Supplementary Information

Hydrolysis of 2-phenylazophenyltellurium trihalides: isolation of an unprecedented homometallic, discrete heptanuclear organotellurium oxide cluster

Kriti Srivastava,^{*a*} Sagar Sharma,^{*a*} Harkesh B. Singh,^{*a*} Udai P. Singh^{*b*} and Ray J. Butcher^{*c*}

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. Fax:+91 22 2572 3480; Tel: +91 22 2576 7190; E-mail: chhbsia@chem.iitb.ac.in ^bDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India. ^cDepartment of Chemistry, Howard University, Washington, D.C 20059, USA.

CONTENT

1) Experimental	3
2) FT-IR, ¹ H NMR, ¹²⁵ Te NMR, ESI-MS and CHN of 4	4-9
3) FT-IR, ¹ H NMR, ¹³ C NMR, ¹²⁵ TeNMR, ESI-MS and	10-15
CHN of Ph ₂ Te ₂ O ₃	
4) Comparision of Te-O bond length of 4 with other telluroxanes.	16
5) References	18

Experimental

General experimental Procedures:

Precursors **3a** and **3b** were prepared according to the reported literature procedure¹ with slight modification.[†] The reactions were performed under normal atmospheric conditions unless otherwise mentioned. Solvents were dried and freshly distilled prior to use. Melting points were recorded on a Veego VMP-I melting point apparatus. ¹H NMR spectra were recorded on Varian VXR 400S, Bruker AMX 500 and on Bruker AV800 spectrometer at frequencies 399.59 MHz, 499.85 and 800 MHz respectively. ¹³C(100.45 MHz) and ¹²⁵Te (157.79 MHz) NMR spectra were recorded on a Varian VXR 400S and Bruker AMX 500 spectrometer respectively. Tetramethylsilyl (SiMe₄) was used as internal standard for ¹H-NMR. Dimethyltelluride was used as external reference for ¹²⁵Te NMR. FT-IR spectra were recorded as KBr pellets on a Nicolet Impact 400 FTIR spectrometer. Elemental analysis was performed on Carlo Erba model 1106 elemental analyzer. The Electro-spray mass spectra were obtained from Thermo Quest Finnigan LCQDECA, ESI-MS (ion trap) mass spectrometer.

[†] **Caution**: Preparation of precursors **3a** and **3b** involves use of mercurated azobenzene derivative. The reactions involving mercury compounds were carried out in a well ventilated fume hood with proper precaution due to their hazardous nature.

Synthesis of phenyltellurinic anhydride: The reaction was performed in the similar manner as for **4**. The white colour powder obtained appeared to be phenyl tellurinic anhydride upon general spectroscopic characterization and elemental analysis. The yield of the compound obtained was 0.16 g, 70%. Mp = 215-218 °C; FT-IR (KBr): 3418 (O-H)^{*}, 3406 (C-H), 1434 (C=C, bend), 733 (C-H, asym), 704 (Te=O), 691 (C-H, bend), 665 (C-H, sym), 642 (Te-O) cm⁻¹. ¹H-NMR (800 MHz, CD₃COOD, 25 °C): δ 8.04 (br, 4H), 7.55 (br, 6H). ¹³C NMR (400 MHz, CD₃COOD, 25 °C): δ 147.05, 132.64, 131.72, 130.11. ¹²⁵Te NMR (500 MHz, CD₃COOD + DMSO (1:3), 25 °C)[€]: δ 965.7 ppm. ESI-MS, m/z 448.9 [C₁₂H₁₀OTe₂Na]⁺, 694.9 [C₁₈H₁₅O₅Te₃]⁺, 904 [C₂₄H₁₉O₄Te₄Na]⁺. Anal. calcd for C₁₂H₁₀O₃Te₂: C, 31.51; H, 2.20. Found: C, 31.29; H, 2.04.

X-ray Crystallography: X-ray diffraction data were obtained on an Oxford Gemini system using Mo-K α radiation ($\lambda = 0.71073$ Å). The structure solutions were achieved by

using direct methods as implemented in SHELXS-97.² The structures were refined by full least-squares methods using SHELXL-97.³

Figure S1. FT-IR spectrum of 4.

Figure S2. ¹H NMR spectrum of **4** at 25 °C.

Figure S3. ¹H NMR spectrum of **4** at -50 $^{\circ}$ C.

