# Self-Assembly of Looped Triple-Stranded Helicates

José Vicente,\*<sup>a</sup> Juan Gil-Rubio,\*<sup>a</sup> Natalia Barquero,<sup>a</sup> Verónica Cámara,<sup>a</sup> Norberto Masciocchi<sup>b</sup>

<sup>a</sup> Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E–30071 Murcia, Spain. Fax: 34 868 887785; Tel: 34 868 884143; E-mail: jvs1@um.es; http://www.um.es/gqo/

<sup>b</sup> Dipartimento di Scienze Chimiche e Ambientali, Università dell'Insubria, I-22100 Como, Italy. Fax: 39 031 326230; Tel: 39 031 326227; e-mail: norberto.masciocchi@uninsubria.it

# **Supplementary Information**

| General experimental procedures                                                                                                                                | p. 2  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Synthesis and characterization of the complexes                                                                                                                | p. 3  |
| NMR and ESI-MS spectra of $[M_2L_3](ClO_4)_4$ (M = Fe, Zn) (Fig. S1–S7)                                                                                        | p. 5  |
| NOESY spectrum of $[Fe_2L_3](ClO_4)_4$ (Fig. <b>S8</b> )                                                                                                       | p. 9  |
| Space-filling plots of the crystal structure of cation $[Fe_2L_3]^{4+}$ (Fig. <b>S9</b> )                                                                      | p. 10 |
| <sup>1</sup> H NMR spectra of the $\mathbf{L} + \mathbf{M}^{2+}$ reaction mixtures at different $\mathbf{L} : \mathbf{M}^{2+}$ molar ratios (Fig. <b>S10</b> ) | p. 11 |
| Plot of the crystal packing of $[Fe_2L_3](ClO_4)_4$ (Fig. <b>S11</b> )                                                                                         | p. 12 |
| References                                                                                                                                                     | p. 13 |

#### **General experimental procedures**

#### **Reagents and starting materials**

Compound  $[(AuC=Cbpyl)_2(\mu-Ph_2P(CH_2)_4PPh_2)]$  (L) was prepared as previously reported.<sup>1</sup> Fe(ClO<sub>4</sub>)<sub>2</sub>·6.4H<sub>2</sub>O and Zn(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O were purchased from Aldrich. HPLC-grade acetonitrile (Baker) was used as received. Et<sub>2</sub>O was distilled over sodium-benzophenone ketyl.

#### **Physical measurements**

Infrared spectra were recorded in the range 4000–200 cm<sup>-1</sup> on a Perkin-Elmer Spectrum 100 FT-IR spectrometer with KBr pellets. C, H, N and S analyses were carried out with a Carlo Erba 1108 analyzer. Melting points were determined on a Reichert apparatus in an air atmosphere. High resolution ESI-MS spectra were measured on a Agilent 6620 spectrometer; the exact masses have been calculated for the combination of the most abundant isotopes.

NMR spectra were measured on Bruker Avance 200, 300, 400 and 600 instruments. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} chemical shifts were referenced to residual CHD<sub>2</sub>CN (1.94 ppm (H) and 1.32 ppm (<sup>13</sup>CD<sub>3</sub>CN)). <sup>31</sup>P{<sup>1</sup>H} NMR spectra were referenced to external H<sub>3</sub>PO<sub>4</sub>. NOESY measurements were carried out using a mixing time of 0.6 s. Diffusion NMR experiments were performed on 2.5 mM solutions of the complexes in CD<sub>3</sub>CN using a Bruker Avance 400 spectrometer equiped with a BBO 5 mm probe. The measurements were carried out without spinning and with the airflow disconnected. The shape of the gradient was sinusoidal and its strengh was linearly increased in 32 steps from 2% to 95% of the maximum level. The standard ledbpgp2s pulse program supplied by Bruker was used (longitudinal eddy-current delay with bipolar gradient pulse pair and 2 spoil gradients<sup>2</sup>). The diffusion coefficients were calculated with the T<sub>1</sub>/T<sub>2</sub> processing module of the Bruker Topspin 2.0 software using a one-component exponential fit to equation (1).

