Supplementary Information

Copper(II)-catalyzed highly diastereoselective

three-component reaction of aryldiazoacetates with alcohols and chalcones: an easy access to furan derivatives

Yingguang Zhu, Changwei Zhai, Liping Yang, Wenhao Hu*
Department of Chemistry, East China Normal University, Shanghai, 200062, China

whu@chem.ecnu.edu.cn

Table of Contents

Page
General Considerations S2
Synthesis of Substrates S2
General Procedure for Copper(II)-Catalyzed Highly Diastereoselective Three-Component Reaction of Aryldiazoacetates with Alcohols and Chalcones S2
Scale-up of the Michael-type Theree-Component Reaction S3
Syntheses of syn-5, Polysubstituted Furan 7, 2,3-Dihydrofuran cis-8 and Tetrahydrofuran cis-9....... S3-S6
Characterization Data of Products S7-S19
Notes and References S20
NMR spectra for the Compounds S21-S44

General Considerations:

Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, 1,2-dichloroethane $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ and chloroform $\left(\mathrm{CHCl}_{3}\right)$ were freshly distilled over calcium hydride prior to use. All commercially available reagents were directly used as received from vendors, unless otherwise stated. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Brucker-500 MHz spectrometer, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JNM-EX400 MHz spectrometer. Chemical shifts are reported in ppm relative to the internal standard tetramethylsilane ($\delta=0 \mathrm{ppm}$) for ${ }^{1} \mathrm{H}$ NMR and deuteriochloroform ($\delta=77.00 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ NMR spectroscopy. HRMS spectra were recorded on a Bruker micrOTOF II instrument.

Synthesis of Substrates:

Chalcones $\mathbf{3 a - 3 j}$ were prepared according to the literature procedure. ${ }^{1} \mathbf{3 k}$ was synthesized following another literature procedure. ${ }^{2}$ Aryl diazoacetates 1a-1c were prepared by the treatment of corresponding arylacetate with p-acetamidobenzenesulfonyl azide (p-ABSA) in the presence of DBU following the general procedure. ${ }^{3}$

General Procedure for Copper(II)-Catalyzed Highly Diastereoselective

Three-Component Reaction of Aryldiazoacetates with Alcohols and Chalcones:

A mixture of $\mathrm{Cu}(\mathrm{OTf})_{2}(10.8 \mathrm{mg}, 0.03 \mathrm{mmol})$, alcohols $2(0.36 \mathrm{mmol})$, chalcones $\mathbf{3}$ (0.3 mmol) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred for 20 min at room temperature, then to the mixture was added diazo compounds $\mathbf{1}(0.36 \mathrm{mmol})$ in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over 3 h via a syringe pump at $40{ }^{\circ} \mathrm{C}$. After completion of the addition, the reaction mixture was cooled to room temperature. Solvent was removed, and a portion of crude product was subjected to ${ }^{1} \mathrm{H}$ NMR analysis for determination of the product ratio. The crude product was purified by flash chromatography on silica gel (ethyl acetate / petroleum ether $=1: 30 \sim 1: 20)$ to give the corresponding pure products 4.

Scale-up of the Michael-type Theree-Component Reaction:

A mixture of $\mathrm{CuSO}_{4}(1.53 \mathrm{~g}, 9.61 \mathrm{mmol})$, p-methoxy benzylalcohol $\mathbf{2 b}(7.97 \mathrm{~g}, 57.64$ mmol), chalcone 3a ($10.0 \mathrm{~g}, 48.03 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL) was vigorously stirred for 20 min at room temperature, then to the mixture was added methyl phenyldiazoacetate $\mathbf{1 a}(10.16 \mathrm{~g}, 57.64 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over 4 h via a syringe pump at $40{ }^{\circ} \mathrm{C}$. After completion of the addition, the reaction mixture was stirred for another 2 h at the same temperature. The reaction mixture was cooled to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed, and a portion of crude product was subjected to ${ }^{1} \mathrm{H}$ NMR analysis for determination of the product ratio (syn : anti $>99: 1$). The crude product was purified by flash chromatography on silica gel (ethyl acetate / petroleum ether $=1: 20 \sim 1: 10)$ to give product $\operatorname{syn}-\mathbf{4 l}(19.24 \mathrm{~g}, 81 \%$ yield $)$ as a white solid.

