityl-[1,10]-phenanthroline² in presence of Pd(0) as catalyst led to formation of **1**.

Scheme S1. Synthesis of 1.

Procedure 2,9-dimesityl-3,8-bis(phenylethynyl)-[1,10]for the synthesis of phenanthroline (1). Iodobenzene (0.93 g, 4.6 mmol), 3,8-diethynyl-2,9-dimesityl-[1,10]-phenanthroline (0.21 g, 0.45 mmol)², Pd(PPh₃)₄ (0.1 g, 0.09 mmol) were suspended in benzene (15.0 mL) and triethylamine (7.5 mL) under nitrogen. The reaction mixture was heated at 60 °C for 6 h and monitored by ESI-MS. It was then diluted with CH₂Cl₂ (50 mL) and washed with saturated NaCl solution. The organic layer was dried over anhydrous MgSO₄. After evaporation of the solvent and purification via column chromatography with ethylacetatehexane (10:90, silica gel) 259 mg of 1 (yield 93%) were afforded as a colourless solid. mp 252–254 °C. ¹H NMR ([D₂]Dichloromethane, 400 MHz): $\delta = 8.49$ (s, 2H), 7.89 (s, 2H), 7.28-7.30 (m, 6H), 7.17 (dd, J = 7.4, 2.0 Hz, 4H), 7.00 (s, 4H), 2.37 (s, 6H), 2.05 ppm (s, 12H). ¹³C NMR ([D₂]Dichloromethane, 100 MHz): δ =162.5, 145.1, 138.8, 137.9, 137.4, 136.3, 131.9, 129.0, 128.7, 128.2, 127.6, 126.8, 123.0, 120.3, 95.3, 87.1, 21.3, 20.0 ppm. IR (KBr): v = 2951, 2917, 2855, 2360, 1614, 1404 cm⁻¹. MS (ESI): m/z (%) $[C_{46}H_{36}N_2 + H]^+$: Calcd. 617.3, found 617.4. Elemental analysis, calcd. (%) for C₄₆H₃₆N₂: C 89.58, H 5.88, N 4.54; found C 88.99, H 5.87, N 4.49.

² M. Schmittel, C. Michel and A. Wiegrefe, *Synthesis*, 2005, 367.

³ M. Schmittel, V. Kalsani, P. Mal and J. W. Bats, *Inorg. Chem.*, 2006, 45, 6370.

Figure S1. ¹H NMR spectrum of **1** ([D₂]Dichloromethane, 400 MHz).

Figure S2. ¹³C NMR spectrum of 1 ([D₂]Dichloromethane, 100 MHz).

Figure S3. ¹H NMR spectra (400 MHz) of **3** (top) and **3** + methanesulfonic acid (bottom: 5.0 equivalents of methanesulfonic acid were used) in $CD_2Cl_2-CD_3OD$ (4:1).

Figure S4. UV-Vis and luminescence spectra of **1** $(1.0 \times 10^{-5} \text{ M})$ upon progressive addition of methanesulfonic acid $(1.0 \times 10^{-3} \text{ M})$ in CH₂Cl₂-MeOH (4:1) at rt (a total of 2.0 equivalents of acid was added). Excitation wavelength: 308 nm.

Figure S5. UV-Vis and luminescence spectra of **2** $(1.0 \times 10^{-5} \text{ M})$ upon progressive addition of methanesulfonic acid $(1.0 \times 10^{-3} \text{ M})$ in CH₂Cl₂-MeOH (4:1) at rt (a total of 3.0 equivalents of acid was added). Excitation wavelength: 275 nm.

Figure S7. UV-Vis and luminescence spectra of **3** $(1.0 \times 10^{-5} \text{ M})$ upon progressive addition of methanesulfonic acid $(1.0 \times 10^{-3} \text{ M})$ in CH₂Cl₂-MeOH (4:1) at rt (a total of 4.0 equivalents of acid was added). Excitation wavelength: 330 nm.

Figure S8. Change in the luminescence intensity of **3** $(1.0 \times 10^{-5} \text{ M})$ at 414 nm upon addition of methanesulfonic acid $(1.0 \times 10^{-3} \text{ M})$ in CH₂Cl₂-MeOH (4:1) at rt. Excitation wavelength: 330 nm.

Figure S9. The speciation curves of 3 in presence of methanesulfonic acid.

Figure S10. Luminescence spectra of **1** (2.0 × 10⁻⁵ M) upon progressive addition of methanesulfonic acid (2.0 × 10⁻³ M) and 1,4-benzoquinone (1 × 10⁻³ M) in CH₂Cl₂-MeOH (4:1) at rt. Excitation wavelength: 308 nm.

Figure S11. Luminescence spectra of a mixture of **3** (1.0×10^{-5} M) and 1,4-hydroquinone (3.0×10^{-5} M) upon progressive addition of tris(4-bromophenyl)aminium hexachloroantimonate (5.0×10^{-3} M) in CH₂Cl₂-MeOH (4:1) at rt. Excitation wavelength: 330 nm.

Figure S12. The schematic diagram of the 3-input AND – NOR – OR circuit and its operating truth table (a) on the basis of fundamental 2-input gates, and (b) on the basis of non-fundamental 3-input gates.

Input 1	Input 2	Input 3	AND_1	AND_2	OR_1	NOR ₁	OR ₂
0	0	0	0	0	0	1	1
0	0	1	0	0	0	0	0
0	1	0	0	0	1	0	0
0	1	1	0	0	1	0	0
1	0	0	0	0	1	0	0
1	0	1	0	0	1	0	0
1	1	0	1	0	1	0	0
1	1	1	1	1	1	0	1

(b)

Input 1	Input 2	Input 3	AND	NOR	OR
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	0	1

Table S1. Calculation of the intensity of each protonated species of 2 (normalised).