$$I = I_0 \exp[-D(\gamma \delta G)^2 (\Delta - \delta/3)]$$
(1)

where D = diffusion coefficient,  $\gamma =$  magnetogyric ratio for hydrogen, G = gradient strength,  $\Delta =$  diffusion time (100 ms), and  $\delta =$  length of the bipolar diffusion gradient (2.4 ms for [Fe<sub>2</sub>L<sub>3</sub>](ClO<sub>4</sub>)<sub>4</sub> or 2.8 ms for [Zn<sub>2</sub>L<sub>3</sub>](ClO<sub>4</sub>)<sub>4</sub>). In order to test the quality of the data, the signal intensity changes  $\ln(I/I_0)$  were plotted against  $G^2$ . The plots were linear which confirmed that the data are suitable for the determination of D using equation (1). The experimental error was estimated as ±0.06.

Hydrodynamic radii were estimated via the Stokes–Einstein equation<sup>3</sup> (2) using a value of  $\eta = 0.341$  cP for the viscosity of acetonitrile<sup>4</sup> at 298 K.

$$r_H = kT/6\pi\eta D \tag{2}$$

### Synthesis and characterization of the complexes

*Caution!* Perchlorate salts of metal complexes with organic ligands are potentially explosive. They should be handled in small quantities and with caution.

[Fe<sub>2</sub>L<sub>3</sub>](ClO<sub>4</sub>)<sub>4</sub>. A solution of Fe(ClO<sub>4</sub>)<sub>2</sub>·6.4H<sub>2</sub>O (0.036 mmol) in CH<sub>3</sub>CN (8 mL) was added dropwise to a suspension of L (64 mg, 0.054 mmol) in CH<sub>3</sub>CN (8 mL). The resulting suspension was stirred at room temperature for 2 h to give a red solution, which was concentrated under vacuum to ca. 1 mL. Addition of Et<sub>2</sub>O (20 mL) gave a red precipitate which was filtered, washed with Et<sub>2</sub>O ( $3 \times 5$  mL) and dried under vacuum. Yield: 60 mg, 83%. Mp: 246–249 °C. Anal. Calcd. for C<sub>156</sub>H<sub>126</sub>Au<sub>6</sub>Cl<sub>4</sub>Fe<sub>2</sub>N<sub>12</sub>O<sub>16</sub>P<sub>6</sub>: C, 46.31; H, 3.14; N, 4.15. Found: 46.34; H, 3.14; N, 4.14. IR (Nujol, cm<sup>-1</sup>): v(C=C) 2112; v(ClO<sub>4</sub><sup>-</sup>) 1089, 