Supporting Information

Combinatorial Synthesis of Triphenylmethine Library and Their Application in the Development of Surface Enhanced Raman Scattering (SERS) Probes

Sung Ju Cho ${ }^{\text {a }}$, Young-Hoon Ahn ${ }^{\mathrm{b}}$, Kaustabh Kumar Maiti ${ }^{\mathrm{a}}$, Dinish U. S. ${ }^{\text {a }}$, Chit Yaw Fu ${ }^{\text {a }}$, Praveen Thoniyot ${ }^{\text {a }}$, Malini Olivo ${ }^{\text {a,c, },} *$, Young-Tae Chang ${ }^{\text {a, }{ }^{\text {e }} *}$
${ }^{a}$ Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11Biopolis Way, Singapore 138667, ${ }^{b}$ Department of Chemistry, New York University, New York, NY 10003, Current address is Johns Hopkins University School of Medicine, ${ }^{c}$ National Cancer Center, 11 Hospital Drive, Singapore 169610, ${ }^{d}$ School of Physics, National University Ireland, Galway, Ireland, ${ }^{e}$ Department of Chemistry, National University of Singapore, Singapore 11754

1. Synthesis of Intermediate S1 (B-D)

Synthetic Material and Method

Unless otherwise noted, all the chemicals and solvents were obtained from commercial suppliers (Acros and Aldrich) and used without further purification. 2-Chlorotrityl alcohol resin (1.37 $\mathrm{mmol} / \mathrm{g}$) was purchased from BeadTech Inc., Korea. All the Grignard reagents were purchased from Aldrich or Rieke Metals, Inc. All library compounds were identified by LC-MS from Agilent Technology, using a C18 column ($20 \times 4.0 \mathrm{~mm}$), with 4 minutes elution using a gradient solution of $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (containing 0.1% acetic acid), with UV detector and an electrospray ionization source. NMR spectra were recorded on a Bruker DPX $300\left({ }^{1} \mathrm{H}\right.$ NMR at $300 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR at 75 MHz) spectrometer. High-resolution mass spectra were determined on a Finnigem MAT95XL-T instrument. UV-Vis were recorded on HITACHI U-2900 spectrometer. The standard extraction work-up procedure consisted of pouring the reaction mixture into a excess amount of water, extracting with the organic solvent indicated, washing the combined extracts successively with water and brine, drying the extract over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4} and evaporating the solvent.

1-1. Synthesis of Intermediate B

B

Synthesis of 4-(tert-butoxycarbonylamino)-benzoic acid (2)

To a solution of 4-aminobenzoic acid ($3.0 \mathrm{~g}, 21.9 \mathrm{mmol}$) in t-BuOH (20 mL) and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(5.73 \mathrm{~g}, 26.3 \mathrm{mmol})$ and $\mathrm{NaOH}(0.97 \mathrm{~g}, 24.2 \mathrm{mmol})$. The reaction mixture was stirred at r.t, for 12 h . The reaction mixture was diluted water and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was adjusted $\mathrm{pH} \sim 2$ with 2 N HCl and extracted with ethyl acetate .The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated and purified by silica column chromatography (ethyl acetate $/$ hexane $=1 / 1)(4.64 \mathrm{~g}, 89 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 7.79(\mathrm{~d}, \mathrm{~J}=$ 8.7, 2H), $7.48(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$. ESI-MS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4}: 237.2518$; found : $235.9861[\mathrm{M}-1]$.

