Electronic Supplementary Information

A new special pair model comprising *meso*-di-*p*-anisylaminoporphyrin: enhancement of visible-light absorptivities and quantification of electronic communication in mixed-valent cation radical

Ryota Sakamoto, *^{ab} Michihiro Nishikawa,^b Takeshi Yamamura,^a Shoko Kume,^b and Hiroshi Nishihara^b

 ^a Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan. Fax: (+81) 3-5228-8251; E-mail: ryota_s@rs.kagu.tus.ac.jp

 ^b Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. Fax (+81) 3-5841-4489; E-mail: sakamoto@chem.s.u-tokyo.ac.jp

Materials.

 $2^{[1]}$, [5-bromo-10,20-di-(3,5-di-*tert*-butylphenyl)-15-triisopropylsilylethynylporphinato]zinc(II) $3^{[2]}$, and di-*p*-anisylamine^[3] were prepared according to previous reports. THF for amination, toluene, and dichloromethane for electrochemistry and NIR spectroscopy were distilled over CaH₂, and pyridine over KOH pellets. Dichloromethane (spectroscopic grade, without MeOH as a stabilizer, Kanto Chemical) for UV/vis and PL spectroscopies were used as received. [D₂]dichloromethane was treated with CaH₂ to remove acidic impurities. Other materials were used as they were otherwise noted.

Synthesis

of

[5-di-*p*-anisylamino-10,20-di-(3,5-di-*tert*-butylphenyl)-15-triisopropylsilylethynylpo rphinato]zinc(II) 4.

Under an argon atmosphere, a mixture of **3** (101 mg, 0.10 mmol), di-*p*-anisylamine (84 mg, 0.36 mmol), cesium carbonate (47 mg, 0.14 mmol), palladium acetate (1.1 mg), DPEphos (4.3 mg) in THF (4 mL) was refluxed at 68°C for 43 h with shielding from light. The crude product was diluted with hexane, then filtered through celite. The filtrate was evaporated, and the resultant residue was purified with column chromatography on silica gel, eluting with a mixture of hexane and dichloromethane (2.5:1 then 2:1 v/v). A green fraction was collected, and concentrated to furnish dark-green solid of **4** (28 mg, 24%). ¹H NMR (600 MHz, [D₁]chloroform): δ =9.74 (d, *J*=4.2 Hz, 2H, β -pyrrole), 9.23 (d, *J*=4.2 Hz, 2H, β -pyrrole), 8.95 (d, *J*=4.8 Hz, 2H, β -pyrrole), 8.80 (d, *J*=4.8 Hz, 2H, β -pyrrole), 8.00 (d, *J*=1.8 Hz, 4H, 3,5-di-⁶Bu**Ph**), 7.77 (dd, *J*=1.8, 1.8 Hz, 2H, 3,5-di-⁶Bu**Ph**), 7.17 (d, *J*=9.0 Hz, 4H, MeO**Ph**), 6.58 (d, *J*=9.6 Hz, 4H, MeO**Ph**), 3.51 (s, 6H, OMe), 1.52 (s, 36H, ⁶Bu), 1.45-1.42 (m, triisopropyl, 21H); ¹³C NMR (150 MHz, [D₁]chloroform): δ =153.16, 152.76, 152.44, 150.42, 149.78, 148.63, 146.92, 141.17, 133.21, 133.17, 130.83, 130.66, 129.33, 124.33, 123.13, 123.11, 121.02, 114.44, 109.42, 100.43, 97.61, 55.39, 35.03, 31.75, 19.13, 11.89; HR-FAB-MS: *m*/*z* 1155.5764; calcd for C₇₃H₈₅N₅O₂SiZn, [M⁺]: 1155.5764.