621. <sup>1</sup>H NMR (400.9 MHz, CD<sub>3</sub>CN): δ 8.12 (d, 6 H, H3,  ${}^{3}J_{\rm HH} = 8.4$  Hz), 8.01 (d, 6 H, H4,  ${}^{3}J_{\rm HH} = 8.4$ ,  ${}^{4}J_{\rm HH} = 1.7$  Hz), 7.70 (m, 30 H, Ph<sup>1</sup>), 7.51 (s, 6 H, H6), 7.20–7.08 (m, 30 H, H3', H6', o-Ph<sup>2</sup> and p-Ph<sup>2</sup>), 6.90 (m, 12 H, H4' and H5'), 6.57 (m, 12 H, *m*-Ph<sup>2</sup>), 2.90 (m, 6 H, CH<sub>2</sub>CH<sub>2</sub>P), 2.16–2.02 (two m, 12 H, CH<sub>2</sub>CH<sub>2</sub>P and CH<sub>2</sub>CH<sub>2</sub>P), 1.84 (m, 6 H, *CH*<sub>2</sub>CH<sub>2</sub>P). <sup>13</sup>C{<sup>1</sup>H} NMR (75.5 MHz, CD<sub>3</sub>CN): δ 160.0 (C2'), 157.0 (C6), 156.2 (C2), 155.4 (C6'), 152.7 (d, C=CAu,  ${}^{2}J_{PC} = 140.9$  Hz), 142.7 (C4), 139.1 (C4'), 135.1 (d, *o*-Ph<sup>2</sup>,  ${}^{2}J_{PC} = 13.3$  Hz), 134.9 (d, *o*-Ph<sup>1</sup>,  ${}^{2}J_{PC} = 13.8$  Hz), 133.5 (d, *i*-Ph<sup>1</sup>,  ${}^{1}J_{PC} = 53.1$  Hz), 133.3 (d, *p*-Ph<sup>1</sup>,  ${}^{4}J_{PC} = 2.2$  Hz), 132.9 (d, *p*-Ph<sup>2</sup>,  ${}^{4}J_{PC} = 1.7$  Hz), 130.9 (d, *m*-Ph<sup>1</sup>,  ${}^{3}J_{PC} = 11.1$  Hz), 129.8 (d, *m*-Ph<sup>2</sup>,  ${}^{3}J_{PC} = 11.1$  Hz), 129.4 (d, *i*-Ph<sup>2</sup>,  ${}^{1}J_{PC} = 54.7$  Hz), 128.9 (d, C5,  ${}^{4}J_{PC} = 2.8$  Hz), 127.8 (C5'), 125.4 (C3), 124.0 (C3'), 102.3 (d, C=CAu,  ${}^{3}J_{PC} = 26.5$  Hz), 26.9 (d, CH<sub>2</sub>CH<sub>2</sub>P,  ${}^{1}J_{PC} = 34.3$  Hz), 26.0 (m, CH<sub>2</sub>CH<sub>2</sub>P). <sup>31</sup>P{<sup>1</sup>H} NMR (81.0 MHz, CD<sub>3</sub>CN):  $\delta$  36.9 (s). ESI-MS (MeCN) *m/z*: 1923.2 ([Fe<sub>2</sub>L<sub>3</sub>](ClO<sub>4</sub>)<sub>2</sub><sup>2+</sup>), 1413.2, 1345.2, 1333.1 ([FeL](ClO<sub>4</sub>)<sup>+</sup>), 1279.1, 1249.1 ([Fe<sub>2</sub>L<sub>3</sub>](ClO<sub>4</sub>)<sup>3+</sup>), 1206.7, 999.1  $([Au_2(C=Cbpyl)(dppb)]^+)$ , 911.9  $([Fe_2L_3]^{4+})$ , 855; exact m/z calcd. for  $[Fe_2L_3]^{4+}$ : 911.6331, found (ESI): 911,6340,  $\Delta = 1$  ppm.