Syntheses of syn-5, Polysubstituted Furan 7, 2,3-Dihydrofuran cis-8 and Tetrahydrofuran cis-9:

The procedure for preparation of syn-5 from three-component product syn-41:

To a stirred solution of compound syn-41 $(1.70 \mathrm{~g}, 3.44 \mathrm{mmol})$ in the mixed solvents of $\mathrm{CH}_{3} \mathrm{CN}$ and water ($\mathrm{v} / \mathrm{v}=3: 1,48 \mathrm{~mL}$) was added dropwise the solution of ammonium cerium (IV) nitrate (CAN) $(5.10 \mathrm{~g}, 9.28 \mathrm{mmol})$ in wet $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ at $0{ }^{0} \mathrm{C}$. After
addition, the reaction mixture was warmed to room temperature and stirred for 3 h . TLC indicated that the starting material was consumed completely. Then, saturated aq. NaHCO_{3} solution (20 mL) was added. The precipitated solid was removed by filtration. The filtrate was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give the crude product. The crude product was purified by column chromatography on silica gel (eluent: ethyl acetate $/$ petroleum ether $=1: 10$) to afford the corresponding product syn-5 $(1.20 \mathrm{~g}, 93 \%$ yield) as a white solid.

The procedure for preparation of polysubstituted furan 7 from syn-5:

To a mixture of compound syn-5 $(0.60 \mathrm{~g}, 1.60 \mathrm{mmol})$ in the mixed solvents of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water $(\mathrm{v} / \mathrm{v}=9: 1,30 \mathrm{~mL})$ was added 2, 3-dichloro-5, 6-dicyanobenzoquinone ($\mathrm{DDQ}, 0.44 \mathrm{~g}, 1.92 \mathrm{mmol}$) at room temperature. The resulting reaction mixture was stirred at room temperature for 16 h . TLC showed the starting material was completely consumed. The aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to adjust $\mathrm{PH}=10$. The organic lay was separated and aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15$ mL). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give the crude product. The crude product was purified by column chromatography on silica gel (eluent: EtOAc / petroleum ether $=1: 20 \sim 1: 10$) to afford the dehydrogenated product $6\left(560 \mathrm{mg}, 94 \%\right.$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR analysis showed that this product exists in solution as a mixture of hemiketal 6' (lactol, $\sim 80 \%$) and the ring open form $6(\sim 20 \%)$.

A mixture of the obtained dehydrogenated product $6(450 \mathrm{mg}, 1.21 \mathrm{mmol}$), pyridinium p-toluenesulfonate (PPTS) ($60.3 \mathrm{mg}, 0.24 \mathrm{mmol}$) and toluene (18 mL) was
refluxed for 6 h under azeotropic distillation conditions. TLC indicated the reaction was complete. The reaction mixture was cooled to room temperature. The solvent was removed under vacuum to give the crude product. The resulted crude product was purified by column chromatography on silica gel (eluent: ethyl acetate / petroleum ether $=1: 50)$ to give the product $7(340.3 \mathrm{mg}$, almost quantitative yield $)$ as a colorless crystalline solid.

The procedure for preparation of 2,3-dihydrofuran cis-8 from syn-5: ${ }^{4}$

A mixture of compound syn-5 ($270 \mathrm{mg}, 0.72 \mathrm{mmol}$), pyridinium p-toluenesulfonate (PPTS) ($36 \mathrm{mg}, 0.144 \mathrm{mmol}$) and toluene (12 mL) was refluxed for 8 h under azeotropic distillation conditions. TLC indicated the reaction was complete. The reaction mixture was cooled to room temperature. The solvent was removed under vacuum to give the crude product. The resulted crude product was purified by column chromatography on silica gel (eluent: ethyl acetate / petroleum ether $=1: 40$) to give the product cis-8 ($234 \mathrm{mg}, 91 \%$ yield) as a white solid.

