Supporting Information

Title: Synthesis, structure and reactions of triarylgermyl anion with α , δ -ambiphilic character

Authors: Atsushi Kawachi,* Koji Machida, and Yohsuke Yamamoto

1. Experimental Details.

Generals. ¹H (400 MHz), ¹³C{¹H} (100 MHz), ¹⁹F{¹H} (376 MHz), and ²⁹Si{¹H} (79.4 MHz) NMR spectra were recorded with a JEOL EX-400 or AL-400 spectrometer. ¹H chemical shifts in C₆D₆ were referenced to the residual proton (δ (¹H) = 7.20). ¹³C chemical shifts were referenced to internal C₆D₆ (δ = 128.0) or external tetramethylsilane (δ = 0). ¹⁹F chemical shifts were referenced to external CFCl₃ (δ = 0). ²⁹Si chemical shifts were referenced to external tetramethylsilane (δ = 0). NMR spectra in THP were observed in an unlocked mode, being referenced to a standard substance in THP-THF-*d*₈ (4:1 v/v) that was observed in a locked mode. The mass spectra (EI) were measured at 70 eV with a JEOL SX-102A mass spectrometer at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University: we thank Dr. Daisuke Kajiya for the measurement of the samples. Melting points were measured with a Yanaco micro melting point apparatus and were uncorrected. The elemental analyses were performed using Perkin-Elmer 2400CHN elemental analyzer at our laboratory.

KF (spray dried grade (98%) was purchased from Wako Pure Chemical Industries, Ltd. and dried in vacuo at 100 °C overnight. LiBPh₄•3dme was purchased from Alfa Aesar and dried in vacuo at 140 °C overnight using P₂O₅ as desiccant. BF₃•Et₂O was distilled under nitrogen atmosphere over CaH₂. [2.2.2]Cryptand (Wako Pure Chemical Industries, Ltd.) was used as received. CH₃COOH was distilled under nitrogen atmosphere. Hexane was distilled under nitrogen atmosphere over calcium hydride or dehydrated solvent (<10 ppm; Kanto Chemical Co., Inc.) was dried through Solvent Dispensing System (GlassContour) under nitrogen atmosphere (99.999%). THP (tetrahydropyran) and THF-*d*₈ were distilled under nitrogen atmosphere over sodium diphenylketyl. All reactions were carried out under inert gas atmosphere.

Reaction of 1 with KF/[2.2.2]cryptand:

Potassium [2.2.2]cryptand tris[2-(fluorodimethylsilyl)phenyl]germanide (3).

To **2** (770 mg, 1.50 mmol), KF (89 mg, 1.50 mmol) and [2.2.2]cryptand (565 mg, 1.50 mmol) in a schlenk tube was added THP (5.0 mL) at room temperature. The reaction mixture was stirred at room temperature for 0.5 h to give a yellow solution of **3**. The reaction mixture was concentrated in vacuo. The resulting yellow solid was recrystallized from THP-hexane (5 mL/5 mL) at -30 °C to give **3** (1.10 g, 77% yield) as yellow crystals.

Mp: 62 °C (decomposed) (in a sealed tube). ${}^{13}C{}^{1}H}$ NMR (THP, δ): 0.98 (br, Si Me_2F), 52.54 (cryptand), 66.21 (cryptand), 69.06 (cryptand), 121.25 (CH), 125.95 (CH), 130.80 (CH), 135.90 (CH), 143.41 (d, ${}^{2}J({}^{13}C-{}^{19}F) = 14$ Hz, C-Si), 168.90 (d, ${}^{3}J({}^{13}C-{}^{19}F) = 6$ Hz, C-Ge). ${}^{19}F{}^{1}H{}$ NMR

 $(\text{THP }\delta): -161.20 \text{ (s)}. \overset{29}{}\text{Si}\{^{1}\text{H}\} \text{ NMR } (\text{THP, }\delta): 15.52 \text{ (d, }^{1}J(^{29}\text{Si}-^{19}\text{F}) = 274 \text{ Hz}).$

Reaction of 2 with CH₃COOH: Tris[2-(fluorodimethylsilyl)phenyl]germane (4).

To 2 (154 mg, 0.30 mmol) and KF (18 mg, 0.30 mmol) in a schlenk tube was added THP (1.0 mL) at room temperature. The reaction mixture was stirred at room temperature for 0.5 h to give a yellow solution of **3**. CH₃COOH (40 μ L, 0.70 mmol) was added to the solution of **1** at 0 °C, and the reaction mixture was stirred at that temperature for 10 min to yield **4**. The reaction mixture was concentrated in vacuo. Hexane (5 mL x 3) was added to the residue and the resulting insoluble materials were filtered off. The filtrate was concentrated in vacuo. The residue was recrystallized from hexane at -30 °C to give **4** (100 mg, 62% yield) as white solids.

Mp: 93.0–95.0 °C. ¹H NMR (C₆D₆, δ): 0.39 (d, ³*J*(¹⁹F-¹H) = 8 Hz, 18H), 6.81 (q, ⁵*J*(¹⁹F-¹H) = 8 Hz, 1H, Ge-*H*), 7.05 (ddd, *J* = 8, 8, and 1 Hz, 3H), 7.16 (m, 1H), 7.45 (d, *J* = 8 Hz, 1H), 7.67 (dd, *J* = 8 and 1 Hz, 1H). ¹³C{¹H} NMR (C₆D₆, δ): 0.62 (d, ²*J*(¹³C-¹⁹F) = 15 Hz, Si*Me*₂F), 128.47 (CH), 129.61 (CH), 134.90 (d, ³*J*(¹³C-¹⁹F) = 6 Hz, CH), 137.05 (CH), 143.29 (C-Ge), 143.69 (d, ²*J*(¹³C-¹⁹F) = 15 Hz, *C*-Si). ¹³C{¹H} NMR (THP, δ): 0.65 (d, ²*J*(¹³C-¹⁹F) = 15 Hz, Si*Me*₂F), 128.71 (CH), 129.80 (CH), 135.11 (d, ³*J*(¹³C-¹⁹F) = 5 Hz, CH), 137.18 (CH), 143.32 (C-Ge), 143.92 (d, ²*J*(¹³C-¹⁹F) = 15 Hz, *C*-Si). ¹⁹F{¹H} NMR (C₆D₆, δ): -156.10 (sept, ³*J*(¹⁹F-¹H) = 8 Hz). ¹⁹F{¹H} NMR (THP δ): -155.4 (broad). ²⁹Si{¹H} NMR (C₆D₆, δ): 20.97 (d, ¹*J*(²⁹Si-¹⁹F) = 280 Hz). ²⁹Si{¹H} NMR (THP, δ): 20.13 (d, ¹*J*(²⁹Si-¹⁹F) = 280 Hz). MS (EI): *m/z* 533 {M⁺(for ⁷⁴Ge) - [H], 0.7}, 531 {M⁺(for ⁷²Ge) - [H], 0.5}, 530 {M⁺(for ⁷⁰Ge) - [H], 0.2}, 381 {M⁺(for ⁷⁰Ge) - [(C₆H₄)SiMe₂F], 100}, 379 {M⁺(for ⁷²Ge) - [(C₆H₄)SiMe₂F], 79}, 377 {M⁺(for ⁷⁰Ge) - [(C₆H₄)SiMe₂F], 51}. Anal. Calcd for C₂₄H₃₁F₃GeSi₃: C, 54.05; H, 5.86. Found: C, 54.30; H, 5.77.

Reaction of 1 with LiBPh₄•3dme: Formation of 2.

To **3** (190 mg, 0.20 mmol) and LiBPh₄•3dme (357 mg, 0.60 mmol) in a schlenk tube was added THP (5.0 mL) at room temperature. The reaction mixture was stirred at the same temperature for 20 h. The formed inorganic salts were removed by filtration through a filter paper. The filtrate was concentrated in vacuo. Hexane (6 mL) was added to the residue and the resulting insoluble materials were filtered off using a membrane filter. The filtrate was concentrated in vacuo. The residue was recrystallized from hexane at -30 °C to give 2 (62 mg, 60% yield) as colorless crystals. **Reaction of 1 with BF₃•Et₂O: Formation of 2.**

To **3** (190 mg, 0.20 mmol) in THP (4.0 mL) was added BF₃•Et₂O (27 μ L, 0.22 mmol) at room temperature and the reaction mixture was stirred at the same temperature for 0.5 h. The formed inorganic salts were removed by filtration through a membrane filter. The filtrate was concentrated in vacuo. Hexane (3 mL x 3) was added to the residue and the resulting insoluble materials were filtered off by a filter paper. The filtrate was concentrated in vacuo. The residue

was recrystallized from hexane at -30 °C to give 2 (40 mg, 39% yield) as colorless crystals.

