Supporting Information for:

Highly Enantioselective Aza-ene-type Reaction Catalyzed by Chiral *N*,*N*'-Dioxide-Nickel(II) Complex

Ke Zheng, Xiaohua Liu, Jiannan Zhao, Yang Yang, Lili Lin, and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry,

Sichuan University, Chengdu 610064, P. R. China

CONTENTS:

(A) General	S2
(B) General procedure for chiral N,N'-dioxide preparation	S2
(C) General procedure for the enantioselective catalytic aza-ene-type reaction	S3
(D) Optimization of conditions	S3
(E) The analytical and spectral characterization data of aza-ene-type reaction products	S9
(F) Copies of NMR spectra for the catalysts and aza-ene-type reaction products	S59
(G) References	S90

(A) General

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomer excesses were determined by chiral HPLC analysis on DAICEL CHIRALCEL AD-H/OJ-H/IB/AS-H in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]_D^T$ (c: g/100 mL, in solvent). HRMS was recorded on a commercial apparatus (ESI Source). All the solvents were purified by usual methods before use. Glyoxal derivatives **1a-1r** were synthesized according to the previously reported method.^[1]

(B) General procedure for chiral *N*,*N*'-dioxide preparation

The N,N'-dioxide ligands L1-L5 were synthesized by the same procedure in the literature.^[3]

Ligand **L4**: white solid; $[\alpha]^{29}{}_{D} = -57.1$ (c 0.65 in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): 1.41-1.45 (m, 2 H), 1.64-1.70 (m, 2 H), 1.84-1.92 (m, 2 H), 2.00-2.06 (m, 2 H), 2.35-2.56 (m, 4 H), 2.67-2.73 (m, 2 H), 2.87-2.90 (m, 2 H), 3.52-3.60 (m, 8 H), 6.89-6.93 (m, ArH, 2 H), 7.19-7.23 (m, ArH, 2 H), 7.44-7.46 (m, ArH, 2 H),

8.12-7.17 (m, ArH, 2 H), 13.40 (s, NH, 2 H), ppm; ¹³C NMR (100 MHz, CDCl₃): 16.3, 20.1, 22.3, 26.4,
64.5, 66.8, 76.1, 114.2, 122.7, 125.2, 127.8, 132.6, 136.5, 167.1 ppm. ESI-HRMS: calcd for C₂₇H₃₄Br₂N₄O₄ [M+H⁺] 637.1020, found 637.1032.

C) General procedure for the enantioselective catalytic aza-ene-type reaction

The mixture of *N*,*N'*-dioxide **L4** (3.2 mg, 0.005 mmol) and Ni(BF₄)₂·6H₂O (1.7 mg, 0.005 mmol) in CH₂Cl₂ (1.0 mL) were stirred at 23 °C for 30 min. Then, phenylglyoxal **1a** (0.10 mmol) and enamide **2a** (0.11 mmoL) were added to the mixture at 23 °C. After being stirred at 23 °C in air for 8 h, the reaction mixture was directly purified by column chromatography on silica gel eluted (ether : petroleum ether = 1 : 2) to afford the corresponding product **5a**.

(D) Optimization of conditions

Screening of metals^[a]

o I	_H ∏ +	NHAc 10 mol% Ca	at.	\sim
1a	Ö	CH ₂ Cl ₂ , rt, 2- 2a	4 h 🤳 Ö	н Ö 5а
Entry	Ligand	Metal	Yield [%] ^[b]	ee [%][^{c]}
1	L1	Cu(AcO) ₂	trace	-
2	L1	Cu(OTf) ₂	47	15
3	L1	Yb(OTf) ₂	58	67
4	L1	Sc(OTf) ₃	63	-7
5	L1	Zn(OTf) ₂	43	4
6	L1	Ni(ClO ₄) ₂ .6H ₂ O	50	94
7	L1	Ni(BF ₄) ₂ .6H ₂ O	78	94
8	L1	Ni(acac) ₂	trace	-
9	L1	Ni(AcO) ₂	trace	-
10	L1	NiBr ₂	trace	-
11	-	Ni(BF ₄) ₂ ·6H ₂ O	56	-

[a] The reaction was carried out with 0.1 mmol phenylglyoxal, 0.11 mmol enamide 2a in CH₂Cl₂ (1.0 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

Screening of solvents^[a]

О Н +	NHAc	Ni(BF ₄) ₂ (1:1, 10 mol%) Solvent, rt, 24 h	OH O
1a	2a		5a
Entry	solvent	Yield [%] ^[b]	ee [%] ^[c]
1	THF	trace	-14
2	Et ₂ O	26	10
3	Toluene	trace	22
4	DMF	trace	-
5	CH_2CI_2	93	>99
6	CH ₂ CICH ₂ CI	83	99
7	CHCl ₃	42	92

[a] The reaction was carried out with 0.1 mmol phenylglyoxal, 0.11 mmol enamide **2a** in solvent (1.0 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

Optimization of the ratio between ligand and metal^[a]

O H 1a	+ 10 mol% Ni(E 2a	BF ₄) ₂ [•] 6H ₂ O, L4 ₂ , rt, 24 h	о • • • • • • • • • • • • • • • • • • •
Entry	ratio of ligand/metal	Yield [%] ^[b]	ee [%] ^[c]
1	2:1	73	75
2	1.5 : 1	82	85
3	1:1	93	>99
4	1 : 1.5	93	99
5	1:2	92	99
6	1:4	87	90

[a] The reaction was carried out with 0.1 mmol phenylglyoxal, 0.11 mmol enamide 2a in CH₂Cl₂ (1.0 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

Optimization of the ratio between phenylglyoxal (1a) and enamide (2a)^[a]

	+ NHAc + 2a	L4-Ni(BF ₄) ₂ (1:1, 10 mol%) CH ₂ Cl ₂ , rt, 24 h	О ОНО 5а
Entry	ratio of 1a/2a	Yield [%	6] ^[b] ee [%] ^[c]
1	2 : 1	58	98
2	1.1 : 1	63	98
3	1:1	90	99
4	1 : 1.1	93	>99

5 1:2 92 94	5	1:2	92	94
-------------	---	-----	----	----

[a] The reaction was carried out in CH_2CI_2 (1.0 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

Optimization of additive^[a]

