Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supporting Information

for

Platinum Substituted Boroles

Holger Braunschweig*, Ching-Wen Chiu, Krzysztof Radacki, Peter Brenner

Institute of Inorganic Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany **General consideration**: All syntheses were carried out under an argon atmosphere with standard Schlenk and glovebox techniques. $[Pt(PCy_3)_2]$ and C_4Ph_4BCI were prepared according to the published procedures.¹ Solvents were dried by distillation over drying reagents (Na/K alloy for hexane and benzene; P_2O_5 for CH_2Cl_2) under argon and stored over molecular sieves. Deuterated solvents were degassed with three freeze-pump-thaw cycles and stored over molecular sieves. Elemental analyses were obtained from a Elementar Vario MICRO cube instrument. Electronic absorption spectra were measured on JASCO-V-600 UV-vis spectrometer. NMR spectra were recorded on a Bruker Avance 500 NMR spectrometer (500 MHz for ¹H, 202 MHz for ³¹P{¹H}, 160 MHz for ¹¹B{¹H}, 126 MHz for ¹³C{¹H}). Chemical shifts *d* are given in ppm, and are referenced against external Me₄Si (¹H, ¹³C), BF₃·Et₂O (¹¹B), and 85% H₃PO₄ (³¹P).

Synthesis of [(Cy₃P)₂Pt(Cl)(BC₄Ph₄)] (1): [Pt(PCy₃)₂] (29 mg, 0.038 mmol) was dissolved in 0.5 mL benzene and slowly added into a 1 mL benzene solution of C₄Ph₄BCl (28 mg, 0.072 mmol) in glove box. After stirring at room temperature for 30 minutes, solvents were removed under vacuum to afford a red solid residue. Extraction of the residue with hexane (0.5 mL, 3 times) gives a bright red solution, which was allowed to slowly evaporate to afford red crystalline product as a 0.5 hexane solvate (9.4 mg, yield = 20%). ¹H NMR (500 MHz, C₆D₆, 297 K): 1.15-1.44 (m, 18H, Cy), 1.56-1.67 (m, 30H, Cy), 2.18 (bs, 12H, Cy), 2.67 (bs, 6H, Cy), 6.91-7.05 (m, 12H, Ph), 7.16-7.22 (m, 10H, Ph), 7.93 (d, ³J_{H-H}= 7.9 Hz, 4H, Ph). ³¹P{¹H} NMR (202 MHz, C₆D₆, 297 K): 35.7 (¹J_{P-Pt}=2947 Hz). ¹³C{¹H} NMR (126 MHz, C₆D₆, 297 K): 14.9 (hex), 23.61 (hex), 27.4 (Cy), 28.7 (Cy), 31.5 (Cy), 32.5 (hex), 37.5 (Cy), 126.3 (p-Ph), 127.3 (p-Ph), 128.0 (m-Ph), 130.5 (o-Ph), 132.9 (o-Ph), 139.0 (ipso-Ph), 142.2 (ipso-Ph), 143.6 (C=C-B), 155.2 (C=C-C). ¹¹B{¹H} NMR (160 MHz, C₆D₆, 297 K): 91.1 ppm. Anal. Calcd. for C₆₇H₉₃BClP₂Pt: C 66.96; H 7.80. Found: C 67.31; H 8.33.

Synthesis of $[(Cy_3P)_2Pt(BC_4Ph_4)]^+[BAr^F_4]^-$ (2): Compound 1 (10 mg, 0.0083 mmol) and Na[BAr^F_4] (10 mg, 0.0086 mmol) were mixed and dissolved in 1 mL of CH₂Cl₂. After standing at ambient temperature for 30 minutes, the white precipitates were filtered off in glove box. By cooling a CH₂Cl₂/hexane solution to -30°C for 2 days, compound **2** was obtained as purplish-red crystals (9.3 mg, yield = 49 %). ¹H NMR (500 MHz, CD₂Cl₂, 297 K): 1.15-1.43 (m, 30H,

Cy), 1.79-1.87 (m, 18H, Cy), 2.00 (bs, 12H, Cy), 2.22 (bs, 6H, Cy), 6.66 (d, ${}^{3}J_{H-H}$ = 8.0 Hz, 4H, Ph), 7.06 (d, ${}^{3}J_{H-H}$ = 7.5 Hz, 4H, Ph), 7.16-7.25 (m, 12H, Ph), 7.48 (s, 4H, [BAr^F₄]⁻), 7.64 (s, 8H, [BAr^F₄]⁻). ${}^{31}P{}^{1}H$ NMR (202 MHz, CD₂Cl₂, 297 K): 53.5 (${}^{1}J_{P-Pt}$ =2850.6 Hz). ${}^{13}C{}^{1}H$ NMR (126 MHz, CD₂Cl₂, 297 K): 26.1 (Cy), 27.3 (Cy), 27.4 (Cy), 27.5 (Cy), 30.9 (Cy), 35.1 (Cy), 35.2 (Cy), 35.3 (Cy), 117.8 ([BAr^F₄]⁻), 123.9, 126.1, 127.2, 128.1, 128.2, 128.5, 129.4, 130.2, 135.2, 135.5, 138.9, 158.2, 162.1 (q, ${}^{1}J_{C-B}$ =50 Hz, [BAr^F₄]⁻). ${}^{11}B{}^{1}H$ NMR (160 MHz, CD₂Cl₂, 297 K): -7.6 ppm (BAr^F₄⁻). Anal. Calcd. for C₉₆H₉₈B₂F₂₄P₂Pt: C 58.05; H 4.97. Found: C 58.00; H 5.09.