1 equiv. of acid added

Detected species	% (Calculated from	$I_{\rm em}{}^a$	$I_{\text{em-norm.}} = I_{\text{em}} / \%$	$I_{\text{em-norm.}}/I_{\text{em}}^{00\ b}$
	speciation curve)	(a. u.)	(a. u.)	
2	0.16	58 (λ = 389 nm)	362	1
$[2(H)]^+$	0.70	83 (λ = 530 nm)	118	0.14
$[2(H)_2]^{2+}$	0.13	$30 \ (\lambda = 484 \ \text{nm})$	231	0.27

2 equiv. of acid added

Detected species	% (Calculated from	$I_{\rm em}{}^a$	$I_{\text{em-norm.}} = I_{\text{em}} / \%$	$I_{\rm em-norm.}/I_{\rm em}^{00 b}$
	speciation curve)	(a. u.)	(a. u.)	
2	0.02			
$[2(H)]^+$	0.38	33 ($\lambda = 530 \text{ nm}$)	87	0.10
$[2(H)_2]^{2+}$	0.60	$169 \ (\lambda = 484 \ nm)$	282	0.33

3 equiv. of acid added

Detected species	% (Calculated from	$I_{\rm em}^{a}$	$I_{\rm em-norm.} = I_{\rm em} / \%$	$I_{\text{em-norm.}}/I_{\text{em}}^{00 b}$
	speciation curve)	(a. u.)	(a. u.)	
2	0			
$[2(H)]^+$	0.18	20 (λ = 530 nm)	111	0.13
$[2(H)_2]^{2+}$	0.80	242 ($\lambda = 484 \text{ nm}$)	302	0.36

^{*a*} Intensity data for each species after deconvolution, ^{*b*} $I_{em}^{00} = 843$ a. u. ($\lambda = 392$ nm)

Table S2. (a) XNOR logic operation of **2** with progressive addition of methanesulfonic acid (b) truth table of a molecular XNOR gate

(a)				
entry	substrate	λ_{max}^{em}	$I_{\rm em}/I_{\rm o}^{[a]}$	output
		/nm		bj
1	00	392	≡1.00	1
2	10/01	531	0.12±0.03	0
3	11	494	0.32±0.04	1

(b)

Input 1	Input 2	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Table S3. Calculation of the intensity of each protonated species of 3 (normalised).

1 equiv. of acid added

Detected species	% (Calculated from	$I_{\rm em}{}^a$	$I_{\text{em-norm.}} = I_{\text{em}} / \%$	$I_{\text{em-norm.}}/I_{\text{em}}^{000 b}$
	speciation curve)	(a. u.)	(a. u.)	
3	0.20	32 (λ = 411 nm)	160	1
$[3(H)]^+$	0.67	46 (λ = 534 nm)	69	0.076
$[3(H)_2]^{2+}$	0.12	8 (λ = 636 nm)	67	0.073
$[3(H)_3]^{3+}$	0.01			

2 equiv. of acid added

Detected species	% (Calculated from	$I_{\rm em}{}^a$	$I_{\text{em-norm.}} = I_{\text{em}} / \%$	$I_{\text{em-norm.}}/I_{\text{em}}^{000 b}$
	speciation curve)	(a. u.)	(a. u.)	
3	0.02			
[3 (H)] ⁺	0.40	28 ($\lambda = 534$ nm)	70	0.077
$[3(H)_2]^{2+}$	0.34	22 ($\lambda = 635 \text{ nm}$)	65	0.071
$[3(H)_3]^{3+}$	0.22	56 (λ = 518 nm)	254	$(0.28)^{c}$

3 equiv. of acid added

Detected species	% (Calculated from	$I_{\rm em}{}^a$	$I_{\text{em-norm.}} = I_{\text{em}} / \%$	$I_{\text{em-norm.}}/I_{\text{em}}^{000 b}$
	speciation curve)	(a. u.)	(a. u.)	
3	0			
[3 (H)] ⁺	0.15	$10 \ (\lambda = 535 \ \text{nm})$	67	0.073
$[3(H)_2]^{2+}$	0.32	20 ($\lambda = 634 \text{ nm}$)	63	0.069
$[3(H)_3]^{3+}$	0.51	118 (λ = 517 nm)	231	0.25

4.0 equiv. of acid added

Detected species	% (Calculated from speciation curve)	$I_{\rm em}{}^a$ (a. u.)	$I_{\text{em-norm.}} = I_{\text{em}} / \%$ (a. u.)	$I_{\text{em-norm.}}/I_{\text{em}}^{000 b}$
3	0			
$[3(H)]^+$	0.05	$3.4 \ (\lambda = 535 \ \text{nm})$	68	0.074
$[3(H)_2]^{2+}$	0.22	14 ($\lambda = 634 \text{ nm}$)	64	0.070
$[3(H)_3]^{3+}$	0.72	141 (λ = 518 nm)	196	0.21

^{*a*} Intensity data for each species after deconvolution, ^{*b*} $I_{em}^{000} = 913 \ (\lambda = 414 \text{ nm})$, ^{*c*} This value was not used for the determination of the arithmetic mean value of $I_{em-norm}/I_{em}^{000}$ of $[\mathbf{3}(\mathbf{H})_3]^{3+}$.