## **Supplementary Material**

## Chirality and Magnetism of an Open-framework Cobalt Phosphite Containing Helical Channels from Achiral Materials<sup>†</sup>

Xianchun Liu,<sup>*a*</sup> Yan Xing,<sup>\**a*</sup> Xinlong Wang,<sup>*a*</sup> Hongbin Xu,<sup>*b*</sup> Xizheng Liu,<sup>*a*</sup> Kuizhan Shao<sup>*a*</sup> and Zhongmin Su<sup>\**a*</sup>

<sup>a</sup> Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China

<sup>b</sup> China Science and Technology Exchange Center, Ministry of Science and Technology, Beijing, 100045, P. R. China

E-mail:xingyan69cn@yahoo.com.cn

zmsu@nenu.edu.cn

## Contents

Synthesis: Typically,  $CoCl_2$ ·  $6H_2O$  (0.178g) was first dissolved in DMF (20mL) and then 4-diazabicyclo [2, 2, 2]octane (DABCO, 1.10g) was added with stirring. Finally,  $H_3PO_3$  (0.6mL, 50wt %) was added to the above reaction mixture. A dark-blue gel was formed after stirring for 0.5h. The gel was sealed in a Teflon-lined stainless steel autoclave and heated under autogenous pressure at 60°C for 3 days. The resulting blue block crystals were isolated by filtration, washed with ethanol and dried in air. Inductively coupled plasma (ICP) analysis (Perkin–Elmer Optima 3300 DV ICP instrument) for **1** yielded Co 17.65, P 18.03% (calcd: Co 17.71, P 18.61%). Elemental analysis (%; Perkin–Elmer 2400 elemental analyzer) calcd: C 21.62, H 4.80, N 8.41; found: C 21.65, H 4.89, N 8.33).

Structure determination: Structural analysis of a single crystal ( $0.21 \times 0.18 \times 0.16$  mm<sup>3</sup>) was performed on a Siemens SMART CCD diffractometer using graphite-monochromated MoKa radiation ( $\lambda = 0.71073$  Å). Data processing was accomplished with the SAINT processing program. The structure was solved by direct methods and refined on  $F^2$  by full-matrix least-squares using SHELXTL97. All Co, P, and O atoms were determined directly. The hydrogen atoms of the HPO<sub>3</sub> groups, C, and N atoms were subsequently found in the difference Fourier map. The hydrogen atoms in the DABCO molecules were placed geometrically. All non-hydrogen atoms

of the inorganic framework were refined anisotropically. Crystal data and details of the structure determination are given in Table S1.

Crystal data:  $C_6N_2H_{16}O_6P_2Co$ , Mr = 333.08, orthorhombic, space group  $P2_12_12_1$ (No. 19), a = 10.1040(4), b = 10.8100(5), c = 10.9930(5) Å, V = 1200.70(9) Å<sup>3</sup>, Z = 4,  $\mu = 1.713 \text{ mm}^{-1}$ ,  $\rho_{calcd} = 1.843 \text{ gcm}^{-3}$ , 6673 reflections measured, 2368 unique ( $R_{int} = 0.0180$ ). The final wR ( $F^2$ ) (all data) was 0.0608 and R (F) (I > 2 $\sigma$ (I)) was 0.0209. The flack parameter was 0.034(14). CCDC-723093 contains the supplementary crystallographic data for **1**.

A crystal of the enantiomorph of **1** was selected for a second structure determination. The flack parameter was 0.031(15). In all other respects, the structures of the two enatiomorphs are identical, as expected. CCDC-723094 contains the supplementary crystallographic data for the enantiomorph of **1**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data\_request/cif</u>.

X-ray powder diffraction (XRD) data was collected on a Siemens D5005 diffractometer with CuKa radiation ( $\lambda = 1.5418$  Å).

TG analysis was performed on Perkin-Elmer TGA 7 thermogravimetric analyzer in the air with a heating rate of 10 °Cmin<sup>-1</sup>. TG analysis (Supporting Information Figure S9) of **1** shows a total weight loss of ca. 33.98 % between 180 and 750°C , which is attributed to the decomposition of the organic template molecules (calc. 34.23 %). XRD analysis of the residue left after heating to 750°C shows that the material had transformed into a dense  $Co_2P_2O_7$  phase (JCPDS card No. 34-1378).

Infrared (IR) spectrum was recorded within the 400–4000 cm<sup>-1</sup> region on a Nicolet Impact 410 FTIR spectrometer using KBr pellets.

Diffuse reflectance spectra were collected on Perkin-Elmer Lambda20 within the range 300–800 nm.

The circular dichroism (CD) spectra were recorded on a JASCO J-810 spectropolarimeter with KBr pellets.

The magnetic measurements were carried out on crystalline samples with a MPMS-5 SQUID magnetometer.

Fig. S1 Thermal ellipsoids given at 50% probability, showing the atomic labeling scheme of **1**.

Fig. S2 A schematic view of the right-handed helical channels in which the diprotonated DABCO molecule reside.

