Experimental details

General

¹H and ¹³C NMR spectra were recorded (295 K) on Bruker Avance DRX-500 or DPX-400 MHz spectrometers; chemical shifts relative to residual solvent peaks with TMS $\delta = 0$ ppm for ¹H and ¹³C, and relative to CF(³⁵Cl)₃ in CDCl₃ for ¹⁹F (external reference). NMR spectra were assigned by using distortionless enhancement by polarization transfer (DEPT) and 2D techniques (COSY, NOESY, HMQC and HMBC). Infrared spectra were recorded on a Shimadzu FTIR-8400S spectrophotometer (solid samples, Golden Gate diamond attenuated total reflectance accessory). ESI mass spectra were recorded with Finnigan MAT LCQ or Bruker Esquire 3000plus instruments. Electronic absorption and emission spectra were recorded on a Varian Cary 5000 spectrophotometer and a Shimadzu RF-5301 PC spectrofluorometer, respectively. Microwave reactions were carried out in a Biotage Initiator 8 reactor. Solvents were distilled before use, and reactions were carried out under N₂. Electrochemical measurements were performed by using an Eco Chemie Autolab PGSTAT 20 apparatus with a glassy carbon working electrode, platinum mesh for counter electrode, and silver wire as reference electrode. Compounds were dissolved and measured in dry and argon-purged MeCN with 0.1 M [ⁿBu₄N][PF₆] as supporting electrolyte. The scan rate was 100 mVs⁻¹ and ferrocene was added as an internal standard at the end of every experiment.

Compound 1 [E. C. Constable, C. E. Housecroft, B. M. Kariuki and C. B. Smith, *Supramol. Chem.*, 2006, **18**, 305], *cis*-[Ru(bpy)₂Cl₂] [G. Sprintschnik, H. W. Sprintschnik, P. P. Kirsch and D. G. Whitten, *J. Am. Chem. Soc.*, 1977, **99**, 4947], [Ru(DMSO)₄Cl₂] [I. P. Evans, A. Spencer and G. Wilkinson, *J. Chem. Soc., Dalton Trans.* 1973, 204] were prepared as previously reported. 2,3,4-Tri-O-acetyl- β -D-xylopyranosyl azide was used as received (Alrich).

Compounds:

 $[Ru(1)(bpy)_2][PF_6]_2$

Ligand 1 (336 mg, 987 μ mol) and *cis*-[Ru(bpy)₂Cl₂] (483 mg, 240 μ mol) were suspended in EtOH (5 cm³). The reaction mixture was heated in a microwave reactor for 45 min to 145 °C. An aqueous NH₄PF₆ solution (100 cm³, 4.00 mmol) was added to the resulting orange solution. An orange precipitate formed which was filtered and washed with water (50 cm³) and Et₂O (50 cm³) yielding [Ru(1)(bpy)₂][PF₆]₂ (911 mg, 872 μ mol, 88%) as an orange

powder. ¹H NMR (400 MHz, CD₃CN) δ ppm = 8.56 (d, *J* = 8.5 Hz, 2H, H^{A3}), 8.50 (q, *J* = 7.5 Hz, 4H, H^{C3+D3}), 8.28 (dd, *J* = 8.5, 2.0 Hz, 2H, H^{A4}), 8.07 (qd, *J* = 7.9 Hz, 1.4, 4H, H^{C4+D4}), 7.90 – 7.86 (m, 2H, H^{C6}), 7.83 – 7.79 (m, 2H, H^{D6}), 7.77 (d, *J* = 1.8, 2H, H^{A6}), 7.49 – 7.39 (m, 4H, H^{C5+D5}), 7.28 (s, 2H, OH), 7.25 (t, *J* = 7.9 Hz, 2H, H^{B5}), 6.94 – 6.85 (m, 4H, H^{B4+B6}), 6.85 – 6.80 (m, 2H, H^{B2}). ¹³C NMR (101 MHz, CD₃CN) δ ppm = 158.67, 158.24, 157.97, 156.46, 153.11, 153.01, 149.96, 140.76, 138.91, 138.85, 137.40, 136.77, 131.67, 128.68, 128.64, 125.51, 125.34, 125.30, 119.60, 117.51, 114.83. ESI MS: *m/z* 377.1 [M-2PF₆]²⁺ (calc. 377.1), 898.7 [M- PF₆]⁺ (calc. 899.1). IR (solid/ cm⁻¹): $\tilde{\nu}$ 3637m, 2849w, 1626m, 1603m, 1464m, 1447m, 1423m, 1379m, 1242m, 1219m, 816s. Found C 47.53, H 3.25, N 7.61; C₄₂H₃₄F₁₂N₆O₂P₂Ru · H₂O requires C 47.51, H 3.23, N 7.92%.