Synthesis of 1. Under an argon atmosphere, To 4 (71 mg, 0.061 mmol) in THF (15 mL) was added *n*Bu₄F in THF (280 μL, 0.28 mmol) at ambient temperature. The mixture was stirred for 30 min with shielding from light. Then the mixture was diluted with dichloromethane (200 mL), and washed with water (100 mL) and brine (100 mL). The organic phase was dried over Na₂SO₄, filtered through celite. The filtrate was evaporated to obtain [5-di-p-anisylamino-10,20-di-(3,5-di-tert-butylphenyl)-15-ethynylporphinato]zinc(II). This material was vacuumed for 1 h, then added CuCl (2.5 mg). The mixture was further vacuumed for 2 h. To the mixture were added toluene (7mL) and benzyl azide (53 μ L, 0.41 mmol), and the suspension was heated at 100°C for 24 h. After evaporation of the solvent, the residue was purified with column chromatography on silica gel, eluting with a mixture of hexane and dichloromethane (2:1 then 1:3 v/v). A green fraction was collected, and concentrated to furnish dark-purple solid of **1** (59 mg, 85%). ¹H NMR (600 MHz, [D₁]chloroform, as **1**₂, Figure S1b): δ =9.36 (d, J=4.3 Hz, 4H, β -pyrrole), 8.78 (d, J=4.4 Hz, 4H, β -pyrrole), 8.15 (brdd, 4H, 3,5-di-^tBu**Ph**), 8.07 (d, J=4.4 Hz, 4H, β-pyrrole), 7.88 (brdd, 4H, 3,5-di-^tBu**Ph**), 7.85 (d, J=9.3 Hz, 4H, MeO**Ph**), 7.77 (brdd, 4H, 3,5-di-[#]Bu**Ph**), 7.23-7.21 (m, 6H, CH₂**Ph**), 7.17 (d, *J*=9.5 Hz, 4H, MeOPh), 6.74 (d, J=9.2 Hz, 4H, MeOPh), 6.65 (d, J=9.5 Hz, 4H, MeOPh), 6.27 (s, 2H, triazole), 6.12-6.09 (m, 4H, CH₂Ph), 5.66 (d, J=4.3 Hz, 4H, β-pyrrole), 4.61 (s, 4H, CH₂Ph), 3.68 (s, 6H, OMe), 3.63 (s, 6H, OMe), 1.51 (s, 36H, ^tBu), 1.45 (s, 36H, ^tBu); ¹H NMR (600 MHz, $[D_1]$ chloroform-[D5]pyridine (10:1 v/v), as **1-[D_5]pyridine**, Figure S1a): δ =9.20 (d, J=4.6 Hz, 2H, β -pyrrole), 8.89 (d, J=4.5 Hz, 2H, β -pyrrole), 8.79 (d, J=4.6 Hz, 2H, β -pyrrole), 8.74 (d, J=4.5 Hz, 2H, β-pyrrole), 8.16 (s, 1H, triazole), 7.90 (d, J=1.7 Hz, 4H, 3,5-di-^fBu**Ph**), 7.67 (dd, J=1.7, 1.7 Hz, 2H, 3,5-di-^tBu**Ph**), 7.47 (d, J=7.6 Hz, 2H, CH₂**Ph**), 7.39 (dd, J=7.6, 7.6 Hz, 2H, CH₂Ph), 7.32 (dd, *J*=7.4, 7.4 Hz, 1H, CH₂Ph), 7.12 (d, *J*=9.2 Hz, 4H, MeOPh), 6.60 (d, *J*=9.4 Hz, 4H, MeOPh), 5.84 (s, 2H, CH2Ph), 3.58 (s, 6H, OMe), 1.41 (s, 36H, Hau); ¹³C NMR (150 MHz, [D₁]chloroform, as **1**₂, Figure S1d): δ=153.07, 152.93, 152.43, 149.83, 149.51, 148.60, 148.00, 147.74, 147.35, 147.18, 145.66, 142.52, 133.76, 132.04, 130.10, 129.11, 128.49, 128.15, 128.02, 126.79, 126.15, 124.51, 123.98, 123.22, 123.04, 121.30, 120.77, 114.16, 114.13, 99.01, 55.57, 55.36, 53.14, 34.97, 34.90, 32.03, 31.74 (37 out of 38 inequivalent carbons are identified; the rest might have a small split of the chemical shift induced by the dimerization.); ¹³C NMR (150 MHz, $[D_1]$ chloroform- $[D_5]$ pyridine (10:1 v/v), as **1-[D_5]pyridine**, Figure S1c) δ =152.86, 152.03, 150.46, 150.17, 149.67, 149.24, 148.02, 146.97, 141.79, 132.76, 132.41, 130.35, 130.06, 129.52, 129.04, 128.56, 127.85, 126.68, 122.61, 121.88, 120.31, 114.04, 106.96, 55.14, 54.21, 34.71, 31.48 (27 out of 29 inequivalent carbons are identified; the rest are possibly concealed by the peaks derived from [D₅]pyridine.); HR-FAB-MS (as 1): m/z 1132.5070; calcd for C₇₃H₈₅N₅O₂SiZn, [M⁺]: 1132.5067.