2. Crystallographic Data for 3.

X-ray crystallographic data for compound **3** were collected with a SCXmini (Rigaku) CCD diffractometer with a graphite monochromated Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) at 173 K. The data were processed by using CrystalClear. The structure was solved by direct methods using SIR 97¹ and refined by a full-matrix least-squares procedure based on F^2 with SHELX-97.² All non-hydrogen atoms were refined anisotropically while all hydrogen atoms were located at the expected positions by a geometrical calculation and refined isotropically. The details are summarized in Tables S-1 - S-6.

Identification code	(Triarylgermyl)potassium	3
Empirical formula	C42 H66 F3 Ge K N2 O6	\$13
Formula weight	947 93	
Temperature	173(2) K	
Wavelength	0.71075 Å	
Crystal system	triclinic	
Snace group	P_1	
Unit cell dimensions	a = 11.5904(9) Å	$\alpha = 77.020(2)^{\circ}$
onit cen uniensions	a = 11.5904(9) A b = 13.6336(10) Å	$\alpha = 77.929(2)$. B = 82.078(2)°
	b = 15.0550(10) A	$\beta = 85.078(2)$.
V - hours -	C = 10.3928(12) A	$\gamma = 71.343(2)$.
volume	2427.9(3) A ³	
	2	
Density (calculated)	1.297 Mg/m ³	
Absorption coefficient	0.846 mm ⁻¹	
F(000)	1000	
Crystal size	0.40 x 0.40 x 0.30 mm ³	
Theta range for data collection	3.04 to 27.48°.	
Index ranges	-14<=h<=15, -17<=k<=1	7, -21<=l<=21
Reflections collected	24640	
Independent reflections	11047 [R(int) = 0.0339]	
Completeness to theta = 27.48°	99.2 %	
Max. and min. transmission	0.7854 and 0.6770	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	11047 / 0 / 529	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0449, wR2 = 0.09	82
R indices (all data)	R1 = 0.0624, wR2 = 0.10	69
Largest diff. peak and hole	0.541 and -0.473 e.Å ⁻³	

Table S-1. Crystal data and structure refinement for 3.

Table S-2.	Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters ($(Å^2 x \ 10^3)$ for 3 .
U(eq) is defi	ned as one third of the trace of the orthogonalized U^{ij} tensor.	

·	X	у	Z	U(eq)
Ge(1)	635(1)	2983(1)	7775(1)	27(1)
Si(1)	869(1)	1498(1)	6305(1)	$\frac{2}{34(1)}$
Si(2)	3370(1)	2915(1)	8405(1)	36(1)
Si(3)	-486(1)	5555(1)	6734(1)	34(1)
F(1)	599(2)	817(1)	5698(1)	57(1)
F(2)	4547(2)	2690(2)	8930(1)	63(1)
F(3)	-1144(2)	6814(1)	6518(1)	52(1)
C(1)	-663(2)	2330(2)	7655(2)	28(1)
C(2)	-510(2)	1735(2)	7028(2)	30(1)
C(3)	-1411(2)	1273(2)	6963(2)	43(1)
C(4)	-2438(3)	1398(2)	7484(2)	51(1)
C(5)	-2605(2)	1984(2)	8093(2)	46(1)
C(6)	-1726(2)	2445(2)	8172(2)	36(1)
C(7)	1120(3)	2656(2)	5593(2)	52(1)
C(8)	2245(2)	631(2)	6828(2)	42(1)
C(9)	1395(2)	1996(2)	8792(1)	30(1)
C(10)	2516(2)	2029(2)	9021(2)	34(1)
C(11)	3034(3)	1361(2)	9734(2)	47(1)
C(12)	2478(3)	672(2)	10222(2)	49(1)
C(13)	1394(3)	621(2)	9998(2)	43(1)
C(14)	871(2)	1270(2)	9292(2)	37(1)
C(15)	4011(3)	2578(2)	7385(2)	45(1)
C(16)	2599(3)	4339(2)	8354(2)	48(1)
C(17)	-377(2)	4195(2)	8331(1)	30(1)
C(18)	-733(2)	5234(2)	7877(2)	32(1)
C(19)	-1316(3)	6069(2)	8296(2)	44(1)
C(20)	-154/(3)	5902(3)	9139(2)	54(1)
C(21)	-1213(3)	4894(2)	95/8(2)	52(1)
C(22)	-040(3)	4001(2)	91/9(2)	42(1)
C(23)	1101(3) 1220(3)	3397(2)	6307(2)	43(1) 41(1)
C(24) K(1)	-1330(3) 3953(1)	4980(2) 7573(1)	7168(1)	41(1) 35(1)
$\mathbf{N}(1)$	4410(3)	7375(1) 7436(2)	5348(2)	53(1) 57(1)
N(2)	3537(3)	7711(2)	8970(2)	57(1) 61(1)
O(1)	2000(2)	7784(2)	6243(2)	60(1)
O(2)	1551(2)	8128(2)	7876(2)	56(1)
O(3)	5521(2)	5715(1)	6630(1)	42(1)
O(4)	4910(2)	5768(2)	8313(1)	58(1)
O(5)	5256(2)	8869(2)	6117(1)	50(1)
O(6)	5055(2)	8738(2)	7848(1)	52(1)
C(25)	3269(4)	7438(4)	5035(3)	87(1)
C(26)	2140(4)	8161(4)	5385(3)	90(2)
C(27)	811(3)	8269(3)	6578(3)	71(1)
C(28)	719(3)	7850(3)	7463(3)	75(1)
C(29)	1406(4)	7841(3)	8745(2)	79(1)
C(30)	2227(4)	8219(3)	9136(2)	70(1)
C(31)	5377(3)	6475(3)	5219(2)	61(1)
C(32)	5309(3)	5547(3)	5855(2)	58(1)
C(33)	5683(3)	4789(2)	7240(2)	59(1)
C(34)	5944(3)	5009(2)	8028(2)	65(1)
C(35)	5110(5)	5969(3)	9088(2)	102(2)
C(36)	3918(5)	6623(3)	9432(2)	103(2)
C(37)	4769(4)	8368(3)	4940(2)	83(1)
C(38)	5744(4)	8540(3)	5366(2)	77(1)
C(39)	6174(3)	8948(3)	6580(3)	67(1)
C(40)	5588(3)	9428(3)	7312(2)	63(1)
C(41)	4401(3)	9174(3)	8545(2)	64(1) 79(1)
C(42)	4261(4)	8303(3)	9203(2)	/8(1)