 $[Ru(1)_3][PF_6]_2$

Ligand 1 (200 mg, 587 µmol) and [Ru(DMSO)₄Cl₂] (94.8 mg, 196 µmol) were suspended in ethylene glycol (7 cm³). The reaction mixture was stirred in a microwave reactor for 30 min at 230 °C. The resulting orange solution was added to 100 cm³ of aqueous NH₄PF₆ (4.00 mmol). An orange precipitate formed which was filtered and washed with water (300 cm³) and Et₂O (100 cm³) yielding [Ru(1)₃][PF₆]₂ (271 mg, 98%). ¹H NMR (400 MHz, CD₃CN) δ /ppm = 8.60 (d, *J* = 8.5 Hz, 6H, H^{A3}), 8.30 (dd, *J* = 1.9, 8.5 Hz, 6H H^{A4}), 8.00 (d, *J* = 1.8 Hz, 6H H^{A6}), 7.23 (t, *J* = 8.1 Hz, 12H, H^{B5+OH}), 6.93 – 6.83 (m, 18H, H^{B2+B4+B6}). ¹⁹F NMR (376 MHz, CD₃CN) δ /ppm = -73.98 (d, *J* = 707 Hz). ¹³C NMR (101 MHz, CD₃CN) δ /ppm = 158.61, 156.53, 150.90, 140.48, 137.38, 136.81, 131.59, 125.35, 119.67, 117.49, 114.93. ESI MS: *m/z* 561.4 [M–2PF₆]²⁺ (calc. 561.1), 1121.6 [M–2PF₆–H]⁺ (calc. 1121.3) 1267.4 [M–PF₆]⁺ (calc. 1267.2). UV-Vis (MeCN, λ_{max} (nm) [ε / (cm⁻¹ M⁻¹)]) = 467.0 [13900], 321.0 [102000]. Emission (MeCN, λ_{max} (nm)) = 625. IR (solid / cm⁻¹) $\tilde{\nu}$ 3522w, 3105w, 1740m, 1599m, 1583m, 1462m, 1448m, 1375m, 1304m, 1204m, 1165m, 997w, 893m, 824s, 779m, 731w, 698w. Found C 54.77, H 3.68, N 5.64; C₆₆H₄₈F₁₂N₆O₆P₂Ru · 2H₂O requires C 54.74, H 3.62, N 5.80 %.

 $[Ru(2)(bpy)_2][PF_6]_2$

[Ru(1)(bpy)₂][PF₆]₂ (581 mg, 556 μmol) and Cs₂CO₃ (725 mg, 2.23 mmol) were dissolved in dry DMF (10 cm³) and the mixture was stirred at 80°C for 1 h. Propargyl bromide (553 μL, 5.56 mmol, 80% in toluene, stabilized) was added dropwise and the solution was stirred overnight at 80°C. The product was precipitated with aqueous NH₄PF₆ (100 cm³, 6.00 mmol), collected on a frit and washed with water (10 cm³) and Et₂O (50 cm³). Filtration over Al₂O₃ yielded [Ru(2)(bpy)₂][PF₆]₂ (554 mg, 494 μmol, 89%) as an orange solid. ¹H NMR (400 MHz, CD₃CN) δ /ppm = 8.61 (d, *J* = 8.5 Hz, 2H, H^{A3}), 8.53 (dd, *J* = 7.9, 5.2 Hz, 4H, H^{C3+D3}), 8.33 (dd, *J* = 8.5, 1.9 Hz, 2H, H^{A4}), 8.13 – 8.00 (m, 4H, H^{C4+D4}), 7.91 (d, *J* = 5.4 Hz, 2H, H^{C6}), 7.83 (m_c, 4H, H^{A6+D6}), 7.47 – 7.42 (m, 4H, H^{C5+D5}), 7.38 (t, *J* = 8.0 Hz, 2H, H^{B5}), 7.10 – 6.98 (m, 6H, H^{B2+B4+B6}), 4.79 – 4.68 (m, 4H, H^e), 2.82 (t, *J* = 2.3 Hz, 2H, H^{f2}). ¹³C NMR (101 MHz, CD₃CN) δ /ppm = 159.16 (C^{B3}), 158.23, 157.97, 156.62, 153.13, 153.06, 150.03, 140.48, 138.96, 138.89, 137.35, 136.92 (C^{B5}), 131.68, 128.70, 128.68, 125.55, 125.42, 125.34, 121.31, 117.11 (C^e), 114.55 (C^{B2}), 79.48 (C^{f1}), 77.38 (C^{f2}), 56.78 (C^e). ESI MS *m/z* 975.0 [M-PF₆]⁺ (calc. 975.2), 829.1 [M- 2PF₆-H]⁺ (calc. 829.2). Found C 50.16, H 3.22, N 7.18; C₄₈H₃₆F₁₂N₆O₂P₂Ru·1.5H₂O requires C 50.27, H 3.43, N 7.33%.