Electrochemistry. TBAPF₆ as a supporting electrolyte was recrystallized from EtOH, dried at 120°C, and then put into vacuo for 24 h. A series of measurements was carried out under a Ar atmosphere in a standard one-component cell, using $3mm\phi$ glassy carbon (BAS) as a working electrode, platinum wire as a counter electrode, and an Ag/AgNO₃ reference electrode (0.01M AgNO₃ in 0.1M-TBAP/acetonitrile, BAS). As an internal standard, decamethylferrocene ($E^{0'}$ = -550 mV vs Fc⁺/Fc in 0.1M TBAH-dichloromethane) was added after each measurement.

Fluorescence spectroscopy. All solutions were deoxygenized in quartz cells with N₂ bubbling.

Deconvolution of the UV/vis spectrum at [1]_{total}=5.9×10⁻⁶ M. The deconvolution needs the spectra of dimer 1₂ and monomer 1. As the spectrum of 1₂, that at [1]_{total}= 1.0×10^{-4} M is adopted: At this concentration the quantitative dimerization is observed in the ¹H NMR spectroscopy (Figure S2). The spectrum of 1 is estimated as follows: The differential spectrum between the spectra at [1]_{total}= 1.2×10^{-6} M and [1]_{total}= 1.0×10^{-4} M (Figure S3a) shows a peak at 24030 cm⁻¹ (416.2 nm), which should correspond to the maximum of the B band of monomer 1 (Figure S3b). Then we move the spectrum of 1-py (peak maximum: 23580 cm⁻¹ (424.1 nm)) to the maximum of the differential spectrum with the intensity unchanged, and the resultant spectrum is regarded as that of 1 (Figure S3c). We note that the axial coordination of pyridine to ZnTPP results in a redshift of the B band (502 cm⁻¹) with a negligible change in its intensity.^[4]

DFT calculation. The three-parameterized Becke-Lee-Yang-Parr (B3LYP) hybrid exchange-correlation functional was employed. As a basis set Lanl2DZ was used for all atoms. The geometries were optimized with the C_i symmetry constraint. Solvent effects were not considered in the geometry optimization. This series of calculations was implemented with Gaussian 03 program.

Apparatus. Electrochemical data were recorded with a BAS ALS-620C voltammetric analyzer. UV/Vis/NIR spectra were measured with a Shimadzu UV-3150 spectrometer, NMR spectra with a Bruker DRX 600 (600 MHz) spectrometer, Fluorescence spectra with a Shimadzu RF-5300PC spectrofluorimeter, and PL quantum yields with a Hamamatsu Photonics C9920-02G absolute PL quantum yield measurement system.

References for Supporting Information

[1] C. Maeda, S. Yamaguchi, C. Ikeda, H. Shinokubo, A. Osuka, *Org. Lett.* **2008**, *10*, 549–552.

[2] C.-W. Lee, H.-P. Lu, C.-M. Lan, Y.-L. Huang, Y.-R. Liang, W.-N. Yen, Y.-C. Liu, Y.-S. Lin,
E. W.-G. Diau, C.-Y. Yeh, *Chem. Eur. J.* **2009**, *15*, 1403–1412.

- [3] H. Zhang, Q. Cai, D. Ma, *J. Org. Chem.* **2005**, *70*, 5164-5173.
- [4] K. M. Kadish, L. R. Shiue, *Inorg. Chem.* **1982**, *21*, 3623-3630.

Figure S1 ¹H and ¹³C NMR spectra in [D₁]chloroform: a) ¹H NMR, **1-[D₅]py** (5.0×10^{-3} M) with [D₅]pyridine (10% v/v); b) ¹H NMR, **1**₂ ([**1**]_{total} = 5.0×10^{-3} M).

Figure S1 ¹H and ¹³C NMR spectra in [D₁]chloroform: c) ¹³C NMR, **1-[D₅]py** (5.0×10^{-3} M) with [D₅]pyridine (10% v/v); d) ¹³C NMR, **1**₂ ([**1**]_{total} = 5.0×10^{-3} M) (Continued).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S2 ¹H NMR spectra in $[D_2]$ dichloromethane: a) blank; b) $\mathbf{1}_2$ ($[\mathbf{1}]_{total} = 1.1 \times 10^{-3}$ M); c) $\mathbf{1}_2$ ($[\mathbf{1}]_{total} = 1.1 \times 10^{-4}$ M). Asterisk indicates the signals of the impurities contaminated by the treatment of $[D_2]$ dichloromethane with CaH₂ for the removal of acidic impurities. Neither emergence of a new signal nor shift of the existing signals upon a dilution indicates that $\mathbf{1}_2$ quantitatively sustains its dimeric form at these concentrations.