Table S-3.	Bond lengths $[Å]$ and angles $[\circ]$ for 3 .	C(24)-H(24B)	0.9800
$\overline{\text{Ge}(1)}$ -C(1)	2 023(2)	K(1)-O(4)	2.778(2)
Ge(1) - C(9)	2.024(2)	K(1) - O(1)	2.793(2)
Ge(1)-C(17)	2.027(2)	K(1)-O(6)	2.795(2)
Si(1)-F(1)	1.6206(17)	K(1)-O(2)	2.820(2)
Si(1)-C(8)	1.844(3)	K(1)-O(3)	2.8553(19)
Si(1)-C(7)	1.844(3)	K(1)-O(5)	2.866(2)
Si(1)-C(2)	1.864(3)	K(1)-N(2)	3.007(3)
Si(2)-F(2)	1.6194(17)	K(1)-N(1)	3.036(3)
Si(2)-C(16)	1.851(3)	N(1)-C(31)	1.466(4)
Si(2)-C(15)	1.853(3)	N(1)-C(37)	1.468(5)
Si(2)-C(10)	1.866(3)	N(1)-C(25)	1.476(5)
Si(3)-F(3)	1.6232(17)	N(2)-C(42)	1.463(5)
Si(3)-C(24)	1.848(3)	N(2)-C(36)	1.474(4)
S1(3)-C(23)	1.852(3)	N(2)-C(30)	1.475(5)
$S_1(3)-C(18)$	1.863(3)	O(1) - C(26)	1.418(5)
C(1) - C(6)	1.399(3)	O(1)-C(27)	1.427(4)
C(1)-C(2)	1.409(3)	O(2) - O(29)	1.41/(4) 1.420(4)
C(2)-C(3)	1.404(3) 1.370(4)	O(2) - C(28) O(3) - C(32)	1.429(4) 1.416(4)
C(3)-C(4)	0.9500	O(3)-C(32)	1.410(4) 1.419(3)
C(4)-C(5)	1.374(4)	O(4)-C(34)	1.47(5) 1 420(4)
C(4)-C(5)	0.9500	O(4)-C(35)	1.420(4) 1 429(5)
C(5)-C(6)	1 386(4)	O(5)-C(38)	1.129(3) 1 406(4)
C(5)-H(5A)	0.9500	O(5)-C(39)	1.428(4)
C(6)-H(6A)	0.9500	O(6)-C(40)	1.393(4)
C(7)-H(7A)	0.9800	O(6)-C(41)	1.434(4)
C(7)-H(7B)	0.9800	C(25)-C(26)	1.503(5)
C(7)-H(7C)	0.9800	C(25)-H(25A)	0.9900
C(8)-H(8A)	0.9800	C(25)-H(25B)	0.9900
C(8)-H(8B)	0.9800	C(26)-H(26A)	0.9900
C(8)-H(8C)	0.9800	C(26)-H(26B)	0.9900
C(9)-C(14)	1.398(3)	C(27)-C(28)	1.465(6)
C(9)-C(10)	1.413(3)	C(27)-H(27A)	0.9900
C(10)-C(11)	1.402(4)	C(27)-H(27B)	0.9900
C(11)-C(12)	1.376(4)	C(28)-H(28A)	0.9900
C(11)-H(11)	A) 0.9500	C(28)-H(28B)	0.9900
C(12)-C(13)	1.378(4)	C(29)-C(30)	1.480(6)
$C(12)$ - $\Pi(12)$ C(13) $C(14)$	(1.3500)	C(29)- $H(29R)$	0.9900
C(13)-H(13)	A) 0.9500	C(20)-H(20B)	0.9900
C(14)-H(14)	A) 0.9500	C(30)-H(30B)	0.9900
C(15)-H(15)	A) 0.9800	C(31)-C(32)	1.485(5)
C(15)-H(15)	3) 0.9800	C(31)-H(31A)	0.9900
C(15)-H(150	C) 0.9800	C(31)-H(31B)	0.9900
C(16)-H(16)	A) 0.9800	C(32)-H(32A)	0.9900
C(16)-H(16I	3) 0.9800	C(32)-H(32B)	0.9900
C(16)-H(160	C) 0.9800	C(33)-C(34)	1.485(5)
C(17)-C(22)	1.390(3)	C(33)-H(33A)	0.9900
C(17)-C(18)	1.415(3)	C(33)-H(33B)	0.9900
C(18)-C(19)	1.402(4)	C(34)-H(34A)	0.9900
C(19)-C(20)	1.376(4)	C(34)-H(34B)	0.9900
C(19)-H(19)	A) 0.9500	C(35)-C(36)	1.507(6)
C(20)-C(21)	1.371(4)	C(35)-H(35A)	0.9900
C(20)-H(20)	A) 0.9500 1.270(4)	C(35)-H(35B)	0.9900
C(21)- $C(22)$	1.3/9(4)	C(30)-H(30A) C(36)-H(26D)	0.9900
C(21)-H(21) C(22) $U(22)$	A) 0.9500	C(30)-H(30B) C(37) C(38)	0.9900
$C(22) = \Pi(22)$	a) 0.9300 A) 0.0200	C(37) = U(38)	1.304(0)
$C(23)$ - $\Pi(23)$ $C(23)$ - $\Pi(23)$	ay 0.2000 a) 0.0800	C(37) - H(37R)	0.9900
C(23)- $H(23)$	עד ער גער אין דער גער גער גער גער גער גער גער גער גער ג	C(38)-H(38A)	0.9900
C(24)-H(24)	A) 0.9800	C(38)-H(38B)	0.9900

 Table S-3
 Bond lengths [Å] and angles [°] for 3.

Supplementary Material (E This journal is (c) The Roya	SI) for Chemical Communic al Society of Chemistry 201	cations 0	
C(39) $C(40)$	1 /188(5)	$C(14) C(0) G_{e}(1)$	123 50(18)
C(39) - C(40) C(20) + U(20A)	1.400(3)	C(14)-C(9)-C(1) C(10)-C(0)-Co(1)	123.30(18) 110.28(18)
$C(39) - \Pi(39A)$	0.9900	C(10)-C(9)-C(10)	119.20(10) 110.5(2)
$C(39) - \Pi(39B)$	0.9900	C(11) - C(10) - C(9)	119.3(2)
C(40)-H(40A)	0.9900	C(11)-C(10)-S1(2)	117.58(19)
C(40)-H(40B)	0.9900	C(9)-C(10)-Si(2)	122.94(19)
C(41)-C(42)	1.471(5)	C(12)-C(11)-C(10)	121.7(3)
C(41)-H(41A)	0.9900	C(12)-C(11)-H(11A)	119.2
C(41)-H(41B)	0.9900	C(10)-C(11)-H(11A)	119.2
C(42)-H(42A)	0.9900	C(11)-C(12)-C(13)	119.4(3)
C(42)-H(42B)	0.9900	C(11)-C(12)-H(12A)	120.3
		C(13)-C(12)-H(12A)	120.3
C(1)-Ge(1)-C(9)	99.23(9)	C(12)-C(13)-C(14)	119.8(3)
C(1)-Ge(1)-C(17)	100.23(9)	C(12)-C(13)-H(13A)	120.1
C(9)-Ge(1)-C(17)	97.78(9)	C(14)-C(13)-H(13A)	120.1
F(1)-Si(1)-C(8)	104.96(11)	C(13)-C(14)-C(9)	122.4(2)
F(1)-Si(1)-C(7)	103.60(13)	C(13)-C(14)-H(14A)	118.8
C(8)-Si(1)-C(7)	113.53(14)	C(9)-C(14)-H(14A)	118.8
F(1)-Si(1)-C(2)	103 86(11)	Si(2)-C(15)-H(15A)	109.5
C(8)-Si(1)-C(2)	11231(12)	Si(2)-C(15)-H(15B)	109.5
C(7)-Si(1)-C(2)	112.31(12) 116.88(12)	H(15A)-C(15)-H(15B)	109.5
F(2)-Si(2)-C(16)	103.75(12)	$S_{i}(2)-C(15)-H(15C)$	109.5
F(2) = Si(2) - C(10)	103.73(12) 104.77(12)	H(15A) C(15) H(15C)	109.5
$\Gamma(2)$ -SI(2)-C(15) $\Gamma(16)$ Si(2) $\Gamma(15)$	104.77(12) 112.86(14)	H(15R) - C(15) - H(15C) H(15R) - C(15) - H(15C)	109.5
C(10)-S(2)-C(13)	112.00(14) 104.09(11)	H(13B)-C(13)-H(13C)	109.5
F(2)-SI(2)-C(10)	104.08(11)	SI(2)-C(10)-H(10A)	109.5
C(16)-SI(2)-C(10)	115.33(12)	SI(2)-C(16)-H(16B)	109.5
C(15)-S1(2)-C(10)	114.39(12)	H(16A)-C(16)-H(16B)	109.5
$F(3)-S_1(3)-C(24)$	104.61(11)	$S_1(2)-C(16)-H(16C)$	109.5
$F(3)-S_1(3)-C(23)$	103.84(11)	H(16A)-C(16)-H(16C)	109.5
C(24)-Si(3)-C(23)	112.90(13)	H(16B)-C(16)-H(16C)	109.5
F(3)-Si(3)-C(18)	103.63(10)	C(22)-C(17)-C(18)	117.3(2)
C(24)-Si(3)-C(18)	112.65(12)	C(22)-C(17)-Ge(1)	121.72(19)
C(23)-Si(3)-C(18)	117.42(12)	C(18)-C(17)-Ge(1)	120.63(17)
C(6)-C(1)-C(2)	117.8(2)	C(19)-C(18)-C(17)	119.2(2)
C(6)-C(1)-Ge(1)	122.55(19)	C(19)-C(18)-Si(3)	117.7(2)
C(2)-C(1)-Ge(1)	119.65(17)	C(17)-C(18)-Si(3)	123.09(18)
C(3)-C(2)-C(1)	118.9(2)	C(20)-C(19)-C(18)	121.5(3)
C(3)-C(2)-Si(1)	118.6(2)	C(20)-C(19)-H(19A)	119.2
C(1)-C(2)-Si(1)	122.53(18)	C(18)-C(19)-H(19A)	119.2
C(4)-C(3)-C(2)	121.7(3)	C(21)-C(20)-C(19)	119.3(3)
C(4)-C(3)-H(3A)	119.2	C(21)-C(20)-H(20A)	120.4
C(2)-C(3)-H(3A)	119.2	C(19)-C(20)-H(20A)	120.4
C(3)-C(4)-C(5)	120.1(3)	C(20)-C(21)-C(22)	120.2(3)
C(3)-C(4)-H(4A)	119.9	C(20)-C(21)-H(21A)	119.9
C(5)-C(4)-H(4A)	119.9	C(22)-C(21)-H(21A)	119.9
C(4)-C(5)-C(6)	119.3(3)	C(21)-C(22)-C(17)	122.4(3)
C(4)-C(5)-H(5A)	120.4	C(21)-C(22)-H(22A)	118.8
C(6)-C(5)-H(5A)	120.4	C(17)-C(22)-H(22A)	118.8
C(5)- $C(6)$ - $C(1)$	122 2(3)	Si(3)-C(23)-H(23A)	109.5
C(5)- $C(6)$ - $H(6A)$	118.9	Si(3) - C(23) - H(23B)	109.5
C(1)-C(6)-H(6A)	118.9	H(23A) - C(23) - H(23B)	109.5
$S_{i}(1) C(7) H(7A)$	100 5	$S_{i}(2) C(23) H(23C)$	109.5
Si(1) - C(7) - H(7P)	109.5	H(22A) C(22) H(22C)	109.5
$SI(1)-C(7)-\Pi(7B)$	109.5	$\Pi(23A) - C(23) - \Pi(23C)$ $\Pi(23D) - C(22) - \Pi(23C)$	109.5
$\Pi(/A) - C(/) - \Pi(/B)$	109.5	$\Pi(25B)-\Omega(25)-\Pi(25C)$	109.5
SI(1)-C(7)-H(7C)	109.5	SI(3)-C(24)-H(24A) Si(2)-C(24)-H(24B)	109.5
H(/A)-C(/)-H(/C)	109.5	SI(3)-C(24)-H(24B)	109.5
$\Pi(/D) - U(/) - \Pi(/U)$	109.3	$\Pi(24A)-U(24)-\Pi(24B)$	109.5
$SI(1)-C(\delta)-H(\delta A)$	109.5	SI(3)-U(24)-H(24U)	109.5
S1(1)-C(8)-H(8B)	109.5	H(24A)-C(24)-H(24C)	109.5
H(8A)-C(8)-H(8B)	109.5	H(24B)-C(24)-H(24C)	109.5
S1(1)-C(8)-H(8C)	109.5	O(4)-K(1)-O(1)	121.82(7)
H(8A)-C(8)-H(8C)	109.5	O(4)-K(1)-O(6)	92.15(7)
H(8B)-C(8)-H(8C)	109.5	O(1)-K(1)-O(6)	142.24(6)
C(14)-C(9)-C(10)	117.2(2)	O(4)-K(1)-O(2)	97.81(7)