Crystal structure determination: The crystal data of **1** and **2** were collected on a Bruker X8APEx diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structure was solved using direct methods, refined with the Shelx software package (G. Sheldrick, *Acta Cryst.*, **2008**, *A64*, 112–122) and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealised positions and were included in structure factors calculations. Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-749579 for **1** and CCDC-749580 for **2**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>

Crystal data for 1• ${}^{1}/_{2}(C_{6}H_{14})$: $C_{67}H_{93}BCIP_{2}Pt$, M_{r} = 1201.70, red block, 0.37×0.20×0.19 mm³, Triclinic space group P-1, a = 14.4237(11) Å, b = 14.8407(11) Å, c = 16.0189(13) Å, $\alpha = 82.627(3)^{\circ}$, $\beta = 69.204(3)^{\circ}$, $\gamma = 68.636(3)^{\circ}$, V = 2985.3(4) Å³, Z = 2, $\rho_{calcd} = 1.337$ g·cm⁻³, $\mu = 2.488$ mm⁻¹, F(000) = 1250, T = 100(2) K, $R_{1} = 0.0249$, $wR^{2} = 0.0562$, 16842 independent reflections [2 $\theta \le 61.08^{\circ}$] ($R_{int} = 0.0689$) and 649 parameters.

Crystal data for **2**• 3(CH₂Cl₂): C₉₉H₁₀₄B₂Cl₆F₂₄P₂Pt, M_r = 2241.17, red plate, 0.21×0.11×0.04 mm³, Triclinic space group P-1, *a* = 13.1946(15) Å, *b* = 19.388(2) Å, *c* = 21.575(3) Å, α = 80.879(2)°, β = 77.509(2)°, γ = 89.330(2)°, *V* = 5319.0(11) Å³, *Z* = 2, ρ_{calcd} = 1.399 g·cm⁻³, μ = 1.585 mm⁻¹, *F*(000) = 2268, *T* = 100(2) K, *R*₁ = 0.0533, *wR*² = 0.1252, 26224 independent reflections [20≤56.66°] (*R_{int}* = 0.0000) and 1223 parameters.

UV-vis spectrum of 1, 2 and PPB in CH₂Cl₂:

Computational details: All calculations carried out on model complexes **3** and **4** were performed using the Gaussian 03 suite of programs.² Geometries of molecules were optimized in DFT method with B3LYP³ functional and 6-31g* basis set⁴ for all atoms and Stuttgart RSC 1997 ECP for the Pt center.⁵ The geometry of the molecules was fully optimized and the frequency calculation of the optimized geometry indicates the absence of imaginary frequencies. Time-dependent DFT calculation⁶ and Natural Bond Orbital analysis (NBO 3.1)⁷ were performed over the optimized geometry at the same level of theory.

		Х	Y	Z
1	В	0	0	0
2	С	0	0	1.605699
3	С	1.289733	0	1.993192
4	С	2.229929	0.002219	0.814451
5	С	1.565391	0.003964	-0.356871
6	Р	-1.632814	-2.347035	-1.322576
7	С	-0.402251	-3.324648	-0.355601

Cartesian coordinates for 3:

8	С	-3.253539	-3.016617	-0.764039
9	С	-1.446403	-2.989413	-3.037138
10	Р	-1.68251	2.310983	-1.324483
11	С	-0.482139	3.316969	-0.348779
12	С	-1.496355	2.955727	-3.038275
13	С	-3.322248	2.945281	-0.780426
14	Н	0.609581	-3.063241	-0.680132
15	Н	-3.400114	-2.784876	0.295329
16	Н	-2.189726	-2.493419	-3.66686
17	Н	-0.578766	3.07378	0.713726
18	Н	-4.09283	2.433858	-1.363246
19	CI	-3.585745	-0.040567	-2.8425
20	Pt	-1.562952	-0.016592	-1.242678
21	Н	-0.558062	-4.400999	-0.490045
22	Н	-0.491149	-3.077432	0.706716
23	Н	-0.44906	-2.74323	-3.414133
24	Н	-1.588659	-4.075682	-3.068629
25	Н	-3.302646	-4.101932	-0.90854
26	Н	-4.040137	-2.523409	-1.34117
27	Н	-0.491952	2.728159	-3.408067
28	Н	-1.659138	4.039043	-3.071966
29	Н	-2.225697	2.445466	-3.67296
30	Н	-3.472466	2.711625	0.278008
31	Н	-3.394373	4.029052	-0.927103
32	Н	-0.657578	4.389277	-0.49113
33	Н	0.538295	3.073901	-0.660332
34	Н	2.059855	0.00654	-1.324189
35	Н	3.311371	0.003059	0.949228
36	Н	1.661568	-0.000796	3.017608
37	Н	-0.833227	-0.000957	2.302803