Figure S3 a) Concentration dependence of the UV/vis spectrum of **1** around the B band in dichloromethane. b) Differential spectrum between the spectra at $[\mathbf{1}]_{\text{total}} = 1.2 \times 10^{-6}$ M and 1.0×10^{-4} M. c) Experimental (for $\mathbf{1}_2$ and $\mathbf{1}$ -py) and estimated (for **1**) spectra in dichloromethane. c) Deconvolution of the spectrum at $[\mathbf{1}]_{\text{total}} = 5.9 \times 10^{-6}$ M. This deconvolution gives the ratio $[\mathbf{1}_2]/[\mathbf{1}]$ of 11.5, and association constant K_a of 4.7×10^7 M⁻¹.

Figure S4 Cyclic voltammograms of $\mathbf{1}_2$ ([$\mathbf{1}$]_{total} = 9.0×10^{-4} M) and $\mathbf{1}$ -py (9.0×10^{-4} M, with 150 equiv. of pyridine) in 0.1 M TBAPF₆-dichloromethane at a sweep rate of 100 mVs⁻¹.

Figure S5 UV/vis/NIR spectral change of $\mathbf{1}_2$ in dichloromethane upon the oxidation to $\mathbf{1}_2^+$ by a titration with tris(4-bromophenyl)ammoniumyl hexachloroantimonate: a) $[\mathbf{1}]_{total} = 1.2 \times 10^{-5}$ M; b) $[\mathbf{1}]_{total} = 9.8 \times 10^{-5}$ M. The dilution factors are corrected.

Figure S6 UV/vis/NIR spectral change of $\mathbf{1_2}^+$ in dichloromethane upon the oxidation to $\mathbf{1_2}^{2+}$ by a titration with tris(4-bromophenyl)ammoniumyl hexachloroantimonate: a) $[\mathbf{1}]_{total} = 1.2 \times 10^{-5} \text{ M}$; b) $[\mathbf{1}]_{total} = 9.8 \times 10^{-5} \text{ M}$. The dilution factors are corrected.

Figure S7 UV/vis/NIR spectral change of **1-py** in dichloromethane upon the oxidation to **1-py**⁺ by a titration with tris(4-bromophenyl)ammoniumyl hexachloroantimonate: a) 9.4×10^{-6} M; b) 5.6×10^{-5} M. The dilution factors are corrected.

Figure S8 UV/Vis spectra in dichloromethane before the oxidative titration experiments shown in Figures S5-7, and upon re-reduction after the titration experiments: a) 1_2 ([1]_{total}=1.2×10⁻⁵ M; b) 1-py (9.4×10⁻⁶ M). Re-reduction was conducted with excess decamethylferrocene. The dilution factors are corrected. We note that the "re-reduction" spectra contain contributions from tris(4-bromophenyl)amine, decamethylferrocene, and decamethylferrocenium hexachloroantimonate, all of which have negligible absorptivities in the shown region.

Table S1 Parameters for the deconvolution of the NIR spectra shown in Figure 5: a) $1-py^+$; b) 1_2^{2+} ; c) 1_2^+ . Red ones in c) indicate the IVCT band.

а) т-ру			
	$10^{-4} \varepsilon_{\text{max}}$ / M ⁻¹ cm ⁻¹	$\bar{v}_{\rm max}$ / cm ⁻¹	σ / cm $^{ ext{-1}}$
#1	0.082	10030	550
#2	0.197	9155	550
#3	0.487	8280	550
#4	0.804	7405	550
#5	0.935	6100	700

a) 1-py+

b)	1	2+
		~

	$10^{-4} \varepsilon_{max} / M^{-1} cm^{-1}$	$\bar{v}_{\rm max}$ / cm ⁻¹	σ / cm $^{ ext{-1}}$
#1	0.255	9860	550
#2	0.467	8985	550
#3	1.030	8110	550
#4	1.918	7235	550
#5	1.916	5913	665

c) 1₂+

	$10^{-4} \varepsilon_{max} / M^{-1} cm^{-1}$	$\bar{v}_{\rm max}$ / cm ⁻¹	σ / cm $^{ ext{-1}}$
#1	0.121	9925	550
#2	0.261	9050	550
#3	0.596	8175	550
#4	0.951	7300	550
#5	0.673	5920	665
#6	0.149	4600	1384

$$[Gaussian](\overline{v}) = \varepsilon_{\max} \exp[-\frac{(\overline{v} - \overline{v}_{\max})^2}{2\sigma^2}]$$

For IVCT band $-2(21-2)^{1/2}$

 $\overline{v}_{1/2} = 2(2\ln 2)^{1/2}\sigma = (2310\overline{v}_{\max})$

Figure S9 Optimized structure of 1₂ by a DFT calculation: a) oblique view; b) top view; c) side view. Gray, blue, red, and black indicates carbon, nitrogen, oxygen, and zinc atoms, respectively. Hydrogen atoms are omitted for clarity.