Supplementary Material (I	ESI) for Chemical Communi	cations	
O(1)-K(1)-O(2)	59 96(7)	O(1)-C(26)-H(26B)	109.9
O(6)-K(1)-O(2)	102.81(7)	C(25)-C(26)-H(26B)	109.9
O(4)-K(1)-O(2)	59 75(6)	H(26A) - C(26) - H(26B)	109.9
O(1) K(1) O(3)	95.97(6)	O(1) C(27) C(28)	100.5
O(1)- $K(1)$ - $O(3)$	116.85(6)	O(1) - C(27) - C(28) O(1) - C(27) - H(27A)	109.5(3)
O(0)- $K(1)$ - $O(3)$	110.03(0) 122.70(6)	$O(1)-C(27)-\Pi(27A)$ $O(28) O(27) \Pi(27A)$	109.8
O(2)- $K(1)$ - $O(5)$	133.70(0) 127.27(7)	O(1) C(27) H(27R)	109.8
O(4)- $K(1)$ - $O(5)$	127.37(7) 102.28(7)	$O(1)-C(27)-\Pi(27B)$ O(28) O(27) U(27B)	109.8
O(1)- $K(1)$ - $O(5)$	50 20(6)	$U(27)-U(27)-\Pi(27D)$	109.8
O(0)- $K(1)$ - $O(5)$	129.62(6)	O(2) C(28) C(27)	108.2 109.4(3)
O(2) - K(1) - O(5)	02.27(6)	O(2) - C(28) - C(27) O(2) - C(28) - U(28A)	109.4(3)
O(3)-K(1)-O(3) O(4) K(1) N(2)	52.27(0) 61.75(7)	C(27) C(28) H(28A)	109.8
O(4)- $K(1)$ - $N(2)$	120.22(8)	C(27)- $C(28)$ - $H(28R)$	109.8
O(1)- $K(1)$ - $N(2)O(6) K(1) N(2)$	120.23(8)	$O(2)-C(20)-\Pi(20D)$ O(27) O(29) H(29D)	109.8
O(0)- $K(1)$ - $N(2)O(2)$ $K(1)$ $N(2)$	59.05(8) 60.59(9)	U(28A) C(28) H(28D)	109.8
O(2)- $K(1)$ - $N(2)O(2)$ $K(1)$ $N(2)$	00.38(8) 121.11(7)	$\Pi(2\delta A) - C(2\delta) - \Pi(2\delta B)$ $\Omega(2) = C(20) - \Omega(20)$	108.2
O(5) - K(1) - N(2)	121.11(7) 119.47(9)	O(2) - C(29) - C(30)	109.0(3)
O(5)-K(1)-N(2) O(4) K(1) N(1)	118.4/(8) 118.10(7)	O(2)-C(29)-H(29A)	109.9
O(4)- $K(1)$ - $N(1)$	118.10(7)	C(30)-C(29)-H(29A)	109.9
O(1)-K(1)-N(1)	00.58(8)	O(2)-C(29)-H(29B)	109.9
O(6)-K(1)-N(1) O(2) K(1) N(1)	120.2/(8) 120.20(8)	C(30)-C(29)-H(29B)	109.9
O(2)-K(1)-N(1)	120.20(8)	H(29A)-C(29)-H(29B)	108.3
O(3)-K(1)-N(1)	58.65(6)	N(2) - C(30) - C(29)	114./(3)
O(5)-K(1)-N(1)	60.90(7) 170.17(0)	N(2)-C(30)-H(30A)	108.6
N(2)-K(1)-N(1)	1/9.1/(9)	C(29)-C(30)-H(30A)	108.6
C(31)-N(1)-C(37)	110.3(3)	N(2)-C(30)-H(30B)	108.6
C(31)-N(1)-C(25)	109.5(3)	C(29)-C(30)-H(30B)	108.6
C(37)-N(1)-C(25)	111.2(3)	H(30A)-C(30)-H(30B)	107.6
C(31)-N(1)-K(1)	111.2/(18)	N(1)-C(31)-C(32)	112.6(3)
C(37)-N(1)-K(1)	106.24(18)	N(1)-C(31)-H(31A)	109.1
C(25)-N(1)-K(1)	108.4(2)	C(32)-C(31)-H(31A)	109.1
C(42)-N(2)- $C(36)$	109.0(3)	N(1)-C(31)-H(31B)	109.1
C(42)-N(2)-C(30)	110.4(3)	C(32)-C(31)-H(31B)	109.1
C(36)-N(2)-C(30)	110.9(3)	H(31A)-C(31)-H(31B)	107.8
C(42)-N(2)-K(1)	111.8(2)	O(3)-C(32)-C(31)	108.7(2)
C(36)-N(2)-K(1)	106.7(2)	O(3)-C(32)-H(32A)	110.0
C(30)-N(2)-K(1)	108.0(2)	C(31)-C(32)-H(32A)	110.0
C(26)-O(1)-C(27)	111.9(3)	O(3)-C(32)-H(32B)	110.0
C(26)-O(1)-K(1)	115.7(2)	C(31)-C(32)-H(32B)	110.0
C(27)-O(1)-K(1)	110.0(2)	H(32A)-C(32)-H(32B)	108.3
C(29) - O(2) - C(28)	111./(3)	O(3)-C(33)-C(34)	108.9(2)
C(29)-O(2)-K(1)	110.7(2)	O(3)-C(33)-H(33A)	109.9
C(28)-O(2)-K(1)	115.19(19)	C(34)- $C(33)$ - $H(33A)$	109.9
C(32) - O(3) - C(33)	111./(2) 110.07(10)	O(3)-C(33)-H(33B)	109.9
C(32) - O(3) - K(1)	110.0/(10) 114.10(17)	$U(32A) = C(33) - \Pi(33B)$	109.9
C(33)-O(3)-K(1)	114.19(17) 110.8(2)	H(33A)-C(33)-H(33B)	108.5
C(34)-O(4)-C(35)	110.8(3) 115.87(17)	O(4) - C(34) - C(33)	109.2(3)
C(34)-O(4)-K(1)	113.8/(17) 114.02(10)	O(4)-C(34)-H(34A)	109.8
C(35)-O(4)-K(1)	114.03(19)	C(33)-C(34)-H(34A)	109.8
C(38)-O(5)-C(39)	111./(3)	O(4)-C(34)-H(34B)	109.8
C(38)-O(5)-K(1)	114.84(19)	C(33)-C(34)-H(34B)	109.8
C(39)-O(5)-K(1)	107.98(17)	H(34A)-C(34)-H(34B)	108.3
C(40) - O(6) - C(41)	112.5(3)	O(4) - C(35) - C(36)	108.3(4)
C(40)-O(6)-K(1)	118.24(19)	O(4)-C(35)-H(35A)	110.0
C(41)-O(6)-K(1)	115.73(18)	C(36)-C(35)-H(35A)	110.0
N(1) - C(25) - C(26)	113.9(3)	O(4)-C(35)-H(35B)	110.0
IN(1)-U(25)-H(25A)	108.8	U(30)-U(30)-H(30B)	110.0
U(20)-U(25)-H(25A)	108.8	H(35A)-U(35)-H(35B)	108.4
N(1)-C(25)-H(25B)	108.8	N(2)-C(36)-C(35)	112.6(3)
U(26)-U(25)-H(25B)	108.8	N(2)-C(36)-H(36A)	109.1
H(25A)-C(25)-H(25B)	10/./	C(35)-C(36)-H(36A)	109.1
O(1)-C(26)-C(25)	108.9(3)	N(2)-C(36)-H(36B)	109.1
O(1)-C(26)-H(26A)	109.9	C(35)-C(36)-H(36B)	109.1
C(25)-C(26)-H(26A)	109.9	H(36A)-C(36)-H(36B)	107.8

