Supporting Information

For

Design of Off-On Fluorescent Probes for Heavy and Transition Metal ions

Zhaochao Xu,^{a,b,c} Su Jung Han,^b Chongmok Lee,^b Juyoung Yoon^{*b,d} and David R. Spring^{*a}

^a Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK. E-mail: <u>drspring@ch.cam.ac.uk</u>

^b Department of Chemistry and Nano Science and Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea, Fax: (+)82-2-3277-3419, E-mail: <u>iyoon@ewha.ac.kr</u>

^c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China

^d Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea

General methods

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Flash chromatography was carried out on silica gel 60 (230-400 mesh ASTM; Merck). Thin layer chromatography (TLC) was carried out using Merck 60 F_{254} plates with a thickness of 0.25 mm. Preparative TLC was performed using Merck 60 F_{254} plates with the thickness of 1 mm.

Melting points were measured using a Büchi 530 melting point apparatus. ¹H NMR and ¹³C NMR spectra were recorded using Bruker 250 MHz or Varian 500 MHz. Chemical shifts were given in ppm and coupling constants (*J*) in Hz. UV absorption spectra were obtained on UVIKON 933 Double Beam UV/VIS Spectrometer. Fluorescence emission spectra were obtained using RF-5301/PC Spectrofluorophotometer (Shimadzu).

Syntheses

The synthesis of compound **3** and **4** were according to published procedure.^{1,2}

4-(bis(pyridin-2-ylmethyl)aminoethyl)amino-*N-n*-butyl-1,8-naphthalimide (1):

To a solution of 200 mg (0.64 mmol) *N*-n-butyl-4-(aminoethylene)amino-1,8-naphthalimide (**3**) in 20 mL dry ethanol was added 330 mg (2.6 mmol) picolyl chloride and 300 mg K₂CO₃. The mixture was then heated at reflux for 10 hours under nitrogen and monitored by TLC. After the reaction was completed, the solvent was removed under reduced pressure. The crude product was then purified by alumina column chromatography (CH₂Cl₂:MeOH = 100:1) to give (**1**) as a yellow solid in 65% yield (206 mg). Mp: 165.4-166.9 °C. ¹H-NMR (CDCl₃, 250 MHz) δ 0.88 (t, *J* = 7.2 Hz, 3H), 1.34-1.43 (m, *J* = 7.2 Hz, 2H), 1.57-1.69 (m, *J* = 7.2 Hz, 2H), 2.96 (t, *J* = 5.0 Hz, 2H), 3.31 (t, *J* = 5.0 Hz, 2H), 3.91 (s, 4H), 4.08 (t, *J* = 7.2 Hz, 2H), 6.43 (d, *J* = 8.4 Hz, 1H), 7.06 (t, *J* = 6.2 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.78 (s, 1H, NH), 8.31 (d, *J* = 8.5 Hz, 1H), 8.48-8.54 (m, *J* = 5.2 Hz, 3H), 8.73 (d, *J* = 8.5 Hz, 1H). ¹³C-NMR (CDCl₃, 62.5 MHz) δ 13.92, 20.45, 30.33, 39.91, 40.92, 50.99, 59.69, 103.90, 109.13, 120.74, 122.36, 122.85, 123.30, 124.27, 127.56, 129.99, 130.97, 134.75, 136.66, 149.20, 150.38, 158.73, 164.24, 164.89. HRMS (ESI) calcd for C₃₀H₃₂N₅O₂ [MH⁺] 494.2556, found 494.2561.

4-(2-chloroacetayl)amino-N-n-butyl-1,8-naphthalimide (5):

A solution of 102 mg (0.9 mmol) of 2-chloroacetyl chloride in 5 ml of dry CH_2Cl_2 was added dropwise to a solution of 200 mg (0.75 mmol) 4-amino-N-n-butyl-1,8-naphthalimide (**4**) and 150 mg (1.23 mmol) 4-Dimethylaminopyridine (DMAP) in 30 ml of dry CH_2Cl_2 stirred in an ice bath. After stirred 2 h at room temperature, the mixture was removed under reduced pressure to obtain a pale-yellow solid, which was purified by silica gel column chromatography using dichloromethane as eluent to afford 4-(2-chloroacetayl)amino-*N*-n-butyl-1,8-naphthalimide (**5**). Yield: 221 mg (86%). Mp: 243-244 °C. ¹H-NMR (CDCl₃, 250 MHz) δ 0.98 (t, *J* = 7.2 Hz, 3H), 1.39-1.48 (m, *J* = 7.2 Hz, 2H), 1.57-1.74 (m, *J* = 7.2 Hz, 2H), 4.16 (t, *J* = 7.2 Hz, 2H), 4.39 (s, 2H), 7.80 (t, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 8.45 (d, *J* = 8.0 Hz, 1H), 8.61 (m, 2H), 9.15 (s, 1H, N-H). ¹³C-NMR (CDCl₃, 62.5 MHz) δ 13.86, 20.38, 30.18, 40.31, 43.39, 119.02, 119.65, 123.54, 123.80, 125.66, 127.23, 128.80, 131.34, 132.08, 137.0, 163.45, 163.95, 164.19.