Table S2	Atomic coodinates of	1 ₂ optimized b	by the DFT	calculation.	Blue and	red	ones	are
those	for the N atoms of the	e di- <i>p</i> -anisylam	ino groups	s and zinc at	oms, resp	oectiv	/ely.	

Number	Atomic	Coordinates (Angstroms)		Number	Atomic	Coordinates (Angstroms)			
	Number	Х	Y	Z	Number	Number	Х	Y	Z
1	6	0 71402	1 71070	1 20762	61	6	4 56602	2 26050	1 00272
ו ר	0	-0.71402	1 71070	2 95026	62	1	4.30003 5.45560	-2.20930	5 50022
2	1	0.16631	1 71878	2.03730	63	6	3 25524	-2.41037	5 31611
3	6	-2 8/080	1 68880	2 05007	64	1	2 88244	-2.29423	6 31440
4 5	0	-2.04900	1 70383	2.03702	65	6	2.00244	-2.40900	1 13200
5	0	-4.20303 E 04920	1.70303	2.03233	44	0	2.42277	-2.00004	4.13207
0	0	-0.00029	1.77200	0.09010	47	0	0 10017	-2.10000	4.12334
/	0	-0.52900	1.02003	0.89038	0/	0	0.19917	-2.00702	2.90203
8	I	-7.14900	1.80300	1.//400	00	0	-1.20095	-2.00020	2.95238
9	0	-0.93313	1.91394	-0.42070	09	I	-1.88333	-2.15695	3.83021
10	I	-7.94111	1.98380	-0.80253	70	0	-1.00499	-1.90093	1.04388
11	6	-5.72501	1.91/06	-1.23807	/ 1	I	-2.67733	-1.90151	1.20010
12	6	-5.70809	2.01833	-2.64707	12	6	-0.45925	-1.83745	0.83036
13	6	-4.55417	2.04056	-3.46323	/3	6	-0.44364	-1./6610	-0.58359
14	6	-4.56683	2.26950	-4.90273	/4	6	4.97146	-1.6/254	-3.38223
15	1	-5.45569	2.41037	-5.50022	/5	6	5.20758	-0.44048	-4.03185
16	6	-3.25524	2.29423	-5.31611	/6	1	4.85/50	0.46664	-3.55137
17	1	-2.88244	2.46986	-6.31440	77	6	5.88625	-0.38501	-5.26362
18	6	-2.42299	2.08004	-4.13209	78	6	6.31629	-1.60633	-5.84012
19	6	-1.00384	2.10533	-4.12334	79	1	6.83777	-1.57560	-6.79081
20	6	-0.19917	2.00702	-2.96253	80	6	6.09526	-2.85244	-5.22345
21	6	1.26095	2.06620	-2.95238	81	6	5.41742	-2.86233	-3.97990
22	1	1.88333	2.15695	-3.83021	82	1	5.22976	-3.80075	-3.46412
23	6	1.66499	1.96695	-1.64388	83	6	0.31406	-2.30607	5.44573
24	1	2.67733	1.96151	-1.26616	84	6	0.34699	-1.29610	6.42917
25	6	0.45925	1.83745	-0.83036	85	1	0.85709	-0.36853	6.19344
26	6	0.44364	1.76610	0.58359	86	6	-0.27063	-1.47466	7.68487
27	6	-4.97146	1.67254	3.38223	87	6	-0.92295	-2.70338	7.92913
28	6	-5.20758	0.44048	4.03185	88	1	-1.40241	-2.85787	8.89279