The procedure for preparation of tetrahydrofuran cis-9 from syn-5: ${ }^{5}$

To a stirred solution of compound syn-5 (300 mg, 0.80 mmol$)$ and triethylsilane (186 $\mathrm{mg}, 1.60 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added dropwise a solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($227 \mathrm{mg}, 1.60 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78{ }^{0} \mathrm{C}$ for 10 min . After addition, the reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$ and for 8 h at room temperature. TLC showed the starting material was completely consumed. Then, saturated aq. NaHCO_{3} solution (10 mL) was added. The organic lay was separated and aqueous
phase was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give the crude product. The crude product was purified by column chromatography on silica gel (eluent: EtOAc / petroleum ether $=1: 25)$ to afford the corresponding product cis- $9(269 \mathrm{mg}$, 94\% yield) as a white solid.

Characterization Data of Products:

(2S*,3S*)-2-benzyloxy-5-oxo-2,3,5-triphenyl-pentanoic acid methyl ester (4a): White solid, mp $156-157{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39-7.25(\mathrm{~m}, 12 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 5 \mathrm{H}), 4.62(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=10.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=17.5$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=17.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 197.96,172.00,138.88,138.65,137.06,136.37,132.77,130.02,128.36$, 128.13, 128.08, 127.98, 127.84, 127.47, 127.07, 126.95, 126.87, 88.72, 68.03, 51.87, 50.72, 39.71; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 487.1880$, found 487.1879.

(2S*,3S*)-2-benzyloxy-3-(4-chloro-phenyl)-5-oxo-2,5-diph enyl-pentanoic acid methyl ester (4b): White solid, mp 135-137 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ (d, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 12 \mathrm{H}), 7.14(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.6$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3 H), 3.77 (dd, $J=17.8,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.34 (dd, $J=17.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.67, 171.84, $138.69,137.31,136.84,136.23,132.91,132.71,131.30,128.40,128.27,128.17$, $127.99,127.91,127.85,127.61,127.19,126.91,88.53,68.14,51.94,50.21,39.67$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{ClNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 521.1490$, found 521.1490.

(2S*,3S*)-2-benzyloxy-3-(2-chloro-phenyl)-5-oxo-2,5-diphe nyl-pentanoic acid methyl ester (4c): White solid, mp 98-100 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}$, $6 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}$, $1 \mathrm{H}), 5.06(\mathrm{dd}, J=10.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.92$ (dd, $J=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{dd}, J=17.4,3.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.56,172.40,139.02,137.04,136.82,136.71$, $135.95,132.79,129.59,129.00,128.35,128.16,128.06,127.97,127.85,127.71$, 126.98, 126.86, 125.81, 88.56, 68.12, 52.01, 45.89, 41.03; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{ClNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$521.1490, found 521.1495.

(2S*,3S*)-2-benzyloxy-3-(4-bromo-phenyl)-5-oxo-2,5-diph enyl-pentanoic acid methyl ester (4d): White solid, mp 141-142 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=7.3$
$\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36-7.28(\mathrm{~m}, 12 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=$ $10.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=17.7,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{dd}, J=17.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.63,171.82$, $138.67,137.86,136.83,136.21,132.92,131.69,130.55,128.41,128.29,128.17$, 128.01, 127.91, 127.85, 127.19, 126.91, 120.97, 88.46, 68.14, 51.95, 50.27, 39.63 ; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 565.0985$, found 565.0981.

(2S*,3S*)-2-benzyloxy-3-(2-bromo-phenyl)-5-oxo-2,5-diphe nyl-pentanoic acid methyl ester (4e): White solid, mp 82-84 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.52-7.46 (m, 2H), 7.41-7.35 (m, 7H), 7.32-7.28 (m, 2H), 7.27-7.20 (m, 4H), 7.19-7.16 (m, 1H), 7.01-6.98 (m, 1H), $5.01(\mathrm{dd}, J=10.7,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=17.3,10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=17.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $197.65,172.47,139.05,138.44,136.74,135.86,132.83,132.45,129.82,128.69$, $128.38,128.22,128.17,128.07,127.89,127.76,127.02,126.98,126.49,88.65,68.17$, 52.06, 48.65, 41.31; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 565.0985$, found 565.0988.