 $[Ru(2)_3][PF_6]_2$

 $[Ru(1)_3][PF_6]_2$ (202 mg, 143 µmol) and Cs₂CO₃ (932 mg, 2.83 mmol) were dissolved in dry DMF (10 cm³) and the mixture was stirred at 80°C for 1 h. Propargyl bromide (427 µL, 4.29 mmol, 80% in toluene, stabilized) was added dropwise and the solution was stirred for 1 d at 80°C. Further propargyl bromide (427 µL, 4.29 mmol, 80% in toluene, stabilized) was added and the reaction mixture was stirred again for 1 d at 80°C. The product was precipitated with aqueous NH_4PF_6 (100 cm³, 4.00 mmol), collected on a frit and washed with water (10 cm³) and Et₂O (50 cm³). Filtration over Al₂O₃ yielded [Ru(2)₃][PF₆]₂ (99.5 mg, 60.7 μ mol, 42%) as an orange solid. ¹H NMR (500 MHz, CD₃CN) δ /ppm = 8.66 (d, J = 8.6 Hz, 6H, H^{A3}), 8.38 $(dd, J = 8.5, 1.9 Hz, 6H, H^{A4}), 8.08 (d, J = 1.7 Hz, 6H, H^{A6}), 7.38 (t, J = 8.3 Hz, 6H, H^{B5}),$ 7.11 (d, J = 7.9 Hz, 6H, H^{B6}), 7.06 – 7.01 (m, 12H, H^{B2+B4}), 4.75 – 4.63 (m, 12H, H^e), 2.77 (t, J = 2.3 Hz, 6H, H^{f1}). ¹³C NMR (126 MHz, CD₃CN) δ /ppm = 159.10 (C^{B3}), 156.65 (C^{A2}), 151.02 (C^{A6}), 140.13 (C^{A5}), 137.23 (C^{A4}), 136.98 (C^{B1}), 131.68 (C^{B5}), 125.53 (C^{A3}), 121.35 (C^{B6}), 117.04 (C^{B4}), 114.57 (C^{B2}), 79.42 (C^{f1}), 77.33 (C^{f2}), 56.71 (C^e). ESI MS *m/z* 1494.4 $[M-PF_6]^+$ (calc. 1495.3), 674.9 $[M-2PF_6]^{2+}$ (calc. 675.6). IR (solid / cm⁻¹): $\tilde{\nu}$ 3278m, 2940w, 1585m, 1464m, 1295w, 1196m, 1019m, 1009m, 834m, 824m, 819s, 805m, 766w, 719m, 690w, 676w, 630m, 623m, 616w. Found C 60.24, H 3.90, N 5.07; C₄₈H₆₀F₁₂N₆O₆P₂Ru·2H₂O requires C 60.18, H 3.85, N 5.01%.