29	1	-4.85750	-0.46664	3.55137	89	6	-0.97533	-3.74018	6.97093
30	6	-5.88625	0.38501	5.26362	90	6	-0.34939	-3.51863	5.72620
31	6	-6.31629	1.60633	5.84012	91	1	-0.35387	-4.28930	4.96325
32	1	-6.83777	1.57560	6.79081	92	6	-1.75624	-1.84101	-1.27731
33	6	-6.09526	2.85244	5.22345	93	6	-2.02646	1.70296	3.26427
34	6	-5.41742	2.86233	3.97990	94	1	-2.40884	1.70009	4.27468
35	1	-5.22976	3.80075	3.46412	95	7	-2.02276	1.68965	0.93839
36	6	-0.31406	2.30607	-5.44573	96	7	-4.60752	1.81774	-0.42080
37	6	-0.34699	1.29610	-6.42917	97	7	-3.24370	1.91963	-3.02158
38	1	-0.85709	0.36853	-6.19344	98	7	-0.65695	1.85096	-1.65573
39	6	0.27063	1.47466	-7.68487	99	7	2.68386	0.80367	1.36255
40	6	0.92295	2.70338	-7.92913	100	7	2.02276	-1.68965	-0.93839
41	1	1.40241	2.85787	-8.89279	101	7	4.60752	-1.81774	0.42080
42	6	0.97533	3.74018	-6.97093	102	7	3.24370	-1.91963	3.02158
43	6	0.34939	3.51863	-5.72620	103	7	0.65695	-1.85096	1.65573
44	1	0.35387	4.28930	-4.96325	104	7	-2.68386	-0.80367	-1.36255
45	6	1.75624	1.84101	1.27731	105	30	-2.63302	1.45234	-1.05724
46	6	0.71402	-1.71878	-1.39763	106	30	2.63302	-1.45234	1.05724
47	6	0 71402	-1 71878	-2 85936	107	7	6.98875	-2.16019	3.31446
48	1	-0 16631	-1 71878	-3 48609	108	7	-6.98875	2.16019	-3.31446
49	. 6	2 02646	-1 70296	-3 26427	109	6	7 64599	-3 43205	3 28193
50	1	2 40884	-1 70009	-4 27468	110	6	9 05444	-3 53725	3 25508
51	6	2.40004	-1 68880	-2 05902	110	6	6 88528	-4 62807	3 23875
52	6	4 26303	-1 70383	-2.05762	112	6	9 69129	-4 79093	3 20674
52	6	5 06829	-1 77266	-0.89016	112	1	9 66238	-2 63766	3 26672
54	6	6 52000	1 92602	0.07010	11.0	1	7 51255	5 97645	2 17260
54	0	7 14040	-1.02003	-0.09030	114	0	7.01000 E 00144	-3.67043	3.17300
50	4	6 02212	-1.00300	- 1.77400 0 42070	115	۱ ۲	0.00140 0 01041	-4.37023	3.20120
50	0	7 0/111	1 00204	0.42070	110	0	4 021/1	-0.70004	3.10370
5/		7.74111 5.72501	-1.90300	0.00203	110	1	0.73141	-0./9243	3.13008 2.20102
28	o ∠	5.72501	-1.71/00 2 01022	1.2300/	110	0	-1.04399	3.43205 2 F272F	-3.20193 2 25500
59	0	3.70809 4 65417	-2.01033	2.04/0/	119	0	-9.00444	3.33/25	-3.2000
00	0	4.00417	-2.04030	3.40323	120	0	-0.00028	4.02807	-3.238/5