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

N(1)-C(37)-C(38)	113.3(3)
N(1)-C(37)-H(37A)	108.9
C(38)-C(37)-H(37A)	108.9
N(1)-C(37)-H(37B)	108.9
C(38)-C(37)-H(37B)	108.9
H(37A)-C(37)-H(37B)	107.7
O(5)-C(38)-C(37)	109.7(3)
O(5)-C(38)-H(38A)	109.7
C(37)-C(38)-H(38A)	109.7
O(5)-C(38)-H(38B)	109.7
C(37)-C(38)-H(38B)	109.7
H(38A)-C(38)-H(38B)	108.2
O(5)-C(39)-C(40)	109.3(2)
O(5)-C(39)-H(39A)	109.8
C(40)-C(39)-H(39A)	109.8
O(5)-C(39)-H(39B)	109.8
C(40)-C(39)-H(39B)	109.8
H(39A)-C(39)-H(39B)	108.3
O(6)-C(40)-C(39)	109.1(3)
O(6)-C(40)-H(40A)	109.9

C(39)-C(40)-H(40A)	109.9
O(6)-C(40)-H(40B)	109.9
C(39)-C(40)-H(40B)	109.9
H(40A)-C(40)-H(40B)	108.3
O(6)-C(41)-C(42)	108.3(3)
O(6)-C(41)-H(41A)	110.0
C(42)-C(41)-H(41A)	110.0
O(6)-C(41)-H(41B)	110.0
C(42)-C(41)-H(41B)	110.0
H(41A)-C(41)-H(41B)	108.4
N(2)-C(42)-C(41)	112.9(3)
N(2)-C(42)-H(42A)	109.0
C(41)-C(42)-H(42A)	109.0
N(2)-C(42)-H(42B)	109.0
C(41)-C(42)-H(42B)	109.0
H(42A)-C(42)-H(42B)	107.8

Symmetry transformations used to generate equivalent atoms:

Table S-4.	Anisotropic displacement parameters ($Å^2x \ 10^3$) for 3 .
The anisotro	ppic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + + 2 h k a^* b^* U^{12}$].

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
	0	0				
Ge(1)	25(1)	30(1)	28(1)	-5(1)	1(1)	-10(1)
Si(1)	35(1)	35(1)	28(1)	-6(1)	-4(1)	-3(1)
Si(2)	28(1)	51(1)	33(1)	-12(1)	2(1)	-17(1)
Si(3)	39(1)	30(1)	32(1)	-4(1)	2(1)	-10(1)
F(1)	65(1)	59(1)	47(1)	-25(1)	-14(1)	-7(1)
F(2)	37(1)	100(2)	58(1)	-4(1)	-11(1)	-31(1)
F(3)	67(1)	32(1)	47(1)	-1(1)	2(1)	-7(1)
C(1)	23(1)	27(1)	32(1)	0(1)	-3(1)	-7(1)
C(2)	27(1)	26(1)	36(1)	-3(1)	-7(1)	-5(1)
C(3)	38(2)	40(2)	56(2)	-11(1)	-13(1)	-14(1)
C(4)	34(2)	45(2)	78(2)	-6(2)	-10(1)	-21(1)
C(5)	25(1)	45(2)	63(2)	1(1)	5(1)	-12(1)
C(6)	28(1)	34(1)	41(2)	-2(1)	2(1)	-9(1)
C(7)	39(2)	40(2)	34(2)	0(1)	11(1)	-2(1)
$C(\delta)$	34(1)	42(2) 24(1)	42(2)	-8(1)	1(1) 2(1)	-2(1)
C(9)	$\frac{20(1)}{31(1)}$	42(1)	28(1)	-9(1)	2(1) 0(1)	-3(1)
C(10)	43(2)	$\frac{42(1)}{62(2)}$	$\frac{26(1)}{36(2)}$	-9(1)	-13(1)	-16(1)
C(12)	59(2)	51(2)	33(2)	4(1)	-13(1)	-10(1)
C(12) C(13)	53(2)	$\frac{31(2)}{38(2)}$	33(2) 34(1)	-1(1)	2(1)	-12(2) -14(1)
C(14)	37(1)	34(1)	39(1)	-4(1)	-2(1)	-13(1)
C(15)	37(2)	50(2)	53(2)	-23(1)	16(1)	-20(1)
C(16)	41(2)	57(2)	57(2)	-29(2)	13(1)	-25(1)
C(17)	29(1)	34(1)	29(1)	-7(1)	1(1)	-12(1)
C(18)	32(1)	31(1)	34(1)	-9(1)	2(1)	-12(1)
C(19)	49(2)	34(1)	48(2)	-13(1)	4(1)	-12(1)
C(20)	67(2)	50(2)	49(2)	-27(2)	11(2)	-17(2)
C(21)	68(2)	55(2)	33(2)	-16(1)	10(1)	-18(2)
C(22)	50(2)	42(2)	32(1)	-9(1)	6(1)	-14(1)
C(23)	48(2)	43(2)	41(2)	-7(1)	8(1)	-21(1)
C(24)	40(2)	44(2)	34(1)	-3(1)	-4(1)	-10(1)
K(1)	34(1)	31(1)	41(1)	-9(1)	-1(1)	-9(1)
N(1)	67(2)	49(2)	43(1)	-19(1)	-15(1)	11(1)
N(2)	79(2)	41(1)	41(1)	2(1)	6(1)	2(1)
O(1)	45(1)	52(1)	85(2)	-28(1)	-26(1)	2(1)
O(2)	43(1)	$\frac{4}{(1)}$	80(2)	-20(1)	16(1)	-20(1)
O(3)	42(1)	$\frac{2}{(1)}$	58(1)	-10(1)	-3(1)	-9(1)
O(4)	30(1)	33(1)	52(1)	-3(1)	10(1) 14(1)	-3(1)
O(5)	62(1)	43(1)	52(1) 60(1)	-3(1)	17(1)	-8(1) 21(1)
C(25)	84(3)	95(3)	70(3)	-3(1) -47(2)	-41(2)	23(2)
C(26)	75(3)	96(3)	87(3)	-43(3)	-47(2)	23(2)
C(27)	35(2)	50(2)	134(4)	-33(2)	-21(2)	-5(2)
C(28)	39(2)	54(2)	138(4)	-30(2)	12(2)	-20(2)
C(29)	73(3)	71(3)	83(3)	-25(2)	49(2)	-22(2)
C(30)	89(3)	51(2)	53(2)	-13(2)	22(2)	-2(2)
C(31)	70(2)	56(2)	53(2)	-32(2)	-8(2)	4(2)
C(32)	54(2)	47(2)	80(2)	-36(2)	-12(2)	-5(2)
C(33)	56(2)	28(1)	84(3)	-5(2)	21(2)	-11(1)
C(34)	64(2)	39(2)	60(2)	11(2)	18(2)	9(2)
C(35)	132(4)	65(2)	48(2)	16(2)	10(2)	34(3)
C(36)	141(4)	53(2)	57(2)	17(2)	33(2)	19(2)
C(37)	129(4)	57(2)	29(2)	-6(2)	11(2)	10(2)
C(38)	91(3)	48(2)	76(3)	-14(2)	51(2)	-16(2)
C(39)	33(2)	49(2)	108(3)	10(2)	1(2)	-17(1)
C(40)	55(2)	45(2)	98(3)	-7(2)	-27(2)	-23(2)
C(41)	80(2)	64(2)	57(2)	-29(2)	-28(2)	-14(2)
C(42)	97(3)	/6(3)	45(2)	-11(2)	-30(2)	4(2)

Table S-5.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å ² x 10 ³) for 3 .