Synthesis of tert-butyl 4-[N-methyl-N-methoxyamido]-phenylcarbamate (3)
To a solution of $2(2.0 \mathrm{~g}, 8.4 \mathrm{mmol})$ in DMF (15 mL) was added $\operatorname{HOBt}(2.83 \mathrm{~g}, 21.1 \mathrm{mmol})$ and DIC ($3.0 \mathrm{~mL}, 19.4 \mathrm{mmol}$). After stirring for $15 \mathrm{~min}, \mathrm{~N}, \mathrm{O}$-dimethylhydroxylamine hydrochloride $(1.64 \mathrm{~g}, 16.8 \mathrm{mmol})$ dissolved in DMF $(10 \mathrm{~mL})$ and DIPEA $(8.2 \mathrm{~mL}, 46.4 \mathrm{mmol})$ were added to the solution, then the mixture was stirred at r.t. for 12 h . The reaction mixture was diluted with ethyl acetate and washed with $1 \mathrm{~N}-\mathrm{HCl}, \mathrm{NaHCO}_{3}$, and NaCl aqueous solution, respectively. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated and purified by silica column chromatography (ethyl acetate $/$ hexane $=1 / 1)(1.5 \mathrm{~g}, 64 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 7.67(\mathrm{~d}$, $\mathrm{J}=8.4,2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;$ ESI-MS m$/ \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}: 280.3196$; found 281.1251 [M+1]

Synthesis of tert-butyl 4-[4’-(dimethylamino)benzoyl]-phenylcarbamate (4)
To a solution of $3(0.56 \mathrm{~g}, 2.0 \mathrm{mmol})$ in THF (10 mL) was added (4-(dimethylamino)phenyl) magnesium bromide ($16 \mathrm{~mL}, 8.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred at r.t. for 12 h . The reaction mixture was diluted with ethyl acetate and washed with $1 \mathrm{~N}-\mathrm{HCl}, \mathrm{NaHCO}_{3}$, and NaCl aqueous solution, respectively. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated and purified by silica column chromatography (ethyl acetate $/$ hexane $=1 / 2)(0.55 \mathrm{~g}, 81 \%) .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $7.77(\mathrm{~d}, 9.0,2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=9.0,2 \mathrm{H})$, $3.06(\mathrm{~s}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$; ESI-MS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}: 340.4162$; found 341.2371 [$\mathrm{M}+1$].

Synthesis of 4-aminophenyl-[4'-(dimethylamino)phenyl]-methanone (B)
The compound $4(51 \mathrm{mg}, 0.15 \mathrm{mmol})$ was stirred in 10% TFA in dichloromethane (10 mL) at r.t. for 1 h and extracted with ethyl acetate with aqueous NaHCO_{3}. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated to give intermediate $\mathbf{B}(34 \mathrm{mg}, 95 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) 7.76(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H})$, 4.04 (br. s, 1H), 3.06 (s, 6 H) ppm; ESI-MS m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: 240. 3004; found 241.2071 [M+1].

1-2. Synthesis of Intermediate C

4-aminophenyl-[4-(pyrrolidin-1-yl)phenyl]-methanone (C)
To a solution of 4, 4^{\prime}-diaminobenzophenone ($1.0 \mathrm{~g}, 4.7 \mathrm{mmol}$) in t-BuOH $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(1.2 \mathrm{~g}, 5.6 \mathrm{mmol})$. The reaction mixture was stirred at r.t. for 12 h . The reaction mixture was diluted water and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was adjusted pH ~ 2 with 2 N HCl and extracted with ethyl acetate . The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was reacted with 1,4-diiodobutane and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at $90^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was diluted with ethyl acetate and washed with $1 \mathrm{~N}-\mathrm{HCl}, \mathrm{NaHCO}_{3}$, and NaCl aqueous solution, respectively. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated. The compound 6 was subsequently stirred in 10% TFA in dichloromethane (10 mL) at r.t. for 1 h and extracted with ethyl acetate with aqueous NaHCO_{3}. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated to give intermediate \mathbf{C} (overall $250 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 7.67(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=$ 8.7, 2 H$), 3.26(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.54,47.45,110.48,117.20$, 131.42, 132.67, 141.23, 142.03, 150.66, 152.22, 160.94 ppm ; HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: 266.3376$; found 267.3781 [M+1].