 $[Ru(4)(bpy)_2][PF_6]_2$

[Ru(2)(bpy)₂][PF₆]₂ (217 mg, 194 μmol), 2,3,4-tri-O-acetyl-β-D-xylopyranosyl azide (118.3 mg, 393 μmol), CuSO₄·5H₂O (4.8 mg, 19.4 μmol) and ascorbic acid (6.8 mg, 38.6 μmol) were stirred in DMF (5 cm³) at room temperature under N₂ for 3 days. The crude product, obtained after removal of the solvent, was filtered over Al₂O₃ yielding a mixture of the two diastereoisomers of [Ru(4)(bpy)₂][PF₆]₂ (311 mg, 180 μmol, 93%) as an orange solid. ¹H NMR (500 MHz, CD₃CN) δ /ppm = 8.58 (d, *J* = 8.5 Hz, 2H, H^{A3}), 8.55 – 8.47 (m, 4H, H^{C3+D3}), 8.36 – 8.27 (m, 2H, H^{A4}), 8.11 – 8.01 (m, 6H, H^{C4+D4+F5}), 7.89 (d, *J* = 5.5 Hz, 2H, H^{C6}), 7.81 (m_c, 4H, H^{D6+A6}), 7.45 – 7.40 (m, 4H, H^{C5+D5}), 7.36 (t, *J* = 8.1 Hz, 2H, H^{B5}), 7.06 (d, *J* = 8.2 Hz, 2H, H^{B6}), 7.06 – 7.01 (m, 4H, H^{B2+B4}), 5.93 (d, *J* = 9.1 Hz, 2H, H^{G1}), 5.56 (t, *J* = 9.4 Hz, 2H, H^{G2}), 5.46 (t, *J* = 9.6 Hz, 2H, H^{G3}), 5.21 – 5.10 (m, 6H, H^{e+G4}), 4.20 (dd, *J* =

11.6, 5.6 Hz, 2H, H^{G5eq}), 3.72 (t, J = 11.1 Hz, 2H, H^{G5ax}), 2.02 (s, 6H, H^{G4-Me}), 2.00 (s, 6H, H^{G3-Me}), 1.76 (s, 3H, H^{G2-Me}), 1.73 (s, 3H, H^{G2-Me'}). ¹³C NMR (126 MHz, CD₃CN) δ /pm = 170.99 (C^{G4, C=0}), 170.94 (C^{G3, C=0}), 169.99 (C^{G2, C=0}), 159.89 (C^{B3}), 159.87 (C^{B3}), 158.26 (C^{C2}), 157.98 (C^{D2}), 156.58 (C^{A2}), 153.12 (C^{C6/D6}), 153.10 (C^{C6/D6}), 150.04 (C^{A6}), 150.01 (C^{A6}), 144.88 (C^{F4}), 140.52 (C^{A5}), 138.93 (C^{C4/D4}), 138.88 (C^{C4/D4}), 137.29 (C^{B1}), 137.25 (C^{B1}), 136.79 (C^{A4}), 131.72 (C^{B5}), 128.70 (C^{C5/D5}), 128.67 (C^{C5/D5}), 128.66 (C^{C5/D5}), 125.63 (C^{C3/D3}), 125.59 (C^{C3/D3}), 125.43 (C^{A3}), 125.38 (C^{A3'}), 124.03 (C^{F5}), 123.98 (C^{F5'}), 120.96 (C^{B6}), 117.47 (C^{B4}), 117.37 (C^{B4}), 114.35 (C^{B2}), 114.26 (C^{B2'}), 86.79 (C^{G1}), 86.77 (C^{G1'}), 72.91 (C^{G3}), 71.32 (C^{G2}), 69.24 (C^{G4}), 66.06 (C^{G5}), 62.49 (C^e), 20.98 (C^{G3-Me+G4-Me}), 20.51 (C^{G2-Me}), 20.49 (C^{G2-Me'}). ESI MS *m*/*z* 1576.6 [M-PF₆]⁺ (calc. 1577.3), 715.9 [M-2PF₆]²⁺ (calc. 716.2). IR (solid / cm⁻¹): $\tilde{\nu}$ 3072w, 2943w, 1733s, 1601w, 1589w, 1464m, 1367m, 1209m, 1094m, 1036m, 827s, 763w. UV-Vis (MeCN, λ_{max} (nm), [ε / (cm⁻¹ M⁻¹)]) 455 [14500], 320 [54 500], 288 [88300]. Emission (MeCN, λ_{max} (nm), $\lambda_{exe} = 455$ nm) 640. Found C 47.48, H 3.85, N 9.51; C₇₀H₆₆F₁₂N₁₂O₁₆P₂Ru·2.5H₂O requires C 47.57, H 4.05, N 9.51 %.