	H + 2a	L4-Ni(BF ₄) ₂ (1:1, 10 mol%) CH ₂ Cl ₂ , rt, 4 h	о он о 5а
Entry	additive	Yield [%] ^[b]	ee [%] ^{[c}]
1	3Å MS	76	97
2	4Å MS	79	98
3	5Å MS	83	99
4	ⁱ Pr ₂ NEt	trace	-
5	phenol	85	96
6	benzoic acid	63	98

[a] The reaction was carried out with 0.1 mmol phenylglyoxal, 0.11 mmol enamide ${f 2a}$ in CH_2Cl₂ (1.0 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

Optimization of temperature^[a]

	+ NHAc + 2a	L4-Ni(BF ₄) ₂ (1:1, 10 m CH ₂ Cl ₂		DH O 5a
Entry	temperature [°C]	time [h]	Yield [%] ^[b]	ee [%] ^[c]
1	-20	64	45	>99
2	0	32	74	>99
3	15	16	92	>99
3	23	12	93	>99
4	30	7	86	97

[a] The reaction was carried out with 0.1 mmol phenylglyoxal, 0.11 mmol enamide 2a in CH₂Cl₂ (1.0 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

Optimization of nucleophile^[a]

Entry	Nucleophile	time [h]	$Yield [\%]^{[\mathtt{b}]}$	ee [%] ^[c]
1	2a	12	93	>99
2	3a	3	99	>99

3	3b	3	92	97
4	3c	3	94	98
5	3d	3	99	97

[a] The reaction was carried out with 0.1 mmol phenylglyoxal, 0.11 mmol enamide **2** (enecarbamate **3**) in CH_2Cl_2 (1.0 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

Optimization of catalyst loadin^[a]

[a] The reaction was carried out with 0.1 mmol phenylglyoxal, 0.11 mmol enecarbamate 3a in CH₂Cl₂ (1.0 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

Full list of substrates

Table 1 Substrate scope for the catalytic enantioselective aza-ene-type reaction with enecarbamate^[a]

\mathbb{R}^2	$H_{N}^{R^{4}}$	L4-Ni(BF ₄) ₂	6H ₂ O (x mol%)		Ph
0	• FII	01120	, 20°0	OH _	0
$R^2 = Aryl, Alkyl, etc$					
Entry	R ²	R^4	x [mol %]	Yield [%] ^[b]	ee [%] ^[c]
1	Ph	CO ₂ Me	5	93	99
2	Ph	CO ₂ Et	5	92	97
3	Ph	CO₂ ⁱ Bu	5	94	98
4	Ph	CO₂Bn	5	99	97
5	2-MeC ₆ H ₄	CO ₂ Me	5	89	>99
			2.5	83	98
6	3-MeC ₆ H ₄	CO ₂ Me	5	90	98
			2.5	85	98
7	4-MeC ₆ H ₄	CO ₂ Me	5	95	99
			2.5	90	99
			1	83	96
8	3-MeOC ₆ H ₄	CO ₂ Me	5	92	99
			2.5	84	98
9	$4-\text{MeOC}_6\text{H}_4$	CO ₂ Me	5	99	>99

			2.5	94	99
			1	86	97
10	3,4-(MeO) ₂ C ₆ H ₃	CO ₂ Me	5	92	>99
11	3-CIC ₆ H ₄	CO ₂ Me	5	87	99
12	4-CIC ₆ H ₄	CO ₂ Me	5	92	99
			2.5	85	98
13	$3,4-CI_2C_6H_3$	CO ₂ Me	5	85	98
14	$4-FC_6H_4$	CO ₂ Me	5	91	99
			2.5	82	98
15	$4-BrC_6H_4$	$\rm CO_2Me$	5	82	99
16	$3-NO_2C_6H_4$	$\rm CO_2Me$	5	80	99
17	$4-NO_2C_6H_4$	CO ₂ Me	5	72	99
18	2-naphthyl	CO ₂ Me	5	86	99
19	2-furyl	CO ₂ Me	5	75	99
20	2-thienyl	CO ₂ Me	5	86	98
21	<i>c</i> -hexyl	CO ₂ Me	5	70	99
22	OEt	CO ₂ Me	5	85	98 (S) ^[d]

[a] Unless otherwise noted, the reaction was carried out with 1-5 mol% L4-Ni(BF₄)₂·6H₂O, 0.1 mmol of glyoxal derivative (glyoxylate), and 1.1 equiv of enecarbamate **3** in CH₂Cl₂ (1.0 mL) at 23 °C for 3-18 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] The absolute configuration of (*S*)-**5s** was determined by comparison with literature data.^[2a]

Table 2 Substrate scope for the catalytic enantioselective aza-ene-type reaction with enamide^[a]

R ² O 1	H _{NAc} R ³	L4-Ni(BF ₄) ₂ 6H ₂ O (10 mol%) CH ₂ Cl ₂ , 23 °C	$ \begin{array}{c} 0 \\ R^2 \\ OH \\ OH \\ 5 \end{array} \right) \begin{array}{c} R^3 \\ R^$
R ² = Aryl, Alkyl, e	etc		

Entry	R ²	R ³	Product	Yield [%] ^[b]	ee [%] ^[c]
1	Ph	Ph	5a	93	>99
2	Ph	$2-MeC_6H_4$	5t	92	>99
3	Ph	$3-MeC_6H_4$	5u	92	>99
4	Ph	$4-\text{MeC}_6\text{H}_4$	5v	94	>99
5	Ph	$4-MeOC_6H_4$	5w	95	99
6	Ph	$4-CIC_6H_4$	5x	87	99
7	Ph	$4-FC_6H_4$	5y	87	99
8	Ph	2-naphthyl	5z	91	>99
9	Ph	<i>c</i> -hexyl	-	N.R.	-
10	Ph	<i>i</i> -Pr	-	N.R.	-
11	Ph	COOMe	-	N.R.	-

[a] Unless otherwise noted, the reaction was carried out with 10 mol% L4-Ni(BF₄)₂·6H₂O, 0.1 mmol of glyoxal derivative, and 1.1 equiv of enamide 2 in CH₂Cl₂ (1.0 mL) at 23 °C for 6-16 h. [b] Isolated yield. [c] Determined by chiral HPLC.

Scheme 1 Substrate scope for the catalytic enantioselective aza-ene-type reaction with α -substituted enecarbamates

Fig. 1 X-ray crystallographic structure of the L3-Ni(II) \cdot TFM (TFM = Tetrahydro-2-furanmethanol) complex.