(2S*,3S*)-2-benzyloxy-3-(3-bromo-phenyl)-5-oxo-2,5-diph enyl-pentanoic acid methyl ester (4f): White solid, mp 95-97 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 14 \mathrm{H}), 7.24-6.98$ $(\mathrm{m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=10.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=18.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}$, $J=18.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.52,171.81,141.28,138.72$, $136.83,136.20,132.99,132.96,130.02,128.92,128.75,128.44,128.35,128.24$, $128.06,127.97,127.82,127.14,126.82,121.62,88.54,68.12,51.96,50.55,39.56$; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 565.0985$, found 565.0991.

(2S*,3S*)-2-benzyloxy-3-(4-methoxy-phenyl)-5-oxo-2,5-di phenyl-pentanoic acid methyl ester ($\mathbf{4 g}$): White solid, mp 96-97 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 12 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=10.8,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{dd}, J=17.3,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31$ (dd, $J=17.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.06, 171.99, $158.44,138.83,137.03,136.32,132.70,130.91,130.49,128.31,128.09,128.05$, $127.93,127.76,127.05,126.86,112.87,88.75,67.96,54.98,51.82,49.89,39.74$; HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 517.1985$, found 517.1992.

(2S*,3S*)-2-benzyloxy-5-(4-chloro-phenyl)-5-oxo-2,3-d iphenyl-pentanoic acid methyl ester (4h): White solid, mp 141-143 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 12 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 5 \mathrm{H})$, $4.59(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=17.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=17.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 196.82,171.89,139.11,138.74,138.44,136.19,135.31$, 129.94, 129.38, 128.62, 128.14, 128.10, 128.03, 127.82, 127.48, 127.09, 127.01,
126.87, 88.64, 68.06, 51.86, 50.82, 39.65; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{ClNaO}_{4}$ $(\mathrm{M}+\mathrm{Na})^{+} 521.1490$, found 521.1497.

(2S*,3S*)-2-benzyloxy-5-(4-methoxy-phenyl)-5-oxo-2,3 -diphenyl-pentanoic acid methyl ester (4i): White solid, mp 155-156 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 5 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=10.3,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dd}, J=17.3,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.27 (dd, $J=17.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.41, 171.98, $163.18,138.88,138.70,136.40,130.19,130.12,129.99,128.07,128.03,127.77$, $127.38,127.01,126.85,126.82,113.44,88.72,67.96,55.29,51.78,50.83,39.21$; HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 517.1985$, found 517.1983.

(2S*,3S*)-2-benzyloxy-5-oxo-2,5-diphenyl-3-thiophen-2-yl -pentanoic acid methyl ester (4j): White solid, mp 123-125 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38-7.26 (m, 12H), 7.08 (d, $J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=10.5$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.70$ (dd, $J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=17.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.39,171.67,141.64,138.59,136.87,136.10,132.86,128.38,128.29$, 128.12, 127.97, 127.94, 127.86, 127.14, 127.01, 126.77, 125,96, 124.38, 88.56, 68.26, 51.98, 46.01, 41.12; HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+} 493.1444$, found 493.1441.

(2S*,3S*)-2-benzyloxy-2-(4-bromo-phenyl)-5-(4-methox y-phenyl)-3-methyl-5-oxo-pentanoic acid methyl ester (4k): colorless viscous oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}$,

2H), 4.55 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (s, 6H, overlap), 3.26-3.22 (m, 1H), $3.05(\mathrm{dd}, J=16.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=16.4,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.25,171.50,163.19$, 138.17, 135.73, 131.05, 130.17, 129.96, 129.62, 128.11, 127.24, 126.93, 122.15, 113.44, 87.91, 67.74, 55.20, 51.90, 40.37, 38.67, 15.60; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BrNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 533.0934$, found 533.0941.

