Supplementary Material for Chemical Communications

Reversible Single-Crystal to Single-Crystal Polymorphic Phase Transformation of an Organic Crystal

Dinabandhu Das, Emile Engel and Leonard J. Barbour*

Department of Chemistry, University of Stellenbosch Private Bag XI, Stellenbosch, 7600, South Africa.. Fax: +27-808-21-3360 Tel: +27-808-21-3335; E-mail: ljb@sun.ac.za

> Electronic Supplementary Information (ESI) (12 pages)

 $R = p-MeO-C_6H_4$

The synthesis was, as far as possible, carried out under inert conditions. A solution of pbromoanisole (12.66 ml, 100 mmol) in dry diethyl ether (30 ml) was prepared. An initial volume of 5 ml of this solution was added to a gently refluxing, stirred mixture of magnesium (2.4 g, 98.7 mmol) in dry diethyl ether (20 ml). When the reaction had begun, the remainder of the p-bromoanisole-solution was added dropwise over a period of approximately 30 minutes. The reacting mixture was allowed to reflux for 2 h. The resulting Grignard reagent was added to a vigorously stirring, gently refluxing suspension of anthraquinone (4.0 g, 19.2 mmol) in dry diethyl ether (120 ml). The reaction was allowed to continue under reflux for 15-20 h. The resulting mixture was cooled on ice and acidified to a pH of 2 using hydrochloric acid (2.5 M). A grey-green precipitate resulted and was added to boiling acetone (500 ml). The mixture was filtered hot after heating for at least a further 10 minutes. The residue was discarded and the filtrate reduced to approximately 100 ml using a rotary evaporator. Cooling on ice allowed the reaction product to precipitate. Purification was done by recrystallization from acetone and thereafter, washing thoroughly with a minimum amount (approximately 40 ml) of warm benzene. The compound was characterized by NMR spectroscopy, FTIR spectroscopy (hydroxy peak at 3563 cm⁻¹) and SCD analysis.

NMR data: ¹H (400 MHz, CHCl₃-*d*) δ 1.55 (s, 3 H), δ 2.59 (s, 2 H), δ 3.78 (s, 6 H), δ 6.82 (d, *J*=8.95 Hz, 4 H), δ 7.15 - 7.29 (m, 4 H), δ 7.35 (d, *J*=9.83 Hz, 8 H).

¹³C (100MHz, CHCl₃-*d*): δ55.20, δ74.20, δ113.31, δ127.82, δ128.18, δ128.30, δ140.16, δ140.93, δ158.31.

Single-crystal X-ray diffraction:

Crystals of **Ia** and **Ib** were prepared by slow evaporation of benzene and dichloromethane solutions of compound **I**, respectively. **Ia** was also prepared by crystallization from nitrobenzene or toluene solutions of **I** and **Ib** was also prepared from chloroform and dichloroethane solutions of **I**. Single crystal X-ray data of those crystals were collected at 21 °C on Bruker SMART Apex diffractometer equipped with a CCD area detector.

Variable temperature single-crystal experiments were performed on a crystal which was glued to a thin glass fiber and enveloped in a temperature-controlled stream of dry nitrogen gas during intensity data collection. The temperature of the crystal was controlled using an Oxford Cryosystream Plus cryostat. The unit cell was determined at 0 °C. The single-crystal data were recorded at -50 °C and then the crystal was heated to 50 °C and the intensity data were measured. Crystallographic details of the variable temperature experiment are given in Table 2.

Fig. 1 Thermal ellipsoid plots of the asymmetric units of (a) **Ia** and (b) **Ib**. Ellipsoids are shown at the 50% probability level.

Hirshfeld surfaces of Ia and Ib:

b

Fig. 2 Hirshfeld surfaces of (a) Ia and (b) Ib.

Fig. 3 Packing diagrams of (a) **Ia**, viewed along [100] and (b) **Ib**, viewed along [-100]. Hydrogen atoms are omitted for clarity.

FTIR of I:

Fig. 4. FTIR spectrum showing the conversion of Ib to Ia upon crushing.

	D-HA	D–H (Å)	HA (Å)	DA (Å)	∠D–H…A (°)
	O(2)–H(2)O(1)	0.98	2.21	2.994(3)	136
Ia	C(7)–H(7)O(3)	1.08	2.48	3.270(3)	129
	C(12)-H(12)O(4)	1.08	2.50	3.328(3)	132
Ib	C(4)–H(4)O(2)	1.08	2.62	3.631(4)	155
	C(7)–H(7)O(1)	1.08	2.72	3.669(4)	146

Table 1. Hydrogen bonding geometry in Ia and Ib^{*}

^{*}All hydrogen atoms were placed in calculated positions with C-H and O-H bond distances neutron-normalized.