Single crystals of $C_{44}H_{69}B_2F_8N_4NiO_6$ **L3-**Ni(II) complex were crystallized from mixed solvents of THF and petroleum ether. The thermal ellipsoids' level is 20 % for the above crystal structure. We conjectured that the exogenous ligand (TFM) was come from the unpurified solvent THF.

Crystal data. $C_{44}H_{69}B_2F_8N_4NiO_6$, M = 982.36, orthorhombic, a = 12.784(3), b = 13.268(3), c = 34.336(7) Å, U = 5824(2) Å³, T = 113 K, space group $P2_12_12_1$ (no. 19), Z = 4, 37884 reflections measured, 11378 unique ($R_{int} = 0.0526$) which used in all calculations. The final $wR(F_2)$ was 0.2144 (all data). The structure of compound **L3**-Ni(II) has been refined carefully by PLATON/SQUEEZE software. (ref.: A.L. Spek, *Acta Cryst. D*, 2009, **65**, 148-155.)

Fig. 2 X-ray crystallographic structure of the product 5l.

Single crystals of $C_{16}H_{13}BrO_3$ **51** were crystallized from mixed solvents of THF and petroleum ether. The absolute configuration of C8 is *S*. The thermal ellipsoids' level is 30 % for the above crystal structure.

Crystal data. $C_{16}H_{13}BrO_3$, M = 330.00, orthorhombic, a = 5.5934(11), b = 7.4974(15), c = 31.910(6) Å, U = 1338.2(5) Å³, T = 113 K, space group $P2_12_12_1$ (no. 19), Z = 4, 10559 reflections measured, 3171 unique ($R_{int} = 0.0691$) which used in all calculations. The final $wR(F_2)$ was 0.0666 (all data).

Reference(**Program**):

(1) Data reduction:

CrystalClear,

Rigaku/MSC(2005), CrystalClear and CrystalStructure, Rigaku/MSC, The Woodlands , Texas, USA

(2) Structure solution:

(a) absorption correction

ABSCOR/multi-scan

Higashi, T. (1995) ABSCOR, Rigaku Corperation, Tokyo, Japan

(b) Structure Solution and refinement

SHELXS-97 and SHELXL-97

Sheldrick, G.M. (1997), SHELXS97 and SHELXL97, University of Göttingen, Germany

(3) Graphics:

Ortep-3 for Windows 1.076

Farrugia, L.J. (1997) J. Appl. Cryst. 30,565

(E) The analytical and spectral characterization data of aza-ene-type reaction products

2-hydroxy-1,4-diphenylbutane-1,4-dione (5a)

(C₁₆H₁₄O₃) a white solid; 93% yield, >99% ee. $[\alpha]_D^{25} = +12.5$ (*c* 0.440 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 32.7 min (minor) and 36.0

min (major); ¹H NMR (400 MHz, CDCl₃) 3.37-3.49 (m, 2H), 4.04 (d, *J* = 6.0 Hz, 1H), 5.68-5.73 (m, 1H), 7.46-7.55 (m, 4H), 7.58-7.66 (m, 2H), 7.95-8.01 (m, 4H) ppm.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	32.740	59289	0.42	1452	0.56	31.233	33.750

2	35.978	13896192	99.58	257736	99.44	34.583	38.333

2-hydroxy-4-phenyl-1-o-tolylbutane-1,4-dione (5b)

 $(C_{17}H_{16}O_3)$ a colourless viscous liquid; 89% yield, >99% ee. $[\alpha]_D^{25} = +9.1$ (c 0.460 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 23.1min (minor) and 24.4 min (major); ¹H NMR (400 MHz, CDCl₃) 2.42 (s, 3H), 3.37-3.40 (m, 2H), 4.02 (d, J = 6.0 Hz, 1H),

5.65-5.69 (m, 1H), 7.36-7.47 (m, 4H), 7.55-7.59 (m, 1H), 7.50-7.80 (m, 2H), 7.93-7.95 (m, 2H) ppm;

¹³C NMR (100 MHz, CDCl₃) 21.4, 43.7, 70.0, 125.9, 128.3, 128.7, 128.8, 129.2, 133.6, 134.8, 136.7,

138.9, 197.1, 201.0 ppm; HRMS (ESI-TOF) calcd for $C_{17}H_{16}O_3$ ([M-H⁺]) = 267.1021, Found 267.1030.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	23.045	93728	0.48	2974	0.57	22.317	23.583

2	24.431	19422004	99.52	523142	99.43	23.583	26.517

2-hydroxy-4-phenyl-1-m-tolylbutane-1,4-dione (5c)

(C₁₇H₁₆O₃) a colourless viscous liquid; 90% yield, 98% ee. $[\alpha]_D^{25} = +13.0$ (*c* 0.432 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 24.4 min (minor)

and 28.9 min (major); ¹H NMR (400 MHz, CDCl₃) 2.57 (s, 3H), 3.30-3.50 (m, 2H), 4.06 (d, J = 8.0 Hz, 1H), 5.45-5.49 (m, 1H), 7.25-7.31 (m, 2H), 7.39-7.45 (m, 3H), 7.54-7.61 (m, 2H), 7.91-7.95 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 20.9, 42.8, 71.2, 125.8, 128.3, 128.4, 128.7, 132.1, 132.3, 133.5, 134.1, 136.6, 139.5, 197.0, 203.9 ppm; HRMS (ESI-TOF) calcd for C₁₇H₁₆O₃ ([M-H⁺]) = 267.1021, Found 267.1028.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	24.437	113763	0.96	1942	1.13	23.500	26.283
2	28.870	11688080	99.04	169635	98.87	28.000	32.233

2-hydroxy-4-phenyl-1-p-tolylbutane-1,4-dione (5d)

ÓН Ö 5d

 $(C_{17}H_{16}O_3)$ a white solid; 95% yield, >99% ee. $[\alpha]_D^{25} = +5.0$ (c 0.450 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, 2-propanol/n-hexane = 10/90, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 13.0 min (minor) and 14.1 min (major); ¹H NMR (400 MHz, CDCl₃) 2.42 (s, 3H), 3.31-3.44 (m, 2H), 4.03 (d, J = 6.0 Hz, 1H), 5.65-5.69 (m, 1H), 7.26-7.30 (m, 2H), 7.43-7.47 (m, 2H), 7.55-7.59 (m, 1H), 7.88-7.95 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) 21.8, 43.9, 69.9, 128.3, 128.7, 128.9, 129.7, 130.9, 133.6, 136.7, 145.1, 197.1, 200.4 ppm; HRMS (ESI-TOF) calcd for $C_{17}H_{16}O_3$ ([M-H⁺]) = 267.1021, Found 267.1026.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	12.972	54950	0.28	2726	0.34	12.483	13.617
2	14.062	19629386	99.72	797618	99.66	13.650	15.767