Cartesian coordinates for 4:

		Х	Y	Z
1	В	0.000747	1.504225	-0.000098
2	С	0.000805	2.442703	1.272243
3	С	0.002105	3.68854	0.756996
4	С	0.002801	3.688683	-0.756821
5	С	0.002072	2.442943	-1.27229
6	Р	2.349729	-0.630823	0.000283
7	С	3.187336	0.111984	-1.457923
8	С	3.185403	0.110373	1.460409
9	С	2.882249	-2.395121	-0.000451
10	Р	-2.350443	-0.629042	0.000124
11	С	-3.185538	0.112686	1.460308
12	С	-3.187464	0.114404	-1.458101
13	С	-2.884439	-2.392901	-0.000672
14	Н	2.810861	-0.35115	-2.374682
15	Н	2.969913	1.182068	1.50433
16	Н	2.497975	-2.904885	0.888331
17	Н	-2.807686	-0.351373	2.37603
18	Н	-2.502113	-2.901683	-0.890852
19	Pt	-0.000341	-0.467923	-0.000514
20	Н	4.27071	-0.036844	-1.397806
21	Н	2.971978	1.183742	-1.500952
22	Н	2.498914	-2.903771	-0.890275
23	Н	3.975853	-2.460324	0.000104
24	Н	4.268871	-0.038305	1.401592
25	Н	2.807728	-0.353802	2.376144
26	Н	-2.971342	1.186007	-1.501109
27	Н	-4.270951	-0.033657	-1.398117

28	Н	-2.81122	-0.348996	-2.374823
29	Н	-2.500091	-2.903213	0.887762
30	Н	-3.978101	-2.457099	0.000549
31	Н	-4.269051	-0.035784	1.401842
32	Н	-2.969809	1.184344	1.50394
33	Н	0.002415	2.219271	-2.332626
34	Н	0.00385	4.617958	-1.322728
35	Н	0.002676	4.61771	1.323079
36	Н	0.000173	2.218857	2.332546

Selected structural parameters for 3,1, 4, and 2 (bondlength in \AA):

	3 (DFT)	1 (X-ray)	4 (DFT)	2 (X-ray)
Pt-B	1.997	1.9860(9)	1.972	1.952(3)
B-C1	1.606	1.624(2)	1.581	1.584(4)
B-C4	1.606	1.622(2)	1.581	1.586(4)
C1-C2	1.347	1.359(2)	1.348	1.349(4)
C2-C3	1.508	1.514(2)	1.514	1.519(4)
C3-C4	1.347	1.353(2)	1.348	1.356(4)

Selected Wiberg bond index output from NBO analysis of 3 and 4:

	3	4
Pt-B	0.81	0.93
B-C1	0.88	0.92
B-C4	0.88	0.92
C1-C2	1.88	1.86
C2-C3	1.03	1.02
C3-C4	1.88	1.86

Selected frontier molecular orbital of 3 and 4:

Selected outputs from TD-DFT calculation of 3 and 4: Excitation energies and oscillator strengths for 3: Excited State 1: Singlet-A 2.7633 eV 448.69 nm f=0.0000 71 -> 77 0.14970 76 -> 77 0.68279 Excited State 2: Singlet-A 2.7978 eV 443.14 nm f=0.0000 74 -> 77 0.69896 Excited State 3: Singlet-A 2.8204 eV 439.59 nm f=0.0035 75 -> 77 0.64226

Excitation energies and oscillator strengths for 4:

Excited State	1:	Singlet-A	2.6415 eV	469.38 nm	f=0.0019
67 -> 68		0.64502			
Excited State	2:	Singlet-A	3.2248 eV	384.47 nm	f=0.0000

67 -> 69 0.70180 Excited State 3: Singlet-A 3.2833 eV 377.62 nm f=0.0004 66 -> 68 0.70198

References:

- (1) (a) Tatsuno, Y.; Yoshida, T.; Otsuka, S. *Inorg. Synth.* **1990**, *28*, 342. (b) Braunschweig, H.;
 Kupfer, T. *Chem. Commun.* **2008**, 4487.
- (2) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian* 03 revision *E01*, Inc., Wallingford CT, **2004**.
- (3) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R.G. Physical Review B 1988, 37, 785. (c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200
- (4) Hehre, W.J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257
- (5) Stuttgart RSC 1997 ECP Basis Set was obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy.

- (6) (a) Casida, M. E. Recent Developments and Applications of Modern Density Functional Theory; Elsevier: Amsterdam, 1996; Vol. 4. (b) Casida, M. E.; Chong, D. P. Recent AdVances in Density Functional Methods; World Scientific: Singapore, 1995; Vol. 1, p 155.
- (7) (a) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211. (b) Reed, A. E.; Weinhold, F. J. J. Chem. Phys. 1985, 83, 1736. (c) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. (d) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899