 $[Ru(4)_3][PF_6]_2$

[Ru(2)₃][PF₆]₂ (75.6 mg, 46.6 µmol), 2,3,4-tri-O-acetyl- β -D-xylopyranosyl azide (112.4 mg, 373 µmol), CuSO₄·5H₂O (2.3 mg, 9.32 µmol) and ascorbic acid (3.3 mg, 18.6 µmol) in DMF (5 cm³) were stirred at room temperature under an atmosphere of nitrogen for 3 days. The crude product, obtained after removal of the solvent, was taken in CH₂Cl₂ (50 cm³) and extracted with water (150 cm³). The organic solution was then reduced to 5 cm³ and addition of 60 cm³ of ether yielded a precipitate which was collected on a frit and washed with water (15 cm³) and ether (20 cm³). A mixture of the two diastereoisomers of [Ru(4)₃][PF₆]₂ (150 mg, 43.6 µmol, 93 %) was obtained as an orange solid. ¹H NMR (500 MHz, CD₃CN) δ /ppm =

8.63 (m_c, 6H, H^{A3+A3'}), 8.35 (d, J = 8.2 Hz, 6H H^{A4}), 8.09 (s, 6H, H^{A6}), 8.03 (s, 6H, H^{F5}), 7.28 (m_c, 6H, H^{B5}), 7.09 – 7.01 (m, 12H, H^{B2+B6}), 6.99 (d, J = 8.3 Hz, 6H, H^{B4}), 5.97 – 5.85 (m, 6H, H^{G1}), 5.55 (t, J = 9.3 Hz, 6H, H^{G2}), 5.50 – 5.42 (m, 6H, H^{G3}), 5.22 – 5.11 (m, 6H, H^{G4}), 5.02 (m_c, 12H, H^e), 4.19 (dd, J = 11.2, 5.1 Hz, 6H, H^{G2-Me}), 3.71 (t, J = 11.0 Hz, 6H, H^{G5ax}), 2.02 (s, 18H, H^{G4-Me}), 1.98 (s, 18H, H^{G3-Me}), 1.74 (s, 9H, H^{G2-Me}), 1.72 (s, 9H, H^{G2-Me'}). ¹³C NMR (126 MHz, CD₃CN) δ /ppm = 170.97 (C^{G3/G4, C=O}), 170.92 (C^{G3/G4, C=O}), 170.00 (C^{G2}, C^{eO}), 169.97 (C^{G2', C=O}), 159.77 (C^{B3}), 159.75 (C^{B3}), 156.63 (C^{A2}), 150.97 (C^{A6}), 144.73 (C^{F4}), 144.72 (C^{F4'}), 140.12 (C^{A5}), 137.11 (C^{B1}), 137.06 (C^{B1'}), 136.75 (C^{A4}), 136.70 (C^{A4'}), 131.65 (C^{B5}), 125.76 (C^{A3}), 125.64 (C^{A3'}), 124.05 (C^{F3}), 124.00 (C^{F3'}), 121.01 (C^{B6}), 120.96 (C^{B6}), 117.48 (C^{B4}), 114.03 (C^{B2}), 113.97 (C^{B2'}), 86.75 (C^{G1}), 72.90 (C^{G3}), 71.30 (C^{G2}), 69.22 (C^{G4}), 66.04 (C^{G5}), 62.33 (C^e), 20.99 (C^{G3/G4-Me}), 20.97 (C^{G3/G4-Me}), 20.53 (C^{G2-Me}), 20.51 (C^{G2-Me'}). ESI MS *m*/*z* 1578.1 [M-2PF₆]²⁺ (calc. 1578.5). IR (solid / cm⁻): \tilde{v} 2949w, 1734s, 1585w, 1464m, 1367m, 1303w, 1205s, 1083m, 1034m, 834s, 828s. UV-Vis (MeCN, λ_{max} (nm), [ϵ / (cm⁻¹ M⁻¹)]) 472 [12750], 322 [119100]. Emission (MeCN, λ_{max} (nm), $\lambda_{exc} = 472$ nm) 638. Found C 50.91, H 4.45, N 9.37; C₁₅₀H₁₅₀F₁₂N₂₄O₄₈P₂Ru·5H₂O requires C 50.92, H 4.56, N 9.50%.