Table S2 Atomic coodinates of 1_2 optimized by the DFT calculation (Continued).

Number	Atomic Number	Coordi X	nates (Angstr Y	oms) Z	Number	Atomic Number	Coordi X	nates (Angsti Y	roms) Z
121	 6	-9 69129	4 79093	-3 20674		1	-4 98083	-4 03567	-2 53587
122	1	-9.66238	2.63766	-3.26672	182	1	-5.32168	-2.52567	-3.40804
123	6	-7.51355	5.87645	-3.17360	183	6	3.98039	3.88279	4.44791
124	1	-5.80146	4.57623	-3.25125	184	6	3.44051	3.06212	5.46282
125	6	-8.91961	5.96884	-3.16396	185	6	4.00953	5.27934	4.63218
126	1	-6.93141	6.79243	-3.13668	186	6	2.93053	3.63441	6.64020
127	6	7.56130	-1.01779	3.95574	187	1	3.42564	1.98170	5.33152
128	6	7.36471	0.27815	3.41499	188	6	3.50373	5.85427	5.81467
129	6	8.31751	-1.13781	5.14293	189	1	4.42867	5.91891	3.85712
130	6	7.91886	1.40373	4.03643	190	6	2.96115	5.03252	6.81922
131	1	6.77979	0.39354	2.50809	191	1	2.51683	2.99682	7.41697
132	6	8.88346	-0.01062	5.76560	192	1	3.53197	6.93287	5.94823
133	1	8.46818	-2.11798	5.58549	193	1	2.56754	5.47385	7.73167
134	6	8.68605	1.26932	5.21065	194	6	-3.98039	-3.88279	-4.44791
135	1	7.79324	2.39757	3.61501	195	6	-3.44051	-3.06212	-5.46282
136	1	9.46020	-0.14591	6.67561	196	6	-4.00953	-5.27934	-4.63218
137	6	-7.56130	1.01779	-3.95574	197	6	-2.93053	-3.63441	-6.64020
138	6	-7.36471	-0.27815	-3.41499	198	1	-3.42564	-1.98170	-5.33152
139	6	-8.31751	1.13781	-5.14293	199	6	-3.50373	-5.85427	-5.81467
140	6	-7.91886	-1.40373	-4.03643	200	1	-4.42867	-5.91891	-3.85712
141	1	-6.77979	-0.39354	-2.50809	201	6	-2.96115	-5.03252	-6.81922
142	6	-8.88346	0.01062	-5.76560	202	1	-2.51683	-2.99682	-7.41697
143	1	-8.46818	2.11798	-5.58549	203	1	-3.53197	-6.93287	-5.94823
144	6	-8.68605	-1.26932	-5.21065	204	1	-2.56754	-5.47385	-7.73167
145	1	-7.79324	-2.39757	-3.61501	205	6	6.56596	-4.18954	-5.84398
146	1	-9.46020	0.14591	-6.6/561	206	6	7.56429	-4.88564	-4.8/193
14/	8	9.20372	2.46028	5.74028	207	6	5.33625	-5.118/3	-6.06/82
148	8	-9.203/2	-2.46028	-5.74028	208	6	1.27671	-3.99/20	-/.20/08
149	6	9.98769	2.38640	6.96261	209	1	8.45277	-4.26074	-4./1216
150	1	10.28052	3.41531	7.18256	210	1	7.10982	-5.07803	-3.89309
151	1	9.39248	1.98022	1.19391	211	1	1.89109	-3.84888	-3.28092
152	1	10.88681	1.70803	0.82472	212	1	4.62104	-4.05883	-0./0252
153	0	-9.90/09	-2.30040	-0.90201	213	1	1 90720	-0.07991 5 22512	-0.49197
154	1	10 29052	2 /1521	7 19256	214	1	7 59/00	-5.52515	-3.13013
155	1	-10.20052	-1 76863	-6.82472	215	1	6 615400	-4.97440	-7.00142
150	1	10 77638	-4 82843	3 18843	210	1	8 17873	-3 37871	-7 11188
158	1	-10 77638	4 82843	-3 18843	217	6	-6 56596	4 18954	5 84398
150	8	9 44582	-7 26814	3 10043	210	6	-5 33625	5 11873	6.06782
160	8	-9 44582	7 26814	-3 10993	217	6	-7 56429	4 88564	4 87193
161	6	10 89025	-7 42443	3 07298	220	6	-7 27671	3 99720	7 20708
162	1	11 06488	-8 50177	3 03072	221	1	-4 62104	4 65883	6 76252
163	1	11.32264	-6.94580	2.18240	223	1	-4.80729	5.32513	5.13015
164	1	11.36167	-7.01017	3.97616	224	1	-5.65820	6.07991	6.49197
165	6	-10.89025	7.42443	-3.07298	225	1	-8.45277	4.26074	4.71216
166	1	-11.32264	6.94580	-2.18240	226	1	-7.89169	5.84888	5.28692
167	1	-11.06488	8.50177	-3.03072	227	1	-7.10982	5.07803	3.89309
168	1	-11.36167	7.01017	-3.97616	228	1	-7.58400	4.97448	7.60142
169	7	-3.77001	-1.21446	-2.04261	229	1	-8.17873	3.37871	7.11188
170	7	-3.52749	-2.52140	-2.40439	230	1	-6.61540	3.53204	7.94996
171	6	-2.30335	-2.93374	-1.94985	231	6	6.17988	0.94786	-5.99348
172	6	2.30335	2.93374	1.94985	232	6	5.50159	0.93507	-7.39504
173	7	3.77001	1.21446	2.04261	233	6	5.65106	2.17781	-5.21413
174	7	3.52749	2.52140	2.40439	234	6	7.71874	1.11449	-6.16934
175	1	1.90587	3.91835	2.12709	235	1	5.85673	0.09933	-8.01020
176	1	-1.90587	-3.91835	-2.12709	236	1	4.41204	0.84519	-7.29925
177	6	4.54561	3.26218	3.17952	237	1	5.72239	1.86761	-7.93296
178	1	5.32168	2.52567	3.40804	238	1	6.11682	2.26256	-4.22374
179	1	4.98083	4.03567	2.53587	239	1	5.88437	3.09385	-5.77248
180	6	-4.54561	-3.26218	-3.17952	240	1	4.56216	2.13665	-5.08043

Table S2 Atomic coodinates of 1_2 optimized by the DFT calculation (Continued).