				TT ()
	Х	У	Z	U(eq)
Η(3Δ)	-1307	863	6546	51
H(JA)	-1507	1080	7424	61
H(4A) H(5A)	-3035	2073	7424 8455	55
H(5A)	-3310	2073	8502	13
H(0A)	-1830	2655	5005	43
$\Pi(7R)$	1569	2437	5965	70 79
$\Pi(7D)$	1371	2901	5441	70 79
$\Pi(/C)$	2082	5105	3441 7125	18
П(0A) Ц(0D)	2085	-13	7155	62
	2402	994	/210	63
$\Pi(\delta C)$	2920	431	0413	03 56
$\Pi(11A)$ $\Pi(12A)$	2/09	1304	9003	50
$\Pi(12A)$	2837	230	10709	59
$\Pi(13A)$	1006	143	10327	32
$\Pi(14A)$	129	1218	9142 7150	44 67
$\Pi(13A)$ $\Pi(15D)$	4001	2900	7139	67
H(15C)	3333	2770	7008	67
$\Pi(15C)$	4420	1820	/448	0/
$\Pi(10A)$	1/3/	4307	8203	/1
H(16B)	3031	4/40	/93/	/1
H(10C)	2602	4524	8894	/1
H(19A)	-1557	6/66	/991	52
H(20A)	-1934	64/8	9413	65
H(21A)	-13//	4//0	10159	62 50
H(22A)	-41/	3370	9496	50
H(23A)	1099	56/8	5/13	65
H(23B)	156/	4650	6400	65
H(23C)	14/6	5/81	6581	65
H(24A)	-2208	5294	6286	61
H(24B)	-1111	4218	6380	61
H(24C)	-1119	5122	5588	61
H(25A)	3206	6/14	5167	104
H(25B)	3309	/649	4427	104
H(26A)	2211	8882	5291	108
H(26B)	1420	8185	5107	108
H(2/A)	192	8128	6295	85
H(2/B)	65/	9040	6489	85
H(28A)	-123	8141	/689	90
H(28B)	914	/0/5	/554	90
H(29A)	1606	7067	8904	94
H(29B)	550	8158	8934	94
H(30A)	2049	8986	8940	84
H(30B)	2042	8102	9/41	84
H(31A)	61/8	6587	5228	/4
H(31B)	5319	6331	4667	/4
H(32A)	4494	5449	5875	70 70
H(32B)	5928	4906	5/16	70
H(33A)	6368	4213	7062	/1
H(33B)	4936	4567	7318	71
П(34A) Ц(24D)	6135	4354	8445	/8
П(34В) Ц(25А)	0038	5277	/940	/8
п(ээА) Ц(ээр)	5725	6330	9012	123
н(35B) н(2СА)	5416	5297	94/6	123
П(30A)	3279	6290	9416	123
н(30B) н(27A)	3998	6638	10016	123
H(3/A)	4043	8996	4919	99
H(37B)	5067	8293	4364	99
H(38A)	6422	7878	5472	93
H(38B)	6071	9080	5007	93
H(39A)	6645	9388	6230	80

Supplementary Mat This journal is (c) T	erial (ESI) for Chemical he Royal Society of Che	Communications mistry 2010			
H(39B)	6743	8240	6762	80	
H(40A)	6205	9569	7597	75	
H(40B)	4959	10103	7133	75	
H(41A)	3591	9657	8388	77	
H(41B)	4855	9575	8741	77	
H(42A)	5078	7818	9343	93	
H(42B)	3866	8589	9703	93	