Table 2. Crystallographic details

Compound	Ia	Ib	
Formula	$C_{28}H_{24}O_4$	$C_{28}H_{24}O_4$	
Formula weight	424.47	424.47	
<i>T</i> /K	294	294	
Crystal System	Triclinic	Triclinic	
Space group	<i>P</i> -1	<i>P</i> -1	
a/Å	6.2160(9)	6.305(3)	
<i>b</i> / Å	10.9301(16)	8.330(4)	
<i>c</i> / Å	16.315(2)	11.095(6)	
α/°	97.721(3)	95.273(8)	
β/°	90.851(3)	105.204(8)	
γ/°	105.319(3)	106.321(8)	
$V/\text{\AA}^3$	1057.9(3)	531.0(5)	
Ζ	2	1	
$D_c/\text{g cm}^{-1}$	1.333	1.327	
μ/mm^{-1}	0.088	0.088	
F_{000}	448	224	
$2 heta_{ m max}/^{\circ}$	56.7	56.7	
Total reflections	8480	5410	
Unique reflections	4786	2402	
Reflections $I > 2\sigma(I)$	2499	1532	
Parameters	293	193	
R _{int}	0.0335	0.0373	
R [F, I > 2 σ (I)	0.0663	0.0554	
wR (F^2 , all data)	0.1441	0.1380	
GooF	0.983	1.010	

Temperature of study (K)	273 (initial)	223	323	
Crystal System	Triclinic	Triclinic	Triclinic	
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	
a/Å	6.223(2)	6.302(3)	6.194(5)	
b/ Å	10.933(3)	8.287(4)	10.864(9)	
<i>c</i> / Å	16.298(5)	11.030(5)	16.293(14)	
α/°	97.70(2)	95.460(7)	97.836(14)	
β/°	90.89(2)	105.269(7)	90.907(15)	
$\gamma/^{\circ}$	105.30(2)	106.343(8)	105.291(14)	
V/Å ³		524.2(4)	1046.2(16)	
Ζ		1	2	
$D_c/\mathrm{g~cm}^{-1}$		1.345	1.347	
μ/mm^{-1}		0.089	0.089	
F_{000}		224	448	
$2 heta_{ m max}/^{\circ}$		49.8	50.3	
Total reflections		4911	7393	
Unique reflections		1806	3623	
Reflections $I > 2\sigma(I)$		1174	1852	
Parameters		147	293	
<i>R</i> _{int}		0.0607	0.0795	
R [F, I > 2 σ (I)		0.0739	0.1192	
wR (F^2 , all data)		0.1534	0.2672	
GooF		1.091	1.125	

Table 3. Crystallographic details of variable temperature single crystal X-ray diffraction study on same crystal

Photographs of crystals recorded during the variable temperature single-crystal X-ray diffraction study:

Fig. 5 Photographs of the same crystal were taken at (a) 0 °C, (b) -50 °C and (c) 50 °C during the variable temperature single crystal X-ray diffraction experiment. Although it seems that the crystal degraded at -50 °C and 50 °C, full intensity data were collected and the structures were solved using these data. The mosaicities of the crystal at different temperatures are given bellow.

Temperature (°C)	0 (initial)	-50	0 (final)	50
Mosaicity	0.80	0.93	0.88	0.88

Differential Scanning Calorimetry

Differential scanning calorimetry was carried out on powdered samples using a TA Instruments Q100 calorimeter. Approximately 10 mg of the sample was sealed in a crimped aluminum pan with a hole pierced in the lid. The experiment was carried out under nitrogen purge. At first the sample was cooled to -80 °C at a rate of 10 °C per minute. Then the sample was heated at the same rate until melting occurred.

Fig. 6 DSC thermogram of the as-synthesized compound.

Variable temperature powder diffraction study:

Powdered samples were placed on a flat aluminum sample holder. X-ray powder diffractograms were measured using Cu K_{α} radiation (λ = 1.5418 Å, 45 kV and 40 mA) on a PANalytical instrument operating in Bragg-Brentano geometry. The diffractorgams were measured in the 2 θ range 5° to 40°. The temperature of the sample was controlled using an Anton Paar TCU 100 temperature control unit.

Fig. 7 Powder-3D image

Fig. 8 Powder diffractograms of the same sample of I at different temperatures.