Fig. S3 The simulated and experimental X-ray diffraction patterns of compound 1.

Fig. S4 Thermal analyses (TG and DTA) under air of 1.

Fig. S5 X-ray diffraction pattern of 1 after heating at 750°C for 2h.

Fig. S6 IR spectrum of 1.

Fig. S7 The UV-Vis diffuse reflectance spectrum for 1.

Fig. S8 Circular dichroism spectra of compound 1 in KBr pellet.

Fig. S9 Plot of  $\chi_M T$  versus T for **1** in an applied field of 1 kOe from 2 to 300 K; solid line represents the theoretical fit from Curie–Weiss law above 20 K.

Fig. S10 Magnetization versus *H* for **1** at 1.9 K. Inset: Hysteresis loop at 1.9 K for **1**.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010







Fig. S2



Fig. S3



Fig. S4

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010



Fig. S5



Fig. S6

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010



Fig. S7



Fig. S8



Fig. S9



Fig. S10

|                                                  | Compound 1                                            |  |
|--------------------------------------------------|-------------------------------------------------------|--|
| Empirical formula                                | C6 H16 Co N2 O6 P2                                    |  |
| Formula weight                                   | 333.08                                                |  |
| Temperature (K)                                  | 293(2)                                                |  |
| Wavelength (Å)                                   | 0.71069                                               |  |
| Crystal system                                   | Orthorhombic                                          |  |
| Space group                                      | $P2_{1}2_{1}2_{1}$                                    |  |
| <i>a</i> (Å)                                     | 10.1040(4)                                            |  |
| <i>b</i> (Å)                                     | 10.8100(5)                                            |  |
| <i>c</i> (Å)                                     | 10.9930(5)                                            |  |
| $\beta$ (°)                                      | 90                                                    |  |
| Volume ( $Å^3$ )                                 | 1200.70(9)                                            |  |
| Ζ                                                | 4                                                     |  |
| $D_{calc} (g cm^{-3})$                           | 1.843                                                 |  |
| Absorption coefficient (mm <sup>-1</sup> )       | 1.713                                                 |  |
| <i>F</i> (000)                                   | 684                                                   |  |
| Crystal size (mm)                                | 0.21 x 0.18 x 0.16                                    |  |
| $\theta$ range (°)                               | 2.64 - 26.07                                          |  |
| Limiting indices                                 | $-12 \le h \le 12, -13 \le k \le 13, -8 \le l \le 13$ |  |
| Reflections collected / unique                   | 6673 / 2368 [R(int) = 0.0180]                         |  |
| Refinement method                                | Full-matrix least-squares on $F^2$                    |  |
| Data / restraints / parameters                   | 2368 / 2 / 168                                        |  |
| Goodness-of-fit on $F^2$                         | 1.084                                                 |  |
| Absolute structure parameter                     | 0.034(14)                                             |  |
| Final R indices $[I > 2\sigma(I)]$               | $R_1 = 0.0209, wR_2 = 0.0603$                         |  |
| <i>R</i> indices (all data)                      | $R_1 = 0.0221, wR_2 = 0.0608$                         |  |
| Largest diff. peak and hole (e Å <sup>-3</sup> ) | 0.607 and -0.300                                      |  |

Table S1 Crystal data and details for the structure determination for **1**.

| Co(1)-O(1)#1        | 1.9581(17) | P(1)-O(1)      | 1.5128(18) |
|---------------------|------------|----------------|------------|
| Co(1)-O(2)#2        | 1.9337(18) | P(1)-O(4)      | 1.5170(17) |
| Co(1)-O(4)          | 1.9538(16) | P(1)-O(5)      | 1.5189(17) |
| Co(1)-O(6)          | 1.9403(17) | P(2)-O(2)      | 1.5066(19) |
| P(1)-H(1)           | 1.360(10)  | P(2)-O(3)      | 1.5160(19) |
| P(2)-H(2)           | 1.371(10)  | P(2)-O(6)      | 1.5104(17) |
|                     |            |                |            |
| O(1)#1-Co(1)-O(2)#2 | 111.88(9)  | O(1)-P(1)-O(4) | 111.96(10) |
| O(1)#1-Co(1)-O(6)   | 111.83(9)  | O(1)-P(1)-O(5) | 113.26(11) |
| O(1)#1-Co(1)- O(4)  | 110.15(7)  | O(4)-P(1)-O(5) | 110.08(10) |
| O(2)#2-Co(1)-O(4)   | 102.10(8)  | O(2)-P(2)-O(3) | 113.91(12) |
| O(2)#2-Co(1)-O(6)   | 109.77(8)  | O(2)-P(2)-O(6) | 108.85(11) |
| O(4)-Co(1)-O(6)     | 110.71(8)  | O(3)-P(2)-O(6) | 113.18(11) |

Table S2 Selected bond lengths [Å] and angles [°] for **1**.

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,-y,z-1/2 #2 -x+1,y+1/2,-z+1/2