 $[Ru(5)(bpy)_2][PF_6]_2$

[Ru(4)(bpy)₂][PF₆]₂ (111 mg, 64.4 μmol) and sodium methoxide (3.5 mg, 64.4 μmol) were dissolved in dry MeOH (20 cm³) and the mixture was stirred for 2 h at 50°C. The solvent was reduced to 5 cm³ and aqueous NH₄PF₆ (50 cm³, 4.00 mmol) was added. The precipitate was collected on a frit and washed with water (10 cm³) and Et₂O (20 cm³) yielding compound [Ru(**5**)(bpy)₂][PF₆]₂ (73.7 mg, 50.1 μmol, 78%) as an orange solid. ¹H NMR (500 MHz, CD₃CN) δ /ppm = 8.58 (d, *J* = 8.6 Hz, 2H, H^{A3}), 8.56 – 8.48 (m, 4H, H^{C3+D3}), 8.32 (dd, *J* = 8.5, 1.7 Hz, 2H, H^{A4}), 8.10 – 8.02 (m, 6H, H^{C4+D4+F5}), 7.89 (d, *J* = 5.5 Hz, 2H, H^{C6}), 7.83 – 7.80 (m, 4H, H^{A6+D6}), 7.46 – 7.40 (m, 4H, H^{C5+D5}), 7.37 (t, *J* = 7.9 Hz, 2H, H^{B5}), 7.11 – 7.07 (m, 4H, H^{B2+B6}), 7.03 (d, *J* = 7.8 Hz, 2H, H^{B4}), 5.51 (d, *J* = 9.2 Hz, 2H, H^{G1}), 5.22 – 5.10 (m,

4H, H^e), 3.97 (dd, J = 11.3, 5.4 Hz, 2H, H^{G5eq}), 3.89 (t, J = 8.8 Hz, 2H, H^{G2}), 3.79 (s, 2H, H^{G3-OH}), 3.71 (s, 2H, H^{G2-OH}), 3.69 – 3.59 (m, 2H, H^{G4}), 3.55 – 3.39 (m, 6H, H^{G3, G5ax, G4-OH}). ¹³C NMR (126 MHz, CD₃CN) δ /ppm = 160.00 (C^{B3}), 158.24 (C^{C2/D2}), 157.96 (C^{C2/D2}), 156.57 (C^{A2}), 153.11 (C^{C6/D6}), 153.08 (C^{C6/D6}), 150.03 (C^{A6}), 144.55 (C^{F4}), 140.53 (C^{A5}), 138.91 (C^{C4/D4}), 138.86 (C^{C4/D4}), 137.31 (C^{B1}), 136.81 (C^{A4}), 131.71 (C^{B5}), 128.69 (C^{C5/D5}), 128.65 (C^{C5/D5}), 125.59 (C^{C3+D3}), 125.37 (C^{A3}), 124.20 (C^{F5}), 120.92 (C^{B6}), 117.33 (C^{B4}), 114.31 (C^{B2}), 89.34 (C^{G1}), 78.25 (C^{G3}), 73.38 (C^{G2}), 70.29 (C^{G4}), 69.39 (C^{G5}), 62.56 (C^e). ¹⁹F NMR (376 MHz, CD₃CN) δ /ppm –72.14 (d, J = 707 Hz). UV-Vis (MeCN, λ_{max} (nm), [ε / (cm⁻¹ M⁻¹)]) 455 [19900], 319 [58900]. Emission (MeCN, λ_{max} (nm), $\lambda_{exc} = 455$ nm) 640. MS (ESI) m/z 589.9 [M–2PF₆]²⁺ (calc. 590.2), 1324.5 [M–PF₆]⁺ (calc. 1325.2). IR (solid / cm⁻¹): \tilde{V} 3328m br, 2931w, 1601w, 1585w, 1464m, 1445m, 1297m, 1202m, 1041m, 1007m, 825s, 810s, 762m, 729w. Found C 45.20, H 4.06, N 10.73; C₅₈H₅₄F₁₂N₁₂O₁₀P₂Ru·4H₂O requires C 45.17, H 4.05, N 10.90 %.