1-3. Synthesis of Intermediate D

Synthesis of 6-(tert-butoxycarbonylamino)-2-naphthoic acid (7)

To a solution of 6-amino-2-naphthoic acid ($200 \mathrm{mg}, 1.07 \mathrm{mmol}$) in t-BuOH (6 mL) and $\mathrm{H}_{2} \mathrm{O}(6$ mL) was added $\mathrm{Boc}_{2} \mathrm{O}(280 \mathrm{mg}, 1.28 \mathrm{mmol})$ and $\mathrm{NaOH}(40 \mathrm{mg}, 1.0 \mathrm{mmol})$. The reaction mixture was stirred at r.t. for 12 h . The reaction mixture was diluted water and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was adjusted $\mathrm{pH} \sim 2$ with 2 N HCl and extracted with ethyl acetate .The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated and purified by silica column chromatography (ethyl acetate / hexane $=1 / 1)(300 \mathrm{mg}, 98 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.7,1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.7$, $1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.8,1 \mathrm{H}) 1.53(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$; ESI-MS m$/ \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}: 287.3105$; found 288.8273 [M+1].

Synthesis of tert-butyl 6-[N-methyl-N-methoxyamido)-naphthalen-2-ylcarbamate (8)
To a solution of 7 ($300 \mathrm{mg}, 1.04 \mathrm{mmol}$) in DMF (5 mL) was added HOBt ($351 \mathrm{mg}, 2.6 \mathrm{mmol}$) and DIC ($0.37 \mathrm{~mL}, 2.4 \mathrm{mmol}$). After stirring for $15 \mathrm{~min}, \mathrm{~N}, \mathrm{O}$-dimethylhydroxylamine hydrochloride ($203 \mathrm{mg}, 2.09 \mathrm{mmol}$) dissolved in DMF (5 mL) and DIPEA ($1.1 \mathrm{~mL}, 5.74 \mathrm{mmol}$) were added to the solution, then the mixture was stirred at r.t. for 12 h . The reaction mixture was diluted with ethyl acetate and washed with $1 \mathrm{~N}-\mathrm{HCl}, \mathrm{NaHCO}_{3}$, and NaCl aqueous solution, respectively. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated and purified by silica column chromatography (ethyl acetate / hexane $=1 / 1)(300 \mathrm{mg}, 87 \%) .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $8.14(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}$, $3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$; ESI-MS m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}: 330.3783$; found $331.1728[\mathrm{M}+1]$.

Synthesis of tert-butyl 6-[4-(dimethylamino)benzoyl]-naphthalen-2-ylcarbamate (9)
To a solution of $\mathbf{8}(280 \mathrm{mg}, 0.85 \mathrm{mmol})$ in THF (8 mL) was added (4-(dimethylamino)phenyl) magnesium bromide ($6.8 \mathrm{~mL}, 3.4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction mixture was diluted with ethyl acetate and washed with $1 \mathrm{~N}-\mathrm{HCl}, \mathrm{NaHCO}_{3}$, and NaCl aqueous solution, respectively. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated and purified by silica column chromatography (ethyl acetate / hexane $=1 / 2)(70 \mathrm{mg}, 21 \%) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $8.14(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=6.0,1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.70$ $(\mathrm{d}, \mathrm{J}=9.0,2 \mathrm{H}) 3.08(\mathrm{~s}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$; ESI-MS m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}: 390.4748$; found $391.6231[\mathrm{M}+1]$.

Synthesis of 6-aminonaphthalen-2-yl-[4-(dimethylamino)phenyl]-methanone (D)
The compound $9(70 \mathrm{mg}, 0.18 \mathrm{mmol})$ was stirred in 10% TFA in dichloromethane $(10 \mathrm{~mL})$ at r.t. for 1 h and extracted with ethyl acetate with aqueous NaHCO_{3}. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated to give intermediate \mathbf{D} ($50 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.78(\mathrm{~m}, 5 \mathrm{H}), 7.00-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;$ ESI-MS m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: 290.3590$; found $291.1821[\mathrm{M}+1]$.