4-(2-(Di-(2-picolyl)amino)acetayl)amino-N-n-butyl-1,8-naphthalimide (2):

4-(2-chloroacetayl)amino-*N*-n-butyl-1,8-naphthalimide (**5**) (100 mg, 0.29 mmol), Di-(2picolyl)amine (DPA) (70 mg, 0.35 mmol), *N*,*N*-diisopropylethylamine (DIPEA) (0.5 mL) and potassium iodide (30 mg) were added to acetonitrile (50 mL). After stirred and refluxed for 10 h under nitrogen atmosphere, the mixture was cooled to room temperature and the mixture was removed under reduced pressure to obtain a yellow oil, which was purified by silica gel column chromatography (CH₂Cl₂:MeOH = 100:1) to afford 4-(2-(Di-(2-picolyl)amino)acetayl)amino-*N*-nbutyl-1,8-naphthalimide (**2**). Yield: 124 mg (84%). Mp: 138-139 °C. ¹H-NMR (CDCl₃, 250 MHz) δ 0.87 (t, *J* = 7.2 Hz, 3H), 1.33-1.39 (m, *J* = 7.2 Hz, 2H), 1.60-1.65 (m, *J* = 7.2 Hz, 2H), 3.55 (s, 2H), 3.98 (s, 4H), 4.07 (t, *J* = 7.2 Hz, 2H), 7.06 (t, *J* = 6.2 Hz, 2H), 7.24 (m, 2H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.74 (t, *J* = 7.8 Hz, 1H), 8.35-8.46 (m, 3H), 8.54 (t, *J* = 8.4 Hz, 2H), 8.98 (d, *J* = 8.4 Hz, 1H), 11.64 (s, 1H). ¹³C-NMR (CDCl₃, 62.5 MHz) δ 13.87, 20.38, 30.19, 40.10, 59.11, 60.57, 116.95, 117.56, 122.69, 122.96, 123.38, 126.20, 128.18, 128.97, 131.01, 132.61, 136.71, 139.78, 149.54, 157.62, 163.70, 164.31, 170.79. HRMS (ESI) calcd for C₃₀H₃₀N₅O₃ [MH⁺] 508.2349, found 508.2344.

Reference

1. Liu, B.; Tian, H. Chem. Commun. 2005, 3156-3158.

2. Xu, Z. PhD thesis, Dalian University of Technology (CHN), 2006.

Figure S1. Fluorescence spectra of **1** in the presence of different HTM ions in aqueous solution (CH₃CN:HEPES = 1:9, HEPES 0.5 M, pH = 7.4). Excitation at 450 nm. [**1**] = 10 μ M, [M] = 30 μ M.

Figure S2. Fluorescence spectra of **2** in the presence of different concentrations of Cr^{3+} in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I₄₄₀/I₄₈₁ as a function of Cr^{3+} concentration.

Figure S3. Fluorescence spectra of **2** in the presence of different concentrations of Fe^{2+} in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I₄₂₇/I₄₈₁ as a function of Fe²⁺ concentration.

Figure S4. Fluorescence spectra of **2** in the presence of different concentrations of Fe³⁺ in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I₄₃₀/I₄₈₁ as a function of Fe³⁺ concentration.

Figure S5. Fluorescence spectra of **2** in the presence of different concentrations of Co^{2+} in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I₄₃₀/I₄₈₁ as a function of Co²⁺ concentration.

Figure S6. Fluorescence spectra of **2** in the presence of different concentrations of Ni^{2+} in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I₄₃₅/I₄₈₁ as a function of Ni²⁺ concentration.

Figure S7. Fluorescence spectra of **2** in the presence of different concentrations of Zn^{2+} in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I₄₃₀/I₄₈₁ as a function of Zn^{2+} concentration.

Figure S8. Fluorescence spectra of **2** in the presence of different concentrations of Ag^+ in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M.

Figure S9. Fluorescence spectra of **2** in the presence of different concentrations of Cd^{2+} in CH_3CN . Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I_{432}/I_{481} as a function of Cd^{2+} concentration.

Figure S10. Fluorescence spectra of **2** in the presence of different concentrations of Hg^{2+} in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I_{435}/I_{481} as a function of Hg^{2+} concentration.

Figure S11. Fluorescence spectra of **2** in the presence of different concentrations of Pb^{2+} in CH₃CN. Excitation at 360 nm. [**2**] = 10 μ M. Inset: Ratiometric calibration curve I_{427}/I_{481} as a function of Pb^{2+} concentration.

Figure S12. ¹H-NMR spectra of **2** in the prescence of a different amount of Zn^{2+} in CD₃CN.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Figure S13. ¹H-NMR spectra of **2** in the prescence of a different amount of Cd²⁺ in CD₃CN.

Figure S14. UV-Vis absorption spectra of **2** in the presence of different concentrations of Zn^{2+} in acetonitrile. [**2**] = 10 μ M, [Zn^{2+}] = 0-10 μ M.

Figure S15. UV-Vis absorption spectra of **2** in the presence of different concentrations of Cd^{2+} in acetonitrile. [**2**] = 10 μ M, [Cd²⁺] = 0-10 μ M.

Figure S16. ¹H-NMR spectra of compound **1** in CDCl₃.

Figure S17. ¹³C-NMR spectra of compound 1 in CDCl₃.

Figure S18. ¹H-NMR spectra of compound **5** in CDCl₃.

Figure S19. ¹³C-NMR spectra of compound **5** in CDCl₃.

Figure S20. ¹H-NMR spectra of compound **2** in CDCl₃.

Figure S21. ¹³C-NMR spectra of compound **2** in CDCl₃.