2-hydroxy-1-(3-methoxyphenyl)-4-phenylbutane-1,4-dione (5e)

(C₁₇H₁₆O₄) a colourless viscous liquid; 92% yield, 99% ee. $[\alpha]_D^{25} = +26.1$ (*c* 0.430 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 20/80, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 21.8 min

(minor) and 24.0 min (major); ¹H NMR (400 MHz, CDCl₃) 3.40-3.44 (m, 2H), 3.86 (s, 3H), 4.01 (d, J = 6.0 Hz, 1H), 5.63-5.68 (m, 1H), 7.14-7.17 (m, 1H), 7.38-7.47 (m, 3H), 7.52-7.59 (m, 3H), 7.91-7.94 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.7, 55.5, 70.2, 113.0, 120.5, 121.1, 128.3, 128.7, 130.0, 133.6, 134.9, 136.6, 160.0, 197.1, 200.6 ppm; HRMS (ESI-TOF) calcd for C₁₇H₁₆O₄ ([M+H⁺]) = 285.1121, Found 285.1128.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	21.784	207584	0.67	5783	0.76	20.983	23.067
2	24.038	30720259	99.33	756626	99.24	23.083	26.817

2-hydroxy-1-(4-methoxyphenyl)-4-phenylbutane-1,4-dione (5f)

(C₁₇H₁₆O₄) a white solid; 99% yield, 99% ee. $[\alpha]_D^{25} = +4.2$ (*c* 0.480 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 61.0 min (minor) and

70.8 min (major); ¹H NMR (400 MHz, CDCl₃) 3.27-3.44 (m, 2H), 3.88 (s, 3H), 4.05 (d, J = 6.4 Hz, 1H), 5.64-5.68 (m, 1H), 6.95-6.99 (m, 2H), 7.44-7.47 (m, 2H), 7.55-7.59 (m, 1H), 7.94-8.01 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) 44.1, 55.6, 69.7, 114.2, 126.2, 128.4, 128.7, 131.2, 133.5, 136.7, 164.2, 197.3, 199.0 ppm; HRMS (ESI-TOF) calcd for C₁₇H₁₆O₄ ([M+H⁺]) = 285.1121, Found 285.1125.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	60.977	130851	0.72	742	0.78	58.033	66.117
2	70.802	18063773	99.28	94039	99.22	68.483	80.933

2-hydroxy-1-(3,4-dimethoxyphenyl)-4-phenylbutane-1,4-dione (5g)

(C₁₈H₁₈O₅) a white solid; 92% yield, >99% ee. $[\alpha]_D^{25} = +29.1$ (*c* 0.460 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 25/85, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 33.5 min

(minor) and 43.9 min (major); ¹H NMR (400 MHz, CDCl₃) 3.30-3.46 (m, 2H), 3.94(s, 6H), 4.03 (d, J = 5.2 Hz, 1H), 5.69 (s, 1H), 6.89-6.92 (m, 1H), 7.44-7.48 (m, 2H), 7.55-7.64 (m, 3H), 7.93-7.96 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 44.3, 56.1, 56.2, 69.6, 110.3, 110.8 123.5, 126.3, 128.3, 128.7, 133.6, 136.7, 149.4, 154.1, 197.4, 199.1 ppm; HRMS (ESI-TOF) calcd for C₁₈H₁₈O₅ ([M+H⁺]) = 315.1227, Found 315.1237.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	33.452	7651	0.06	110	0.08	31.617	36.100
2	43.854	12544045	99.94	141544	99.92	41.917	48.767

1-(3-chlorophenyl)-2-hydroxy-4-phenylbutane-1,4-dione (5h)

Cl $(C_{16}H_{13}ClO_3)$ a white solid; 87% yield, 99% ee. $[\alpha]_D^{25} = +28.0$ (c 0.210 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 27.5 min (minor) and 30.1 min (major); ¹H NMR (400 MHz, CDCl₃) 3.39-3.50 (m, 2H), 4.01 (d, J = 5.2 Hz, 1H), 5.54-5.57 (m, 1H), 7.41-7.51 (m, 3H), 7.56-7.61 (m, 2H), 7.86-7.89 (m, 1H), 7.93-8.00 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) 42.9, 70.5, 126.9, 128.3, 128.7, 128.9, 130.2, 133.8, 135.3, 135.5, 136.5, 197.5, 199.5 ppm; HRMS (ESI-TOF) calcd for C₁₆H₁₃ClO₃ ([M+Na⁺]) = 311.0445, Found 311.0452.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	27.497	148782	0.57	3636	0.65	26.350	29.100
2	30.135	25984210	99.43	552308	99.35	29.117	32.917

1-(4-chlorophenyl)-2-hydroxy-4-phenylbutane-1,4-dione (5i)

(C₁₆H₁₃ClO₃) a white solid; 92% yield, 99% ee. $[\alpha]_D^{25} = +4.5$ (*c* 0.210 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, 2-propanol/*n*-hexane = 5/95, flow

rate = 1.0 mL/min, λ = 254 nm, retention time: 23.1 min (minor) and 24.0 min (major); ¹H NMR (400 MHz, CDCl₃) 3.35-3.49 (m, 2H), 4.02 (d, *J* = 6.0 Hz, 1H), 5.57-5.60 (m, 1H), 7.42-7.53 (m, 4H), 7.56-7.61 (m, 1H), 7.93-8.03 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.1, 70.3, 128.3, 128.7, 129.4, 130.2, 132.2, 133.7, 136.5, 140.4, 197.5, 199.5 ppm; HRMS (ESI-TOF) calcd for C₁₆H₁₃ClO₃ ([M+Na⁺]) = 311.0445, Found 311.0446.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	23.055	151042	0.67	4042	0.77	22.367	23.450
2	23.968	22470433	99.33	519280	99.23	23.450	26.600

1-(3,4-dichlorophenyl)-2-hydroxy-4-phenylbutane-1,4-dione (5j)