 $[Ru(5)_3][PF_6]_2$

Complex $[Ru(4)_3][PF_6]_2$ (67.3 mg, 19.5 µmol) and sodium methoxide (1.1 mg, 19.5 µmol) were dissolved in dry MeOH (20 cm³) and heated to reflux for 3 h. The solvent was reduced to 5 cm³ and aqueous NH₄PF₆ (50 cm³, 1.00 mmol) was added. The precipitate was collected on a frit and washed with water (10 cm³) and Et₂O (20 cm³) yielding compound $[Ru(5)_3][PF_6]_2$ (26.8 mg, 9.94 µmol, 51%). ¹H NMR (500 MHz, DMSO-d₆) δ /ppm = 8.94 (m_c, 6H, H^{A3}), 8.51 (d, *J* = 7.8 Hz, 6H, H^{A4}), 8.39 (s, 6H, H^{F5}), 8.17 (s, 6H, H^{A6}), 7.32 (t, *J* = 7.9 Hz, 6H, H^{B5}), 7.19 (s, 6H, H^{B2}), 7.11 – 7.05 (m, 12H, H^{B4+B6}), 5.51 (d, *J* = 9.1 Hz, 6H, H^{G1}), 5.44 (s, 6H, H^{G2-OH}), 5.37 (s, 6H, H^{G3-OH}), 5.21 (s, 6H, H^{G4-OH}), 5.08 (s, 12H, H^e), 3.83 (dd, *J* = 11.0, 5.0 Hz, 6H, H^{G5eq}), 3.78 (s, 6H, H^{G2}), 3.52 – 3.43 (m, 6H, H^{G4}), 3.42 – 3.30 (m, 12H, H^{G3+G5}). ¹⁹F NMR (376 MHz, DMSO) δ /ppm = -69.81 (d, *J* = 711 Hz). ¹³C NMR (101

MHz, DMSO-d₆) δ /ppm 158.58 (C^{B3}), 155.33 (C^{A2}), 149.80 (C^{A6}), 142.23 (C^{F4}), 137.71 (C^{A5}), 135.76 (C^{B1}), 135.23 (C^{A4}), 130.51 (C^{B5}), 124.41 (C^{A3}), 123.86 (C^{F5}), 119.47 (C^{B6}), 116.02 (C^{B4}), 112.99 (C^{B2}), 88.10 (C^{G1}), 77.06 (C^{G3}), 71.97 (C^{G2}), 69.12 (C^{G4}), 68.36 (C^{G5}), 61.01 (C^e). UV-Vis (MeCN, λ_{max} (nm), [ϵ / (cm⁻¹ M⁻¹)]) 476 [10100], 314 [198000]. Emission (MeCN, λ_{max} (nm), λ_{exc} 470 nm) 636. ESI MS *m*/*z* 1200.3 [M-2PF₆]²⁺ (calc. 1200.4). IR (solid

/ cm⁻¹): $\tilde{\nu}$ 3335m_{broad}, 2923w, 2901w, 2853m, 1582m, 1464s, 1444w, 1368w, 1363w, 1298m, 1242m, 1205m, 1199m, 1095m, 1061m, 1043m, 1035m, 1008m, 984m, 899w, 834s, 826s, 780m, 773w. Found C 48.53, H 4.87, N 12.07; C₁₁₄H₁₁₄F₁₂N₂₄O₃₀P₂Ru·7H₂O requires C 48.60, H 4.58, N 11.93%.

Table S1 Redox potentials measured for complexes in argon-purged solutions of acetonitrile except where otherwise noted. $E_{1/2}$ values are given for reversible processes from the cyclovotammetry and are peak potentials for irreversible processes from square wave.

Oxidation		Reduction	
$[Ru(bpy)_3][PF_6]_2$	0.890	-1.73, -1.93, -2.17	
$[\operatorname{Ru}(2)(\operatorname{bpy})_2][\operatorname{PF}_6]_2$	0.900	-1.60, -1.88, -2.12, -2.42	
$[Ru(4)(bpy)_2][PF_6]_2$	0.908	-1.61, -1.89, -2.12, -2.41	
$[Ru(4)_3][PF_6]_2$	0.973 ^[b]	$-1.95^{[a]}, -2.18^{[a]}$	
$[\operatorname{Ru}(5)(\operatorname{bpy})_2][\operatorname{PF}_6]_2$	0.91	$-1.60^{[a]}, -1.87^{[a]}, -2.13^{[a]}$	
$[Ru(5)_3][PF_6]_2^{[b]}$	0.909	-1.65 ^[a]	

Potential	[V]	versus	Fc/Fc ⁺
-----------	-----	--------	--------------------

[a] Irreversible process, peak potential from square wave. [b] Measured in MeCN and DMSO (7 : 1 by vol.).