2. Library Synthesis on Solid Support

Building Block S1 (A-D)

Pyr / $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMF}$

Preparation of 2-chlorotrityl chloride from 2-chlorotrityl alcohol resin:

2-Chlorotrityl alcohol resin ($500 \mathrm{mg} 1.37 \mathrm{mmol} / \mathrm{g}$) was suspended in dichloromethane (5 mL) for 10 min . Thionyl chloride $(150 \mu \mathrm{~L}, 2.06 \mathrm{mmol})$ was added and the resin solution was shaken for 2 hours at room temperature. The resin was filtered and washed with dichloromethane and acetonitrile then dried.

General procedure for loading A-D to solid resin:

Each compound (A-D) (0.411 mmol) was dissolved in dichloromethane (5 mL) with 20 mL vial, if not soluble, DMF was added (1-2 mL). The solution was added to 2-chlorotrityl chloride resin (0.274 mmol) suspended in dichloromethane $(1 \mathrm{~mL})$, and pyridine (4.1 mmol) was added. After stirring for 4 hrs , the resin was filtered through 3 mL cartridge and washed with DMF (X5), methanol (X10), and dichloromethane (X10), and dried.

General procedure of Grignard reaction and cleavage from the resin.

For each reaction, a resin (10 mg) was suspended in freshly distilled THF (0.1 mL) in a 4 mL glass vial. Each Grignard reagent $(0.5 \mathrm{M}$ in THF$)(1.5 \mathrm{~mL})$ was added and capped tightly with TFE lined cap, and heated at $62{ }^{\circ} \mathrm{C}$ on standard heat-block for $1-2$ days. The resin was filtered through 1 mL cartridge and washed with dichloromethane $(\times 5)$, DMF $(\times 5)$, methanol ($\times 5$), and dichloromethane $(\times 5)$. The resin was dried and treated with 1% TFA in dichloromethane (1.5 mL) for 15 min . The solution was drained to the 4 mL vial, and dried using Speed Vacuum.

3. Raman Microscope

The experiments were carried out using Renishaw InVia Raman (UK) microscope system having an excitation laser at 633 nm . The laser intensity at the sample after passing through the objective lens was about 6.2 mW . System is connected with Leica microscope and laser light was coupled through a 50 X objective lens, which was used to excite the sample and also to collect the return Raman signal. The system uses a Peltier cooled CCD detector to collect all the Raman signals.

The WiRE 3.0 software package (provided with the Renishaw system) was employed for instrument control and data acquisition. Stoke shifted Raman spectra were collected in the wave number range of $400-2000 \mathrm{~cm}^{-1}$ with a spectral resolution of about $1 \mathrm{~cm}^{-1}$. The exposure time of 10 s was chosen for each measurement. Prior to measurement, the instrument was calibrated with the Raman signal from a silicon standard centered at $520 \mathrm{~cm}^{-1}$.

4. SERS Measurement

$2 \mu \mathrm{~L}$ of the dye solution ($10 \mu \mathrm{M}$ stock solution deionized water) was mixed with $18 \mu \mathrm{~L}$ of Au colloid (2.6×10^{10} particles $/ \mathrm{mL}$, BBInternational, UK) in water to get an $1 \mu \mathrm{M}$ effective concentration of the dye. $20 \mu \mathrm{l}$ of the dye-Au colloid mixture solution is pipette out to a clean glass slide and covered with a cover slip and kept under microscope objective lens for Raman measurement. The average intensities were obtained by three individual measurements of each sample.