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	28.985	176555	1.05	4238	1.32	27.983	29.533
2	30.278	16589919	98.95	316211	98.68	29.533	33.483

1-(4-fluorophenyl)-2-hydroxy-4-phenylbutane-1,4-dione (5k)

ö ÓН

 $(C_{16}H_{13}FO_3)$ a white solid; 91% yield, 99% ee. $[\alpha]_D^{25} = +30.1$ (c 0.212 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 31.4 min (minor) and 5k 34.9 min (major); ¹H NMR (400 MHz, CDCl₃) 3.34-3.49 (m, 2H), 4.02 (d, J = 6.0 Hz, 1H), 5.60-5.63 (m, 1H), 7.15-7.26 (m, 2H), 7.45-7.49 (m, 2H), 7.53-7.59 (m, 1H), 7.93-7.96 (m, 2H), 8.04-8.08 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 42.2, 69.2, 115.1(d, J_{CF} = 22 Hz), 127.3, 127.7, 129.1, 130.5 (d, J_{CF} = 10 Hz), 132.7, 135.5, 165.3 (d, J_{CF} = 255 Hz), 196.5, 198.0 ppm; HRMS (ESI-TOF) calcd for $C_{16}H_{13}FO_3([M+Na^+]) = 295.0741$, Found 295.0738.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	31.402	85073	0.52	1531	0.50	30.000	33.133
2	34.918	16184107	99.48	307230	99.50	33.633	37.217

1-(4-bromophenyl)-2-hydroxy-4-phenylbutane-1,4-dione (5l)

(C₁₆H₁₃BrO₃) a white solid; 82% yield, 99% ee. $[\alpha]_D^{25} = -5.0$ (*c* 0.400 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 15/85, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 23.4 min (minor) and

26.5 min (major); ¹H NMR (400 MHz, CDCl₃) 3.35-3.50 (m, 2H), 4.01 (d, *J* = 6.0 Hz, 1H), 5.54-5.59 (m, 1H), 7.44-7.48 (m, 2H), 7.56-7.58 (m, 1H), 7.59-7.61 (m, 2H), 7.86-7.89 (m, 2H), 7.90-7.95 (m, 2H) ppm.

2-hydroxy-1-(3-nitrophenyl)-4-phenylbutane-1,4-dione (5m)

204945

99.35

2

26.579

8321552

99.40

25.583

28.500

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	68.437	87204	0.27	905	0.36	65.017	70.383
2	72.551	32587128	99.73	248212	99.64	70.433	78.000

2-hydroxy-1-(4-nitrophenyl)-4-phenylbutane-1,4-dione (5n)

(C₁₆H₁₃NO₅) a white solid; 72% yield, 99% ee. $[\alpha]_D^{25} = +5.8$ (*c* 0.160 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 34.4 min (minor) and

36.2 min (major); ¹H NMR (400 MHz, CDCl₃) 3.53-3.55 (m, 2H), 4.03 (d, J = 6.8 Hz, 1H), 5.47-5.52 (m, 1H), 7.46-7.51 (m, 2H), 7.59-7.63 (m, 1H), 7.94-7.96 (m, 2H), 8.18-8.20 (m, 2H), 8.32-8.35 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) 42.2, 71.3, 123.9, 128.3, 128.8, 130.0, 134.0, 136.2, 139.2, 150.5, 198.1, 199.4 ppm; HRMS (ESI-TOF) calcd for C₁₆H₁₃NO₅ ([M+Na⁺]) = 322.0686, Found 322.0692.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	34.383	20635	0.41	393	0.58	32.867	35.217
2	36.196	4957682	99.59	67551	99.42	35.217	39.817

2-hydroxy-1-(naphthalen-2-yl)-4-phenylbutane-1,4-dione (50)

(m, 1H), 7.44-7.46 (m, 2H), 7.55-7.64 (m, 3H), 7.90-8.06 (m, 6H), 8.55 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.8, 70.2, 124.1, 127.1, 127.9, 128.4, 128.7, 128.9, 129.0, 129.8, 130.7, 130.9,132.4, 133.6, 135.9, 136.7, 197.3, 200.8 ppm; HRMS (ESI-TOF) calcd for $C_{20}H_{16}O_3$ ([M+H⁺]) = 305.1172, Found 305.1180.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	41.562	178077	0.51	2536	0.56	39.283	43.583
2	45.734	34574217	99.49	448607	99.44	43.733	48.767

1-(furan-2-yl)-2-hydroxy-4-phenylbutane-1,4-dione (5p)

1.0 mL/min, λ = 254 nm, retention time: 35.0 min (minor) and 38.3 min (major); ¹H NMR (400 MHz, CDCl₃) 3.46-3.60 (m, 2H), 3.90 (d, J = 6.0 Hz, 1H), 5.30-5.34 (m, 1H), 6.59-6.60 (m, 1H), 7.45-7.50 (m, 3H), 7.56-7.63 (m, 2H), 7.96-7.98 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.1, 70.8, 112.7, 119.7, 128.3, 128.7, 133.6, 136.5, 147.1, 150.3, 188.8, 197.5 ppm; HRMS (ESI-TOF) calcd for C₁₄H₁₂O₄ ([M+Na⁺]) = 267.0628, Found 67.0656.

	Retention Lime	Area	% Area	Height	% Height	Start Time	End lime
1	34.955	13858	0.69	194	0.56	33.467	36.750
2	38.306	2008563	99.31	34539	99.44	36.800	40.700

2-hydroxy-4-phenyl-1-(thiophen-2-yl)butane-1,4-dione (5q)

O S OH OH OH O (C₁₄H₁₂SO₃) a white solid; 86% yield, 98% ee. $[\alpha]_D^{25} = +58.6$ (*c* 0.380 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 44.2 min (minor) and 49.5

min (major); ¹H NMR (400 MHz, CDCl₃) 3.43-3.57 (m, 2H), 3.98 (d, J = 4.4 Hz, 1H), 5.41-5.43 (m, 1H), 7.16-7.18 (m, 1H), 7.46-7.49 (m, 2H), 7.58-7.60 (m, 1H), 7.71-7.73 (m, 1H), 7.94-7.97 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.7, 71.6, 128.3, 128.4, 128.8, 133.8, 135.0, 136.5, 139.9, 193.1, 198.0 ppm; HRMS (ESI-TOF) calcd for C₁₄H₁₂SO₃ ([M+Na⁺]) = 283.0399, Found 283.0387.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	44.228	173672	1.14	2555	1.29	42.700	47.250
2	49.476	15103936	98.86	195580	98.71	47.817	52.783