[Zn<sub>2</sub>L<sub>3</sub>](ClO<sub>4</sub>)<sub>4</sub>. A solution of Zn(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.053 mmol) in CH<sub>3</sub>CN (5 mL) was added dropwise to a suspension of L (93 mg, 0.079 mmol) in CH<sub>3</sub>CN (8 mL). The resulting suspension was stirred at room temperature for 2 h to give a yellow solution, which was concentrated under vacuum to ca. 1 mL. Addition of Et<sub>2</sub>O (20 mL) gave a cream precipitate which was filtered, washed with Et<sub>2</sub>O (3 × 5 mL) and dried under vacuum. Yield: 100 mg, 93%. Mp: 183 °C (dec). Anal. Calcd. for C<sub>156</sub>H<sub>126</sub>N<sub>12</sub>Au<sub>6</sub>Cl<sub>4</sub>O<sub>16</sub>P<sub>6</sub>Zn<sub>2</sub>·4 H<sub>2</sub>O: C, 45.29; H, 3.26; N, 4.06. Found: 45.00; H, 2.98; N, 4.03. Integration of the water signal in the <sup>1</sup>H NMR spectra (after substraction of the solvent contribution) was used to estimate the water content of the sample. IR (Nujol, cm<sup>-1</sup>): v(C=C) 2117; v(ClO<sub>4</sub><sup>-</sup>) 1099, 623. <sup>1</sup>H NMR (400.9 MHz, CD<sub>3</sub>CN): δ 8.30 (d, 6 H, H3, <sup>3</sup>J<sub>HH</sub> = 8.5 Hz), 7.99 (dd, 6 H, H4,  ${}^{3}J_{\text{HH}} = 8.3, {}^{4}J_{\text{HH}} = 1.7 \text{ Hz}$ ), 7.88 (d, 6 H, H6,  ${}^{4}J_{\text{HH}} = 1.5 \text{ Hz}$ ), 7.83 (ddd, 6 H, H6',  ${}^{3}J_{\text{HH}} = 5.1, {}^{4}J_{\text{HH}} = 5.1, {}^{4}J_{\text{H}} = 5.1, {}^{4}J_{\text{H}$ 1.5,  ${}^{5}J_{\rm HH} = 0.6$  Hz), 7.76 (d, 6 H, H3',  ${}^{3}J_{\rm HH} = 7.9$  Hz), 7.71–7.66 (m, 30 H, Ph<sup>1</sup>), 7.29 (m, 6 H, p-Ph<sup>2</sup>), 7.16 (m, 12 H, *o*-Ph<sup>2</sup>), 7.01 (ddd, 6 H, H5',  ${}^{3}J_{HH} = 5.2$ ,  ${}^{3}J_{HH} = 7.6$ ,  ${}^{4}J_{HH} = 1.0$  Hz), 6.83 (m, 18 H, H4' and m-Ph<sup>2</sup>), 2.83 (m, 6 H, CH<sub>2</sub>CH<sub>2</sub>P), 2.28 (m, 6 H, CH<sub>2</sub>CH<sub>2</sub>P), 2.05 (m, 6 H, CH<sub>2</sub>CH<sub>2</sub>P), 1.81 (m, 6 H,  $CH_2CH_2P$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100.8 MHz,  $CD_3CN$ ):  $\delta$  151.3 (d, C=CAu, <sup>2</sup>J<sub>PC</sub> = 141.0 Hz), 150.7 (C6), 150.0 (C2 or C2'), 149.0 (C6'), 146.0 (C2 or C2'), 144.3 (C4), 141.8 (C4'), 134.8 (d, o-Ph<sup>2</sup>,  $J_{PC} = 13.2$  Hz), 134.3 (d, o-Ph<sup>1</sup>,  $J_{PC} = 13.3$  Hz), 132.9 (d, *i*-Ph,  ${}^{1}J_{PC} = 51.8$  Hz), 132.9 (d,  $p-Ph^{1}$ ,  ${}^{4}J_{PC} = 2.1$  Hz), 132.6 (s,  $p-Ph^{2}$ ), 130.5 (d,  $m-Ph^{1}$ ,  ${}^{3}J_{PC} = 10.8$  Hz), 129.7 (d,  $m-Ph^{2}$ ,  ${}^{3}J_{PC} = 11.0$ Hz), 129.3 (d, *i*-Ph,  ${}^{1}J_{PC} = 54.7$  Hz), 128.3 (d, C5,  ${}^{4}J_{PC} = 3.0$  Hz), 127.4 (C5'), 125.1 (C3), 123.8 (C3'), 101.5 (d, C = CAu,  ${}^{3}J_{PC} = 26.5$  Hz), 26.6 (d,  $CH_{2}P$ ,  ${}^{1}J_{PC} = 33.9$  Hz), 25.5 (m,  $CH_{2}CH_{2}P$ ). <sup>31</sup>P{<sup>1</sup>H} NMR (81.0 MHz, CD<sub>3</sub>CN):  $\delta$  36.9 (s). ESI-MS (MeOH/MeCN) *m/z*: 3965  $([Zn_2L_3](ClO_4)_2^{2+}),$  $([Zn_2L_3](ClO_4)_3^+),$ 2521  $([ZnL_2](ClO_4)^+),$ 1933 1421  $([Zn{Au_2(C=Cbpyl)_3(dppb)}]^+), 1355, 1341 ([ZnL](ClO_4)^+), 1255 ([Zn_2L_3](ClO_4)^{3+}), 12$ 1211  $([ZnL_2]^{2+})$ , 999  $([Au_2(C=Cbpyl)(dppb)]^+)$ , 917  $([Zn_2L_3]^{4+})$ , 855; exact m/z calcd. for  $[Zn_2L_3]^{4+}$ : 915.6302, found (ESI): 915.6310,  $\Delta = 0.9$  ppm.