Number	Atomic	Coordi	nates (Angsti	roms)
Indumber	Number	Х	Y	Z
241	1	7 04202	2 05740	6 69672
241	1	0.00004	2.03747	-0.00073
242	1	8.22324	1.12934	-5.19447
243	1	8.151/0	0.29/12	-6./5865
244	6	-6.17988	-0.94786	5.99348
245	6	-5.65106	-2.17781	5.21413
246	6	-5 50159	-0 93507	7 39504
247	6	-7 71874	-1 11449	6 16934
249	1	6 11697	2 26256	1 22274
240	1	-0.11002	-2.20230	4.22374
249	1	-4.56216	-2.13005	5.08043
250	1	-5.88437	-3.09385	5.77248
251	1	-5.85673	-0.09933	8.01020
252	1	-5.72239	-1.86761	7.93296
253	1	-4.41204	-0.84519	7.29925
254	1	-7 94292	-2 05749	6 68673
255	1	-8 15170	-0 29712	6 75865
200	1	0.10170	1 1 2 0 2 4	E 10447
250	I (-8.22324	-1.12934	5.19447
257	6	1.69383	5.06/5/	-7.31550
258	6	1.66166	6.08022	-6.14339
259	6	3.18439	4.77933	-7.66193
260	6	1.00016	5.72804	-8.54370
261	1	0.63501	6 35704	-5 87170
262	1	2 15858	5 68331	-5 24864
202	1	2.10000	4 00054	6 42601
203	1	2.18082	0.99800	-0.43091
264	1	3.2/9/5	4.09285	-8.51199
265	1	3.70044	5./1315	-7.92436
266	1	3.70289	4.32822	-6.80614
267	1	1.50365	6.66922	-8.80397
268	1	1.02842	5.07635	-9.42538
269	1	-0.05196	5 95054	-8 32377
270	6	-1 60383	-5.06757	7 31550
270	6	2 10/20	1 77022	7.6102
271	0	-3.10437	-4.77733	/.00173
272	0	-1.00100	-0.06022	0.14339
273	0	-1.00016	-5.72804	8.54370
274	1	-3.27975	-4.09285	8.51199
275	1	-3.70289	-4.32822	6.80614
276	1	-3.70044	-5.71315	7.92436
277	1	-0.63501	-6.35704	5.87170
278	1	-2.18682	-6.99856	6.43691
279	1	-2 15858	-5 68331	5 24864
200	. 1	1 50265	6 66022	9 90207
200	1	-1.30303	-0.00922	0.00377
281	1	0.05196	-5.95054	8.32377
282	1	-1.02842	-5.07635	9.42538
283	6	0.25207	0.38555	-8.78499
284	6	-0.52075	-0.88420	-8.34717
285	6	-0.43563	0.94890	-10.06374
286	6	1 71189	-0.03263	-9 12918
287	1	-0.06518	-1 35572	-7 46680
207	1	1 54045	0.45401	0 11470
288	1	-1.30903	-0.00031	-8.11470
289	1	-0.50897	-1.61890	-9.16314
290	1	0.08668	1.83216	-10.45028
291	1	-0.44409	0.18921	-10.85750
292	1	-1.47347	1.23824	-9.85336
293	1	1.71268	-0.79742	-9.91812
294	1	2 30414	0 81878	-9 48566
205	1	2.00114	-0 11767	_8 24762
270	1	0.25207	0.94707	0.24/02
290	o	-0.23207	-0.38333	0./0499
297	6	0.43563	-0.94890	10.06374
298	6	0.52075	0.88420	8.34717
299	6	-1.71189	0.03263	9.12918
300	1	-0.08668	-1.83216	10.45028

Number	Atomic	Coordi	Coordinates (Angstroms)				
Number	Number	Х	Y	Z			
301	1	1.47347	-1.23824	9.85336			
302	1	0.44409	-0.18921	10.85750			
303	1	0.06518	1.35572	7.46680			
304	1	0.50897	1.61890	9.16314			
305	1	1.56965	0.65631	8.11470			
306	1	-1.71268	0.79742	9.91812			
307	1	-2.21724	0.44767	8.24762			
308	1	-2.30414	-0.81878	9.48566			