1-cyclohexyl-2-hydroxy-4-phenylbutane-1,4-dione (5r)

($C_{16}H_{20}O_3$) a white solid; 70% yield, 99% ee. $[\alpha]_D^{25} = -4.6$ (*c* 0.258 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 11.2 min (minor) and 11.9 min (major); ¹H NMR (400 MHz, CDCl₃) 1.24-1.38 (m, 5H), 1.41-1.52 (m, 1H), 1.59-1.87 (m, 4H), 2.80-2.82 (m, 1H), 3.34–3.54 (m, 2H), 3.82 (d, $J_I = 6.8$ Hz, 1H), 4.70-4.71 (m, 1H), 7.26-7.50 (m, 2H), 7.58-7.62 (s, 1H), 7.94-7.97 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 25.4, 25.7, 25.8, 28.1, 29.2, 41.8, 45.8, 72.0, 128.3, 128.7, 133.7, 136.5, 198.3, 214.5 ppm; HRMS (ESI-TOF) calcd for C₁₆H₂₀O₃ ([M+Na⁺]) = 283.1305, Found 283.1315.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	11.248	69610	0.75	4869	0.95	10.783	11.517
2	11.927	9215727	99.25	508244	99.05	11.517	12.767

(S) 2-Hydroxy-4-oxo-4-phenyl-butyric acid ethyl ester (5s)

(C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yield, 98% ee. $[\alpha]_D^{29} = +6.2$ (*c* 0.286 in (C₁₂H₁₄O₄) a slightly yellow liquid; 85% yellow liqu

The absolute configuration was determined by the comparison of HPLC retention time and the optical rotation.^[2a, 4]

	Retention Time	Peak Type	Area	% Area	Height	% Height
1	19.806	Unknown	41228525	98.97	1650494	98.92
2	21.907	Unknown	427257	1.03	17951	1.08

2-hydroxy-1-phenyl-4-o-tolylbutane-1,4-dione (5t)

|| 0 ÓН

 $(C_{17}H_{16}O_3)$ a white solid; 92% yield, >99% ee. $[\alpha]_D^{25} = -8.1$ (c 0.320 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 20/80, 5t flow rate = 1.0 mL/min, λ = 254 nm, retention time: 13.3 min (minor) and 14.3 min (major); ¹H NMR (400 MHz, CDCl₃) 2.51 (s, 3H), 3.30-3.33 (m, 2H), 4.03 (d, J = 6.0 Hz, 1H), 5.62-5.65 (m, 1H), 7.22-7.26 (m, 2H), 7.35-7.40 (m, 1H), 7.48-7.53 (m, 2H), 7.60-7.64 (m, 2H), 7.97-8.00 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 21.4, 46.4, 70.5, 125.8, 128.7, 128.9, 130.0, 131.8, 132.1, 133.6, 134.0, 137.2, 138.7, 200.7, 200.8 ppm; HRMS (ESI-TOF) calcd for $C_{17}H_{16}O_3$ ([M-H⁺]) = 267.1021, Found 267.1028.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	13.311	151393	0.39	7794	0.48	12.867	13.733
2	14.338	38777878	99.61	1631999	99.52	13.733	15.533

2-hydroxy-1-phenyl-4-m-tolylbutane-1,4-dione (5u)

 $(C_{17}H_{16}O_3)$ a white solid; 92% yield, >99% ee. $[\alpha]_D^{25} = +10.8$ (c 0.426 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 13.3 min (minor) and 14.3 min (major); ¹H NMR (400 MHz, CDCl₃) 2.40 (s, 3H), 3.33-3.45 (m, 2H), 4.02 (d, J = 6.0 Hz, 1H), 5.65-5.69 (m, 1H), 7.31-7.39 (m, 2H), 7.47-7.52 (m, 2H), 7.59-7.63 (m, 1H), 7.72-7.75 (m, 2H), 7.86-7.89 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 21.3, 43.6, 70.1, 125.6, 128.6, 128.7, 128.8, 130.0,

133.6, 133.9, 134.4, 136.7, 138.5, 197.4, 200.8 ppm; HRMS (ESI-TOF) calcd for $C_{17}H_{16}O_3$ ([M-H⁺]) =

267.1021, Found 267.1035.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	13.304	244026	0.48	11522	0.53	12.717	13.733
2	14.315	50733155	99.52	2153255	99.47	13.733	15.383

2-hydroxy-1-phenyl-4-p-tolylbutane-1,4-dione (5v)

 $(C_{17}H_{16}O_3)$ a white solid; 94% yield, >99% ee. $[\alpha]_D^{25} = +16.8$ (c 0.384 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, 2-propanol/n-hexane = 10/90, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 14.3 min (minor) and 15.7 min (major); ¹H NMR (400 MHz, CDCl₃) 2.40 (s, 3H), 3.32-3.43 (m, 2H), 4.03 (d, *J* = 6.0 Hz, 1H), 5.64-5.69 (m, 1H), 7.23-7.26 (m, 2H), 7.47-7.51 (m, 2H), 7.59-7.62 (m, 1H), 7.82-7.85 (m, 2H),

7.98-8.03 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 21.7, 43.4, 70.2, 128.5, 128.7, 128.9, 129.4, 133.7, 133.8, 134.3, 144.5, 196.8, 200.8 ppm; HRMS (ESI-TOF) calcd for $C_{17}H_{16}O_3$ ([M-H⁺]) = 267.1021, Found 267.1022.

14.277

Nihutes

17.00

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	14.277	71443	0.28	2779	0.32	13.733	15.067
2	15,740	25888176	99.72	855497	99.68	15.067	16.817
[_		20000.10			00.00		

2-hydroxy-4-(4-methoxyphenyl)-1-phenylbutane-1,4-dione (5w)

(C₁₇H₁₆O₄) a white solid; 95% yield, 99% ee. $[\alpha]_D^{25} = +4.8$ (*c* 0.460 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 28.7 min (minor) and

31.7 min (major); ¹H NMR (400 MHz, CDCl₃) 3.32-3.44 (m, 2H), 3.88 (s, 3H), 4.05 (d, J = 6.0 Hz, 1H), 5.66-5.70 (m, 1H), 6.93-6.96 (m, 2H), 7.50-7.61 (m, 2H), 7.62-7.65 (m, 1H), 7.93-7.97 (m, 2H), 8.00-8.03 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.2, 55.5, 70.3, 113.8, 128.8, 128.9, 129.8, 130.7, 133.7, 133.9, 163.9, 195.7, 200.9 ppm; HRMS (ESI-TOF) calcd for C₁₇H₁₆O₄ ([M+H⁺]) = 285.1121, Found 285.1132.