**Fig. S1** <sup>1</sup>H NMR spectrum of  $[Fe_2L_3](ClO_4)_4$  (400.9 MHz, CD<sub>3</sub>CN). The signals at 3.43, 2.15 and 1.95 correspond to Et<sub>2</sub>O, H<sub>2</sub>O and CHD<sub>2</sub>CN, respectively. One the methylenic protons signals is overlaped with the H<sub>2</sub>O signal, as observed in the HMQC spectra.



**Fig. S2** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $[Fe_2L_3](ClO_4)_4$  (75.5 MHz, CD<sub>3</sub>CN)



**Fig. S3** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of [Fe<sub>2</sub>L<sub>3</sub>](ClO<sub>4</sub>)<sub>4</sub> (81.0 MHz, CD<sub>3</sub>CN)



**Fig. S4** <sup>1</sup>H NMR spectrum of  $[Zn_2L_3](ClO_4)_4$  (400.9 MHz, CD<sub>3</sub>CN). The signals at 3.43, 2.15 and 1.95 correspond to Et<sub>2</sub>O, H<sub>2</sub>O and CHD<sub>2</sub>CN, respectively.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010



Fig. S5  ${}^{13}C{}^{1}H$  NMR spectrum of  $[Zn_2L_3](ClO_4)_4$  (100.8 MHz, CD<sub>3</sub>CN)



**Fig. S6**  ${}^{31}P{}^{1}H$  NMR spectrum of  $[Zn_2L_3](ClO_4)_4$  (81.0 MHz, CD<sub>3</sub>CN)



**Fig. S7** ESI-MS spectra of the reaction mixtures of between  $M^{2+}$  and L (2:3 molar ratio) in acetonitrile. The isotope distributions of the  $[M_2L_3]^{4+}$  cations are magnified (black) and compared with the calculated isotope distributions (magenta).



**Fig. S8** NOESY spectrum of  $[Fe_2L_3](ClO_4)_4$  (400.9 MHz, CD<sub>3</sub>CN, T = 243 K). The NOE peaks between phenylic and pyridinic hydrogens are indicated by rectangles.



**Figure S9** Space-filling plots (VdW surfaces) of the crystal structure of cation  $[Fe_2L_3]^{4+}$ . Views down the direction of the C<sub>3</sub> axis (up) and a side view (down). The distances from the centroid of the molecule to representative external hydrogen atoms are indicated for comparison with the spherical hydrodynamic radius ( $r_H = 11.0$  Å) determined by diffusion NMR measurements.



**Fig. S10** <sup>1</sup>H NMR spectra (aromatic region) of the  $\mathbf{L} + \mathbf{M}^{2+}$  reaction mixtures (M = Fe (top), Zn) at different  $\mathbf{L} : \mathbf{M}^{2+}$  molar ratios.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010



SCHAKAL

**Fig. S11** Top: crystal packing of the  $[Fe_2L_3](ClO_4)_4$  species, viewed down the c axis of the trigonal space group, with disordered perchlorates and solvent molecules omitted for clarity. Au atoms in yellow, Fe atoms in blue and P atoms in green. Bottom: same crystal packing, viewed down a+b, highlighting, with red spheres, the empty space left by the packing of the large octametallic cations, normally occupied by the disordered anions and solvent molecules.

### References

- J. Vicente, J. Gil-Rubio, N. Barquero, P. G. Jones and D. Bautista, *Organometallics*, 2008, 27, 646.
- 2 D. H. Wu, A. D. Chen and C. S. Johnson, J. Magn. Reson., Ser. A, 1995, 115, 260.
- 3 J. T. Edward, J. Chem. Educ., 1970, 47, 261.
- 4 G. W. Kauffman and P. C. Jurs, J. Chem. Inf. Comput. Sci., 2001, 41, 408.