Table S-6. Torsion ang	gles [°] for 3 .	C(18)-C(17)-C(22)-C(21)	-0.7(4)
		Ge(1)-C(17)-C(22)-C(21)	172.9(2)
C(9)-Ge(1)-C(1)-C(6)	74.8(2)	O(4)-K(1)-N(1)-C(31)	-14.7(3)
C(17)-Ge(1)-C(1)-C(6)	-24.9(2)	O(1)-K(1)-N(1)-C(31)	-127.4(2)
C(9)-Ge(1)-C(1)-C(2)	-105.41(19)	O(6)-K(1)-N(1)-C(31)	96.4(2)
C(17)-Ge(1)-C(1)-C(2)	154.88(19)	O(2)-K(1)-N(1)-C(31)	-134.0(2)
C(6)-C(1)-C(2)-C(3)	-1.2(3)	O(3)-K(1)-N(1)-C(31)	-8.5(2)
Ge(1)-C(1)-C(2)-C(3)	178.97(18)	O(5)-K(1)-N(1)-C(31)	104.6(2)
C(6)-C(1)-C(2)-Si(1)	-178.99(17)	N(2)-K(1)-N(1)-C(31)	65(5)
Ge(1)-C(1)-C(2)-Si(1)	1.2(3)	O(4)-K(1)-N(1)-C(37)	-134.8(2)
F(1)-Si(1)-C(2)-C(3)	3.8(2)	O(1)-K(1)-N(1)-C(37)	112.5(2)
C(8)-Si(1)-C(2)-C(3)	-109.1(2)	O(6)-K(1)-N(1)-C(37)	-23.7(2)
C(7)-Si(1)-C(2)-C(3)	117.1(2)	O(2)-K(1)-N(1)-C(37)	105.9(2)
F(1)-Si(1)-C(2)-C(1)	-178.44(19)	O(3)-K(1)-N(1)-C(37)	-128.6(2)
C(8)-Si(1)-C(2)-C(1)	68.7(2)	O(5)-K(1)-N(1)-C(37)	-15.5(2)
C(7)-Si(1)-C(2)-C(1)	-65.1(2)	N(2)-K(1)-N(1)-C(37)	-55(5)
C(1)-C(2)-C(3)-C(4)	0.9(4)	O(4)-K(1)-N(1)-C(25)	105.6(2)
Si(1)-C(2)-C(3)-C(4)	178.8(2)	O(1)-K(1)-N(1)-C(25)	-7.0(2)
C(2)-C(3)-C(4)-C(5)	-0.3(4)	O(6)-K(1)-N(1)-C(25)	-143.2(2)
C(3)-C(4)-C(5)-C(6)	0.0(4)	O(2)-K(1)-N(1)-C(25)	-13.6(2)
C(4)-C(5)-C(6)-C(1)	-0.4(4)	O(3)-K(1)-N(1)-C(25)	111.9(2)
C(2)-C(1)-C(6)-C(5)	1.0(4)	O(5)-K(1)-N(1)-C(25)	-135.0(2)
Ge(1)-C(1)-C(6)-C(5)	-179.2(2)	N(2)-K(1)-N(1)-C(25)	-175(61)
C(1)- $Ge(1)$ - $C(9)$ - $C(14)$	-12.1(2)	O(4)-K(1)-N(2)-C(42)	108.2(2)
C(17)- $Ge(1)$ - $C(9)$ - $C(14)$	89.7(2)	O(1)-K(1)-N(2)-C(42)	-139.5(2)
C(1)- $Ge(1)$ - $C(9)$ - $C(10)$	167.90(19)	O(6)-K(1)-N(2)-C(42)	-3.7(2)
C(17)- $Ge(1)$ - $C(9)$ - $C(10)$	-90.3(2)	O(2)-K(1)-N(2)-C(42)	-133.1(2)
C(14)-C(9)-C(10)-C(11)	-1.2(4)	O(3)-K(1)-N(2)-C(42)	101.0(2)
Ge(1)-C(9)-C(10)-C(11)	178.8(2)	O(5)-K(1)-N(2)-C(42)	-11.3(2)
C(14)-C(9)-C(10)-Si(2)	177.75(18)	N(1)-K(1)-N(2)-C(42)	28(5)
Ge(1)-C(9)-C(10)-Si(2)	-2.2(3)	O(4)-K(1)-N(2)-C(36)	-10.9(3)
$F(2)-S_1(2)-C(10)-C(11)$	-2.7(2)	O(1)-K(1)-N(2)-C(36)	101.4(3)
C(16)-Si(2)-C(10)-C(11)	-115.7(2)	O(6)-K(1)-N(2)-C(36)	-122.7(3)
C(15)-Si(2)-C(10)-C(11)	111.0(2)	O(2)-K(1)-N(2)-C(36)	107.8(3)
F(2)-Si(2)-C(10)-C(9)	178.2(2)	O(3)-K(1)-N(2)-C(36)	-18.1(3)
C(16)-Si(2)-C(10)-C(9)	65.3(2)	O(5)-K(1)-N(2)-C(36)	-130.4(3)
C(15)-Si(2)-C(10)-C(9)	-68.0(2)	N(1)-K(1)-N(2)-C(36)	-91(5)
C(9)-C(10)-C(11)-C(12)	-0.2(4)	O(4)-K(1)-N(2)-C(30)	-130.2(2)
SI(2)-C(10)-C(11)-C(12)	-1/9.3(2)	O(1)-K(1)-N(2)-C(30)	-1/.9(2)
C(10)-C(11)-C(12)-C(13)	1.2(5)	O(6)-K(1)-N(2)-C(30)	118.0(2)
C(11)- $C(12)$ - $C(13)$ - $C(14)$	-0.7(4)	O(2) - K(1) - N(2) - C(30)	-11.3(2)
C(12)- $C(13)$ - $C(14)$ - $C(9)$	-0.8(4)	O(3)-K(1)-N(2)-C(30) O(5) K(1) N(2) C(20)	-13/.4(2)
C(10)-C(9)-C(14)-C(13) $C_{2}(1), C(0), C(14), C(13)$	1.8(4)	N(1) K(1) N(2) C(30)	110.3(2) 150(5)
C(1) = C(9) = C(14) = C(13) C(1) = C(12) = C(13)	-1/6.2(2)	N(1)-K(1)-N(2)-C(30) O(4) K(1) O(1) C(26)	130(3)
C(1)- $C(1)$ - $C(17)$ - $C(22)$	85.5(2) 17.6(2)	O(4) - K(1) - O(1) - C(20)	-132.9(2)
C(9)- $C(1)$ - $C(17)$ - $C(22)$	103 A(2)	O(2) K(1) O(1) C(20)	147.1(2)
C(1)- $C(1)$ - $C(17)$ - $C(18)$	155 74(10)	O(2)- $K(1)$ - $O(1)$ - $C(20)$	75 0(2)
C(2) - C(17) - C(18) - C(19)	0.6(4)	O(5)-K(1)-O(1)-C(26)	-75.0(2) 18.8(2)
C(22)- $C(17)$ - $C(18)$ - $C(19)$	-173.04(19)	N(2)-K(1)-O(1)-C(26)	153 6(2)
C(22)-C(17)-C(18)-Si(3)	-17852(19)	N(1)-K(1)-O(1)-C(26)	-262(2)
Ge(1)-C(17)-C(18)-Si(3)	7 8(3)	$\Omega(4)$ -K(1)-O(1)-C(20)	923(2)
F(3)-Si(3)-C(18)-C(19)	-3 6(2)	O(6)-K(1)-O(1)-C(27)	-585(3)
C(24)-Si(3)-C(18)-C(19)	-1161(2)	O(2)-K(1)-O(1)-C(27)	12.3(2)
C(23)-Si(3)-C(18)-C(19)	110.1(2)	O(2) - K(1) - O(1) - C(27)	12.3(2) 150 2(2)
F(3)-Si(3)-C(18)-C(17)	175.6(2)	O(5)-K(1)-O(1)-C(27)	-116 0(2)
C(24)-Si(3)-C(18)-C(17)	63 1(2)	N(2)-K(1)-O(1)-C(27)	18 8(3)
C(23)-Si(3)-C(18)-C(17)	-70.7(2)	N(1)-K(1)-O(1)-C(27)	-161 0(3)
C(17)-C(18)-C(19)-C(20)	0) 0.1(4)	O(4)-K(1)-O(2)-C(29)	30.3(2)
Si(3)-C(18)-C(19)-C(20)	179.3(2)	O(1)-K(1)-O(2)-C(29)	152.7(2)
C(18)-C(19)-C(20)-C(21	-0.8(5)	O(6)-K(1)-O(2)-C(29)	-63.7(2)
C(19)-C(20)-C(21)-C(22	0.7(5)	O(3)-K(1)-O(2)-C(29)	85.4(2)
C(20)-C(21)-C(22)-C(17	0.0(5)	O(5)-K(1)-O(2)-C(29)	-125.1(2)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010				
N(2)-K(1)-O(2)-C(29)	-21.0(2)	O(2)-K(1)-O(6)-C(41)	14.7(2)	
N(2)-K(1)-O(2)-C(29) N(1)-K(1)-O(2)-C(29)	159 4(2)	O(3)-K(1)-O(6)-C(41)	-14073(19)	
O(4)-K(1)-O(2)-C(28)	-101 5(2)	O(5)-K(1)-O(6)-C(41)	143 3(2)	
O(1)-K(1)-O(2)-C(28)	20.9(2)	N(2)-K(1)-O(6)-C(41)	-28 9(2)	
O(1)-K(1)-O(2)-C(28)	164.5(2)	N(1)-K(1)-O(6)-C(41)	151 58(19)	
O(3) K(1) O(2) C(28)	464(2)	C(21) N(1) C(25) C(26)	151.58(19) 150.0(4)	
O(5) K(1) O(2) C(28)	103 2(2)	C(37) N(1) C(25) C(26)	78 0(4)	
N(2) K(1) O(2) C(28)	105.2(2) 152 7(2)	K(1) N(1) C(25) C(26)	-78.0(4)	
N(2)-K(1)-O(2)-C(28)	-132.7(2)	C(27) O(1) C(25) C(25)	36.4(4)	
O(4) K(1) O(2) C(20)	$\frac{27.0(2)}{148.6(2)}$	K(1) O(1) C(26) C(25)	-103.7(3)	
O(4)-K(1)-O(3)-C(32) O(1) K(1) $O(3)$ C(32)	148.0(2) 25 1(2)	N(1) = C(25) = C(25) = C(25)	57.5(4) 65.6(5)	
O(1)-K(1)-O(3)-C(32) O(6) K(1) $O(3)$ C(32)	23.1(2) 135 7(2)	$\Gamma(1)$ - $C(25)$ - $C(20)$ - $O(1)$ $\Gamma(26)$ $O(1)$ $\Gamma(27)$ $\Gamma(28)$	-03.0(3)	
O(0)-K(1)-O(3)-C(32) O(2) K(1) $O(3)$ C(32)	-133.7(2)	K(1) O(1) C(27) C(28)	179.9(3)	
O(2)- $K(1)$ - $O(3)$ - $C(32)$	78.5(2)	C(20) O(2) C(28) C(27)	-43.0(3)	
N(2) K(1) O(3) C(32)	-78.3(2)	V(1) O(2) C(28) C(27)	173.0(3)	
N(2)-K(1)-O(3)-C(32) N(1) K(1) O(3) C(32)	155.9(2)	R(1) - O(2) - O(28) - O(27)	-32.2(3)	
N(1)- $K(1)$ - $O(3)$ - $C(32)O(4)$ $K(1)$ $O(2)$ $C(32)$	-23.0(2)	C(28) O(2) C(28) O(2)	(5.9(3))	
O(4)- $K(1)$ - $O(3)$ - $C(33)$	13.8(2) 107.7(2)	C(28)-O(2)-C(29)-C(30)	-1/3.9(3)	
O(1)-K(1)-O(3)-C(33)	-107.7(2)	K(1)-O(2)-O(29)-O(30)	51.7(3)	
O(6)-K(1)-O(3)-C(33)	91.5(2)	C(42)-N(2)- $C(30)$ - $C(29)$	166.1(3)	
O(2)-K(1)-O(3)-C(33)	-54.3(2)	C(36)-N(2)-C(30)-C(29)	-/3.0(4)	
O(5)-K(1)-O(3)-C(33)	148.7(2)	K(1)-N(2)-C(30)-C(29)	43.6(3)	
N(2)-K(1)-O(3)-C(33)	23.1(2)	O(2)-C(29)-C(30)-N(2)	-65.8(4)	
N(1)-K(1)-O(3)-C(33)	-157.8(2)	C(37)-N(1)-C(31)-C(32)	157.6(3)	
O(1)-K(1)-O(4)-C(34)	95.9(2)	C(25)-N(1)-C(31)-C(32)	-79.8(4)	
O(6)-K(1)-O(4)-C(34)	-101.5(2)	K(1)-N(1)-C(31)-C(32)	40.0(3)	
O(2)-K(1)-O(4)-C(34)	155.2(2)	C(33)-O(3)-C(32)-C(31)	-169.6(3)	
O(3)-K(1)-O(4)-C(34)	18.6(2)	K(1)-O(3)-C(32)-C(31)	56.5(3)	
O(5)-K(1)-O(4)-C(34)	-48.6(3)	N(1)-C(31)-C(32)-O(3)	-64.8(4)	
N(2)-K(1)-O(4)-C(34)	-154.3(3)	C(32)-O(3)-C(33)-C(34)	178.0(3)	
N(1)-K(1)-O(4)-C(34)	24.8(3)	K(1)-O(3)-C(33)-C(34)	-46.9(3)	
O(1)-K(1)-O(4)-C(35)	-133.8(3)	C(35)-O(4)-C(34)-C(33)	177.7(3)	
O(6)-K(1)-O(4)-C(35)	28.9(3)	K(1)-O(4)-C(34)-C(33)	-50.4(3)	
O(2)-K(1)-O(4)-C(35)	-74.4(3)	O(3)-C(33)-C(34)-O(4)	64.8(3)	
O(3)-K(1)-O(4)-C(35)	149.0(3)	C(34)-O(4)-C(35)-C(36)	-170.0(3)	
O(5)-K(1)-O(4)-C(35)	81.8(3)	K(1)-O(4)-C(35)-C(36)	57.2(4)	
N(2)-K(1)-O(4)-C(35)	-23.9(3)	C(42)-N(2)-C(36)-C(35)	-76.5(5)	
N(1)-K(1)-O(4)-C(35)	155.2(3)	C(30)-N(2)-C(36)-C(35)	161.7(4)	
O(4)-K(1)-O(5)-C(38)	86.2(3)	K(1)-N(2)-C(36)-C(35)	44.3(5)	
O(1)-K(1)-O(5)-C(38)	-63.3(3)	O(4)-C(35)-C(36)-N(2)	-71.0(5)	
O(6)-K(1)-O(5)-C(38)	153.3(3)	C(31)-N(1)-C(37)-C(38)	-71.9(3)	
O(2)-K(1)-O(5)-C(38)	-125.2(2)	C(25)-N(1)-C(37)-C(38)	166.5(3)	
O(3)-K(1)-O(5)-C(38)	33.3(3)	K(1)-N(1)-C(37)-C(38)	48.8(3)	
N(2)-K(1)-O(5)-C(38)	160.9(2)	C(39)-O(5)-C(38)-C(37)	174.6(3)	
N(1)-K(1)-O(5)-C(38)	-18.5(2)	K(1)-O(5)-C(38)-C(37)	51.1(3)	
O(4)-K(1)-O(5)-C(39)	-39.2(2)	N(1)-C(37)-C(38)-O(5)	-71.1(4)	
O(1)-K(1)-O(5)-C(39)	171.26(18)	C(38)-O(5)-C(39)-C(40)	172.8(3)	
O(6)-K(1)-O(5)-C(39)	27.92(18)	K(1)-O(5)-C(39)-C(40)	-60.0(3)	
O(2)-K(1)-O(5)-C(39)	109.45(19)	C(41)-O(6)-C(40)-C(39)	-176.2(3)	
O(3)-K(1)-O(5)-C(39)	-92.06(19)	K(1)-O(6)-C(40)-C(39)	-37.1(3)	
N(2)-K(1)-O(5)-C(39)	35.5(2)	O(5)-C(39)-C(40)-O(6)	66.7(3)	
N(1)-K(1)-O(5)-C(39)	-143.9(2)	C(40)-O(6)-C(41)-C(42)	-159.8(3)	
O(4)-K(1)-O(6)-C(40)	138.4(2)	K(1)-O(6)-C(41)-C(42)	60.1(3)	
O(1)-K(1)-O(6)-C(40)	-66.1(3)	C(36)-N(2)-C(42)-C(41)	152.5(3)	
O(2)-K(1)-O(6)-C(40)	-123.1(2)	C(30)-N(2)-C(42)-C(41)	-85.4(4)	
O(3)-K(1)-O(6)-C(40)	81.5(2)	K(1)-N(2)-C(42)-C(41)	34.9(4)	
O(5)-K(1)-O(6)-C(40)	5.5(2)	O(6)-C(41)-C(42)-N(2)	-62.9(4)	
N(2)-K(1)-O(6)-C(40)	-166.7(2)		-	
N(1)-K(1)-O(6)-C(40)	13.8(2)	Symmetry transformations	used to generate equivalent	
O(4)-K(1)-O(6)-C(41)	-83.8(2)	atoms:	-	
O(1)-K(1)-O(6)-C(41)	71.7(2)			