5. Thiolated PEG encapsulation

A freshly prepared reporter solutions with various concentrations (viz., $5,10,20,30 \mu \mathrm{M}$) was rapidly mixed with gold colloid at a ratio 1:9 (reporter / colloid) volume ratio. This molar ratio of reporter molecules was optimized by maximum SERS intensities and minimum colloidal aggregation. Finally we optimized at $10 \mu \mathrm{M}$ of dye concentration. After 5 min incubation, thiolated PEG (PEG-SH, M.W PEG: 5000 dalton, RAPP Polymere GmbH) solution ($100 \mu \mathrm{M}$) was added around 10 to 20 fold excess in order to get maximum surface coverage. After overnight incubation, the excess PEG-SH was removed by three round of centrifugation (8000 rpm for 3 mints) and re-suspended with water. (Ref. no. 4 in the manuscript)
6. SERS intensity, Absorbance, Purity, and Mass data Table for the Library Compounds

code	SERS Intensity (counts) $^{\text {a }}$	${\text { Abs }(n m)^{b}}$ Purity $^{\text {c }}$	Mass (calc) $^{\text {d }}$	Mass (found) $^{\mathrm{e}}$	
A-2	1764	572	90%	316.2	316.2
A-3	0	550	97%	303.2	303.2
A-7	3894	580	97%	323.2	323.3
A-8	6549	562	93%	319.1	319.3
A-9	0	570	83%	349.2	349.4
A-11	126863	578	96%	373.2	373.3
A-13	0	566	95%	353.2	353.1
A-15	0	572	95%	273.1	273.2

A-16	0	570	97\%	301.2	301.2
A-17	0	586	94\%	303.2	303.2
A-18	0	562	92\%	317.1	317.1
A-19	0	576	86\%	291.1	291.2
A-20	0	570	88\%	307.1	307.1
A-23	0	562	95\%	287.1	287.2
A-25	0	560	97\%	331.2	331.2
A-27	0	574	92\%	305.1	305.1
A-28	0	574	90\%	279.1	279.1
A-29	1878	566	96\%	315.2	315.2
B-1	0	596	93\%	319.2	319.4
B-2	129997	586	92\%	344.2	344.4
B-3	2626	586	98\%	331.2	331.3
B-4	104281	586	83\%	393.2	393.4
B-7	157517	600	95\%	351.2	351.4
B-8	99667	600	96\%	347.2	347.3
B-9	25196	600	91\%	377.2	377.3
B-11	97303	602	99\%	401.2	401.4
B-13	0	600	96\%	381.2	381.1
B-15	0	596	93\%	301.2	301.2
B-16	48933	588	94\%	329.2	329.2
B-17	0	600	93\%	331.2	331.2
B-18	11169	586	91\%	345.2	345.2
B-23	99523	586	96\%	315.2	315.2
B-25	0	588	93\%	359.2	359.2
C-1	27572	596	91\%	345.2	345.2
C-2	32254	596	91\%	370.2	370.2
C-3	139373	584	90\%	357.2	357.2
C-4	55437	598	94\%	419.2	419.2
C-7	126862	598	90\%	377.2	377.2
C-8	8805	602	94\%	373.2	373.2
C-9	137243	600	91\%	403.2	403.2
C-13	69210	596	95\%	407.2	407.2
C-16	89703	596	93\%	355.2	355.2
C-17	29557	602	94\%	357.2	357.2
C-19	3048	602	88\%	345.2	345.2
C-20	92382	602	87\%	361.2	361.1
C-23	52236	586	86\%	341.2	341.2
C-25	0	596	95\%	385.2	385.2
C-27	3676	596	91\%	359.2	359.2
C-28	1529	602	95\%	333.1	333.2
C-29	68516	596	97\%	369.2	369.2
D-2	92117	614	100\%	394.2	394.2
D-9	9113	608	97\%	427.2	427.2
CV	65977	590			

(a) SERS spectra were obtained from excitation at 633 nm with laser power of 6.2 mW . (b) All absorption data was obtained by SpectraMax Plus384 absorbance plate reader in $50 \mu \mathrm{M}$. (c) Purity data was calculated on the basis of the integration in the LCMS trace at 550 nm . (d) Mass was calculated as $\left(\mathrm{M}^{+}\right)$, and (e) found in ESI-MS m/e.

7. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, HRMS (ESI), and UV-Vis data of re-synthesized TM Compounds

B2: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 10.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}{ }^{+}\right), 8.8 .31(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H})$, $6.68(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.96(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 31.18\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 31.81\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 109.10, 112.12, 118.79, 125.05, 128.4, 130.71, 135.10, 138.91, 145.47, 150.89, 54.41, 165.00, 176.85 ppm ; HRMS (ESI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3}: 344.2121$; found : $345.2133[\mathrm{M}+\mathrm{H}]^{+}$; UV $\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\max }(\varepsilon): 614 \mathrm{~nm}\left(48000 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$;

B7: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 9.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}{ }^{+}\right), 7.95-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 38.54\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 110.29$, $116.26,125.10,125.51,125.96,126.15,127.12,127.44,128.29,130.53,133.27,134.26,135.12$, 137.35, 140.53, 153.16, 159.61,174.12 ppm; HRMS (ESI): m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2}$: 351.4630; found : $352.1895\left[\mathrm{M}+\mathrm{H}^{+} ; \mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\max }(\varepsilon): 594 \mathrm{~nm}\left(38000 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)\right.$;

C3: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 8.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}{ }^{+}\right), 7.18-7.25(\mathrm{~m}, 6 \mathrm{H}$, aromatic), 7.09 (d, aromatic $2 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 6.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, aromatic), $6.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}$, aromatic), $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.49$ $(\mathrm{m}, 4 \mathrm{H}), 2.08(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.85,48.30,55.79,113.09,114.15,117.18,126.47$, 127.30, 131.90, 137.58, 139.66, 142.04, 153.30, 160.28, 164.27, 176.35 ppm ; HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 357.1961$; found : $358.2014[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\max }(\varepsilon): 580 \mathrm{~nm}$ ($41600 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$);

C7: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 8.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}{ }^{+}\right), 7.96-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=$ $9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 4 \mathrm{H}), 2.14(\mathrm{~s}, 4 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 25.47,48.49$, $113.24,117.82,127.48,127.91,128.06,128.10,129.02,129.37,130.24,132.48,135.22,136.27$, 137.07, 139.91, 142.20, 153.50, 161.24, 176.61 ppm ; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2}$: 377.2012 ; found : $378.2047[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\max }(\varepsilon): 594 \mathrm{~nm}\left(59500 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$;

C9: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 8.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}{ }^{+}\right), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.30(\mathrm{~m}, 12 \mathrm{H}), 7.08-7.07(\mathrm{~m}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 4 \mathrm{H}), 2.16(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 23.45,46.31,110.65,111.31$, 115.35, 125.03, 125.80, 127.22, 130.88, 132.03, 137.51, 138.76, 139.22, 140.29, 154.24, 162.48, 172.26 ppm ; HRMS (ESI): m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2}$: 403.2169 ; found : $404.2209[\mathrm{M}+\mathrm{H}]^{+}$; $\mathrm{UV}\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\max }(\varepsilon): 592 \mathrm{~nm}\left(34000 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$;

8. UV-Vis Spectra of the synthetic TM compounds and CV

9. SERS spectra of B2, B7, and C7 with some unique identifiable peaks (cm-1).

B2	917.43	X	X	X	X
B 7	X	1193.47	X	X	1581.43
C 7	X	1193.47	1341.33	1411.18	1581.43

10. LCMS Data of some representative Triphenylmethine library compounds:

A-2

A-13

B-2

*MSDI SPC, time $=4.825$ of D:IDATAIMAITIMAITI 2009-11-11 10-48-41IKKM-B2.D EG

B-4

B-7

DAD

B-16

C-3

C-7

[^0]

C-28

Max: $1.63174 \mathrm{e}^{2}+006$

[^0]: C-16