Figure S4. ¹²⁵Te NMR spectrum of 4 (data acquisition for 29 h)

Figure S5. ESI-MS of 4

Eager 300 Report Page: 1 Sample: HBS-KR-TE203 (HBS-KR-TE203) Mathod Name : sp191208 : D:\CHNS2008\sp191208.mth Method File Chromatogram : HBS-KR-TE203 Operator ID : SP Company Name : C.E. Instruments : 12/19/2008 15:01 Analysed Printed : 12/19/2008 16:52 : HBS-KR-TE203 (# 29) Sample ID Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 1.421 Calib. method : using 'K Factors' !!!! Warning missing one or more peaks. Element Name 8 Ret.Time Area BC Area ratio K factor л. 5178 43 39.7447 66 2.4085 172 49.6710 Nitrogen 7.5178 115355 RS 13.052280 .107983E+07 Carbon 1.000000 .266121E+07 1505646 RS Hydrogen 237411 RS 6.341938 .660009E+07 Totals 1858412

Figure S6. Elemental analysis (C, H, N) of 4

Figure S7. FT-IR spectrum of Ph₂Te₂O₃

Figure S8. ¹H NMR spectrum of Ph₂Te₂O₃ (In CD₃COOD)

Figure S9. ¹³C NMR spectrum of Ph₂Te₂O₃ (In CD₃COOD)

HBS KR PHTe2O3 in acetic acid/DMSO

Figure S10. ¹²⁵Te NMR spectrum of Ph₂Te₂O₃ (Due to expensive CD₃COOD, ¹²⁵Te NMR was recorded in mixture of CD₃COOD and DMSO in 1: 3 ratio)^{\notin}

Figure S11. ESI-MS spectrum of Ph₂Te₂O₃

Page: 1 Sampl	Eage	er 300 PH)	Report	an the Marca	و الم الم					
Method Name : Method File : Chromatogram : Operator ID :	SP080909 D:\CHNS2008\SP(KRTEPH AGK	080909.mt	h Company Na	me :	C.E. Instru	ments				
Analysed :	: 09/08/2009 13:50 Printed : 9/8/2009 14:57									
Sample ID :	Sample ID : KRTEPH (# 22) Instrument N. : Instrument #1									
Analysis Type :	UnkNown (Area)		Sample weig	ht :	1.293					
Calib. method : using 'K Factors' !!! Warning missing one or more peaks.										
Element Name	8	Ret.Time	Area	BC	Area ratio	K factor				
Carbon	31.2856	67	997006	RS	1.000000	.246465E+07				
Hydrogen	2.0366	175	155178	RS	6.424915	.548662E+07				
Totals	33.3222		1152184							

Figure S12. Elemental analysis of $Ph_2Te_2O_3$

Entry	Anionic multi- tellur- oxane ^a	Oligotellu -roxane ^b	Polymeric Ditellur- oxane ^c	Macrocyclic Multi- Telluranes ^d	Tellurinic Acid ^e	4
Te-O (short bonds)	1.908- 1.941 (sixteen bonds)	1.890(8) 1.896(8) 1.916(8)			1.897(5)	1.863- 1.891 1.911- 1.913
Te-O (intermediate bonds)		1.964(7)	2.025(2)	1.99(2)- 2.03(2)		1.987- 2.023
Te-O (long bonds)	2.091- 2.157 (sixteen bonds)	2.089(8) 2.116(8)	2.100(2)	2.23(2)- 2.29(2)	2.143(5) and 2.232(4)	2.063- 2.106 2.174- 2.249

Table S1: Comparision of Te-O Bond Lengths of 4 with related Telluroxanes

^a H. Citeau, K. Kirschbaum, O. Conrad and D. M. Giolando, *Chem. Commun.*, 2001, 2006-2007.

^b K. Kobayashi, N. Deguchi, O. Takahashi, K. Tanaka, E. Horn, O. Kikuchi and N. Furukawa, *Angew. Chem., Int. Ed.*, 1999, **38**, 1638-1640.

^c J. Beckmann, D. Dakternieks, A. Duthie, F. Ribot, M. Schürmann and N. A. Lewcenko, *Organometallics*, 2003, **22**, 3257-3261.

^d K. Kobayashi, H. Izawa, K. Yamaguchi, E. Horn and N. Furukawa, *Chem. Commun.*, 2001, 1428-1429.

^e J. Beckmann, P. Finke, M. Hesse and B. Wettig, *Angew. Chem., Int. Ed.*, 2008, **47**, 9982-9984.

References:

1. (*a*) Z. Majeed, W. R. McWhinnie and T. A. Hamor, *J. Organomet. Chem.*, 1997, **549**, 257-262; (*b*) R. E. Cobbledick, F. W. B. Einstein, W. R. McWhinnie and F. H. Musa, *J. Chem. Res.* (*M*)., 1979, 1901-1909.

2. G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen (Germany), 1997.

3. G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany), 1997.