3. Computational Details.

All calculations were performed with the Gaussian 98 program package the on HIT HPC-PA264U-6CPU model: Gaussian 98, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Oritz, J. V. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, M. W. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian 98*; Gaussian, Inc.: Pittsburgh, PA, 1998.

Table S-7. xyz Coordinates of the optimized structure of **3** without a pottasium and a cryptand at B3LYP/6-31G(d) level.

		21	
Ge	-0.023749	-0.034169	-0.070099
С	-0.307885	-0.810514	1.815646
С	1.978704	0.419356	0.074393
С	-0.799817	1.847361	0.243634
С	-0.245879	-2.214385	2.047372
С	-0.629359	0.013609	2.910113
С	2.758430	0.664166	-1.091833
С	2.643262	0.442492	1.315235
С	-2.157656	2.141250	-0.069262
С	0.000823	2.907031	0.710995
Si	0.129172	-3.500919	0.720382
Si	2.083809	0.642698	-2.852144
Si	-3.390092	0.892154	-0.757192
С	-0.485463	-2.718179	3.342319
С	-0.875611	-0.500395	4.186749
Н	-0.687779	1.089102	2.761019
С	4.135991	0.936698	-0.963147
С	4.010988	0.703565	1.426803
Н	2.073391	0.253561	2.221626
С	-2.648658	3.449300	0.116840
С	-0.495837	4.202080	0.881064
Н	1.043646	2.714954	0.951736
F	0.137936	-4.931399	1.542398
F	3.380265	1.062592	-3.781082
F	-4.799402	1.740609	-0.871371
Н	-0.428128	-3.788918	3.516135
С	-0.800834	-1.873985	4.407752
Н	-1.121325	0.175915	5.005756
С	-1.218539	-3.720540	-0.575443
С	1.848563	-3.389508	-0.032708
Н	4.725430	1.133156	-1.855848

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

С	4.765036	0.955937	0.281658
Н	4.484159	0.711304	2.408633
С	1.591545	-1.057266	-3.496245
С	0.796144	1.962521	-3.223443
Н	-3.688314	3.666398	-0.115307
С	-1.830587	4.477630	0.585935
Н	0.159824	4.991249	1.245789
С	-3.042190	0.327423	-2.519394
С	-3.801423	-0.538862	0.392197
Н	-0.988267	-2.287734	5.397133
Н	-0.982929	-4.562678	-1.239320
Н	-1.321217	-2.813685	-1.178422
Н	-2.182626	-3.926157	-0.094548
Н	2.607657	-3.467212	0.755031
Н	2.006039	-2.438829	-0.550056
Н	2.013206	-4.206594	-0.747189
Н	5.831879	1.163061	0.354069
Н	1.306252	-1.001896	-4.554810
Н	0.747671	-1.456936	-2.925354
Н	2.430666	-1.758170	-3.406142
Н	-0.095887	1.845322	-2.601389
Н	0.492621	1.925162	-4.278164
Н	1.211935	2.957097	-3.022122
Н	-2.231324	5.481633	0.716150
Н	-3.852859	-0.313742	-2.889126
Н	-2.102471	-0.231479	-2.562037
Н	-2.958504	1.191725	-3.190425
Н	-4.194005	-0.155742	1.341344
Н	-2.918383	-1.142489	0.621776
Н	-4.564149	-1.189066	-0.055923

References.

- SIR97: A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, and R. Spagna, *J. Appl. Crystallogr.* 1999, *32*, 115.
 SHELX-97: G. Sheldrick, University of Göttingen, Göttingen, Germany, 1997.