S43

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	28.724	172509	0.74	2619	0.92	27.583	30.817
2	31.681	23155692	99.26	281826	99.08	30.817	34.883

4-(4-chlorophenyl)-2-hydroxy-1-phenylbutane-1,4-dione (5x)

(C₁₆H₁₃ClO₃) a white solid; 87% yield, 99% ee. $[\alpha]_D^{25} = +4.8$ (*c* 0.540 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 15.8 min (minor) and

17.1 min (major); ¹H NMR (400 MHz, CDCl₃) 3.32-3.44 (m, 2H), 4.03 (d, J = 6.0 Hz, 1H), 5.66-5.70 (m, 1H), 7.44-7.46 (m, 2H), 7.52-7.56 (m, 2H), 7.62-7.68 (m, 1H), 7.89-7.92 (m, 2H), 8.00-8.02 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.5, 70.1, 128.7, 129.0, 129.1, 129.8, 133.5, 134.1, 135.0, 140.2, 196.1, 200.6 ppm; HRMS (ESI-TOF) calcd for C₁₆H₁₃ClO₃ ([M+Na⁺]) = 311.0445, Found 311.0454.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	15.780	105041	0.54	4315	0.66	15.200	16.517
2	17.072	19492728	99.46	644712	99.34	16.517	18.667

4-(4-fluorophenyl)-2-hydroxy-1-phenylbutane-1,4-dione (5y)

(C₁₆H₁₃FO₃) a white solid; 87% yield, 99% ee. $[\alpha]_D^{25} = +12.7$ (*c* 0.448 in CH₂Cl₂) HPLC DAICEL CHIRALCEL IB, 2-propanol/*n*-hexane = 10/90,

flow rate = 1.0 mL/min, λ = 254 nm, retention time: 12.7 min (minor) and 13.6 min (major); ¹H NMR (400 MHz, CDCl₃) 3.31-3.40 (m, 2H), 4.03 (d, *J* = 5.6 Hz, 1H), 5.64-5.68 (m, 1H), 7.10-7.20 (m, 2H), 7.48-7.52 (m, 2H), 7.59-7.64 (m, 1H), 7.95-8.00 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.5, 70.1, 115.8(d, *J*_{CF} = 22 Hz), 128.7, 129.0, 131.0 (d, *J*_{CF} = 9 Hz), 133.1 (d, *J*_{CF} = 4 Hz), 133.5, 134.0, 166.0 (d, *J*_{CF} = 255 Hz), 195.6, 200.7 ppm; HRMS (ESI-TOF) calcd for C₁₆H₁₃FO₃ ([M+Na⁺]) = 295.0741, Found 295.0748.

Retention Time	Area	% Area	Height	% Height	Start Time	End Time

1	12.731	63214	0.58	3433	0.68	12.117	13.133
2	13.568	10838880	99.42	499134	99.32	13.133	14.683

2-hydroxy-1-phenyl-4-m-tolylbutane-1,4-dione (5z)

(**C**₂₀**H**₁₆**O**₃) a white solid; 91% yield, >99% ee. $[\alpha]_D^{25} = -5.1$ (*c* 0.440 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 30/70, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 28.9 min (minor) and

36.9 min (major); ¹H NMR (400 MHz, CDCl₃) 3.47-3.60 (m, 2H), 4.09 (d, J = 6.0 Hz, 1H), 5.62-5.65 (m, 1H), 7.50-7.63 (m, 5H), 7.85-7.93 (m, 3H), 8.00-8.04 (m, 3H), 8.43 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) 43.6, 70.2, 123.8, 126.9, 127.8, 128.6, 128.8, 129.0, 129.7, 130.4, 132.4, 133.7, 134.0, 135.8, 197.1, 200.8 ppm; HRMS (ESI-TOF) calcd for C₂₀H₁₆O₃ ([M+H⁺]) = 305.1172, Found 305.1178.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	28.894	157801	0.44	2644	0.52	27.100	31.467
2	36.907	35818752	99.56	501377	99.48	35.617	40.600

(2S,3R)-2-hydroxy-3-methyl-1,4-diphenylbutane-1,4-dione (anti-5aa)

9.2 Hz, 1H), 5.13 (dd, *J*₁ = 4.4 Hz, *J*₂ = 9.2 Hz, 1H), 7.37-7.41 (m, 4H), 7.49-7.53 (m, 2H), 7.84 (d, *J* =

7.2 Hz, 2H), 7.91 (d, *J* = 7.6 Hz, 2H) ppm.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	17.068	166332	0.74	8142	0.87	16.500	17.350
2	17.968	22238348	99.26	928889	99.13	17.350	18.717

(2S,3S)-2-hydroxy-3-methyl-1,4-diphenylbutane-1,4-dione (syn-5aa)

1H), 3.72-3.79 (m, 1H), 5.40 (s, 1H), 7.37-7.59 (m, 6 H), 7.82 (d, *J* = 7.6 Hz, 2H), 7.86 (d, *J* = 7.6 Hz,

2H) ppm.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	15.639	65732057	54.55	2497752	61.26	15.083	16.367
2	17.416	4091875	3.40	162945	4.00	16.850	17.900
3	18.377	1341326	1.11	55496	1.36	17.933	18.767
4	21.767	49324722	40.94	1360830	33.38	20.900	22.783

Configuration Assignment: The absolute and relative configurations were determined by analogy.

(2S,3R)-2-hydroxy-3-ethyl-1,4-diphenylbutane-1,4-dione (anti-5ab)

(C₁₈H₁₈O₃) a slightly yellow liquid; 83% yield, 98% ee. $[\alpha]_D^{25} = 99.4$ (*c* 0.332 in CH₂Cl₂) HPLC DAICEL CHIRALCEL OJ-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 22.0 min (major)

and 27.6 min (minor); ¹H NMR (400 MHz, CDCl₃) *anti*: 1.01-1.08 (m, 3H), 1.82-1.94 (m, 2H), 3.80-3.85 (m, 1H), 4.49 (d, J = 6.0 Hz, 1H), 5.24 (dd, $J_1 = 4.0$ Hz, $J_2 = 9.6$ Hz, 1H), 7.42-7.50 (m, 4H), 7.54-7.60 (m, 2H), 7.87 (d, J = 7.2 Hz, 2H), 7.95 (d, J = 7.6 Hz, 2H) ppm, ¹³C NMR (100 MHz, CDCl₃) 12.3, 22.8, 49.1, 75.2, 128.4, 128.6, 128.7, 129.2, 133.4, 133.6, 135.1, 137.2, 200.3, 205.3 ppm; HRMS (ESI-TOF) calcd for C₁₈H₁₈O₃ ([M+Na⁺]) = 305.1148, Found 305.1156.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	21.978	20614971	98.95	393604	99.03	21.000	24.367
2	27.560	217803	1.05	3870	0.97	26.850	29.017

Configuration Assignment: The absolute and relative configurations were determined by analogy.

(2S,3S)-2-hydroxy-3-ethyl-1,4-diphenylbutane-1,4-dione (syn-5ab)

(C₁₈H₁₈O₃) a slightly yellow liquid; 76% yield, 16% ee. $[\alpha]_D^{25} = 23.9$ (*c* 0.244 in CH₂Cl₂) HPLC DAICEL CHIRALCEL AS-H, 2-propanol/*n*-hexane = 10/90, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 14.1 min (major) and 22.2 min (minor); ¹H NMR (400 MHz, CDCl₃) *syn*: 0.79-0.82 (m, 3H), 1.55-1.64 (m, 2H), 3.58 (d, J = 6.0Hz, 1H), 3.70-3.77 (m, 1H), 5.32-5.35 (m, 1H), 7.44-7.50 (m, 4H), 7.52-7.60 (m, 2H), 7.87 (d, J = 8.0Hz, 4H) ppm, ¹³C NMR (100 MHz, CDCl₃) 12.1, 21.4, 52.2, 73.6, 128.0, 128.2, 128.7, 128.8, 133.2, 133.9, 134.8, 137.3, 201.0, 201.3 ppm.

Configuration Assignment: The absolute and relative configurations were determined by the comparison of the optical rotation and ¹H NMR Spectra.²

(2S,3R)-ethyl- 2-hydroxy-3-methyl-4-oxo-4-phenylbutanoate (anti-5ac)

 $(C_{13}H_{16}O_4) \text{ a slightly yellow liquid; 85\% yield, anti/syn = 99:1, >99\% ee (anti).}$ $[\alpha]_D^{25} = 20.6 (c \ 0.344 \text{ in CH}_2Cl_2) \text{ HPLC DAICEL CHIRALCEL AS-H+AD-H,}$ $anti-5ac \qquad 2-\text{propanol/}n-\text{hexane} = 20/80, \text{ flow rate} = 0.8 \text{ mL/min}, \lambda = 254 \text{ nm, retention time:}$ $20.8 \text{ min}, 23.3 \text{ min}, 26.1 \text{ min and } 31.9 \text{ min;}^{1}\text{H NMR (400 MHz, CDCl_3) anti: 1.20 (t, J = 7.2 \text{ Hz, 3H}),}$ 1.37 (d, J = 7.2 Hz, 3H), 3.56 (d, J = 6.0 Hz, 1H), 3.94-4.01 (m, 1H), 4.11-4.20 (m, 2H), 4.39 (s, 1H), 7.46-7.50 (m, 2H), 7.57-7.61 (m, 1H), 7.92-7.94 (m, 2H) ppm.

(2S,3S)-ethyl -2-hydroxy-3-methyl-4-oxo-4-phenylbutanoate (syn-5ac)

nm, retention time: 20.8 min, 23.3 min, 26.1 min and 31.9 min; ¹H NMR (400 MHz, CDCl₃) syn: 1.13 (t,

J = 7.2 Hz, 3H), 1.22 (d, J = 7.2 Hz, 3H), 3.19 (d, J = 4.4 Hz, 1H), 3.87-3.90 (m, 1H), 4.07-4.16 (m,

2H), 4.30-4.35 (m, 1H), 7.40-7.45 (m, 2H), 7.51-7.56 (m, 1H), 7.85-7.91 (m, 2H) ppm.

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	20.269	6956922	38.99	281849	50.82	19.683	21.200
2	22.472	2118783	11.87	71757	12.94	21.967	23.683
3	25.368	1184932	6.64	34828	6.28	24.600	26.633

4	30.305	7584457	42.50	166172	29.96	29.350	32.133

(2S,3R) -ethyl 3-benzoyl-2-hydroxypentanoate (anti-5ad)

2H), 4.43-4.47 (m, 1H), 7.46-7.50 (m, 2H), 7.57-7.61 (m, 1H), 7.91-7.93 (m, 2H) ppm.

(2S,3S) -ethyl 3-benzoyl-2-hydroxypentanoate (syn-5ac)

	Retention Time	Area	% Area	Height	% Height	Start Time	End Time
1	15.344	6676634	9.90	256872	17.89	14.633	16.567
2	17.711	6947408	10.31	228179	15.89	17.183	18.550
3	18.955	1966377	2.92	60354	4.20	18.550	20.950
4	26.575	51821550	76.87	890475	62.02	25.600	29.283

(F) Copies of NMR Spectra for New Compounds

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

(G) References

- 1. B. Qin, X. H. Liu, J. Shi, K. Zheng, H. T. Zhao, X. M. Feng, *J. Org. Chem.* 2007, **72**, 2374-2378, and references therein.
- 2. a) M. Terada, K. Soga, N. Momiyama, *Angew. Chem., Int. Ed.* 2008, **47**, 4122-4125; b) R. Matsubara, P. Vital, Y. Nakamura, H. Kiyohara, S. Kobayashi, *Tetrahedron*, 2004, **60**, 9769-9784, and references therein.
- a) Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie, X. M. Feng, *Angew. Chem., Int. Ed.* 2008, 47, 1308-1311; b) D. J. Shang, Y. L. Liu, X. Zhou, X. H. Liu, X. M. Feng, *Chem. Eur. J.* 2009, 15, 3678-3681, and references therein.
- 4. P. Herold, A. F. Indolese, M. Studer, H. P. Jalett, U. Siegrist, H. U. Blaser, *Tetrahedron*, 2000, **56**, 6497, and references therein.