(2S*,3S*)-2-(4-methoxy-benzyloxy)-5-oxo-2,3,5-triphe nyl-pentanoic acid methyl ester (41): White solid, mp 118-119 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 7 \mathrm{H})$, $7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (s, 3H), $3.75(\mathrm{dd}, J=17.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=17.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.95,171.99,158.78,138.64,137.04,136.38,132.70,130.91$, 130.00 , 128.43, 128.31, 128.12, 128.03, 127.92, 127.73, 127.41, 126.89, 113.53, 88.59, 67.70, 55.18, 51.81, 50.57, 39.64; HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NaO}_{5}(\mathrm{M}+$ $\mathrm{Na})^{+} 517.1985$, found 517.1985.

($2 S^{*}, 3 S^{*}$)-2-(4-chloro-benzyloxy)-5-oxo-2,3,5-triphenyl -pentanoic acid methyl ester (4m): White solid, mp 168-169 ${ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 4 \mathrm{H})$, 7.32-7.29 (m, 5H), 7.22-7.18 (m, 7H), 4.58 (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=10.2$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=17.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.31 (dd, $J=17.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.76, 171.82, $138.61,137.38,136.96,136.31,132.77,132.68,129.90$, 128.34, 128.24, 128.19, 127.96, 127.92, 127.90, 127.49, 126.99, 88.84, 67.37, 51.85, 50.76, 39.68; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{ClNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 521.1490$, found 521.1497.
 (2S*,3S*)-2-(2-chloro-benzyloxy)-5-oxo-2,3,5-triphenyl-pe ntanoic acid methyl ester (4n): White solid, mp $83-85{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50 \quad(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}$, $4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 6 \mathrm{H}), 4.67(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=$ $10.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=17.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, 3 H), 3.34 (dd, $J=17.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.82,171.82$, 138.69, 138.67, 136.97, 136.66, 136.27, 132.79, 131.76, 129.92, 128.79, 128.39, $128.35,128.25,128.01,127.93,127.80,127.52,126.99,126.58,88.92,65.37,51.91$, 51.04, 39.79; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{ClNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 521.1490$, found 521.1484.

(2S*,3S*)-2-(2-nitro-benzyloxy)-5-oxo-2,3,5-triphenyl-pen tanoic acid methyl ester (40): light yellow solid, mp 118-119 ${ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79 \quad(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.91(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}$, $J=10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=17.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=$ $17.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.64,171.60,146.87,138.81$, 136.87, 136.31, 135.54, 133.34, 132.82, 129.76, 128.88, 128.51, 128.35, 128.30, 127.91, 127.64, 127.55, 127.41, 127.07, 124.21, 89.27, 65.27, 51.90, 51.23, 39.86; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+} 532.1730$, found 532.1734.

(2S*,3S*)-2-isopropoxy-5-oxo-2,3,5-triphenyl-pentanoic acid methyl ester (4p): White solid, mp 110-112 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 3 \mathrm{H})$, 7.08-7.06 (m, 2H), 4.51 (dd, $J=10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (septet, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), $3.60(\mathrm{dd}, J=18.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=18.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=$
$6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.32,172.51$, $139.02,137.79,137.27,132.68,130.12,128.60,128.34,127.93,127.89,127.34$, $127.24,126.69,88.01,68.95,51.56,49.02,39.69,23.92,23.44$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 439.1880$, found 439.1886.

(2S*,3S*)-2-benzyloxy-2-(4-methoxy-phenyl)-5-oxo-3,5-di phenyl-pentanoic acid methyl ester ($\mathbf{4 q}$): White solid, mp 135-137 ${ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H})$, 7.31-7.20 (m, 7H), 7.20-7.17 (m, 5H), $6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.62(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=10.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=17.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}$, overlap), $3.38(\mathrm{dd}, J=$ 17.5, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.98,172.13,159.23,138.93$, $138.75,137.04,132.70,129.98,129.41,128.30,128.23,128.06,127.93,127.45$, $126.99,126.89,126.83,113.11,88.41,67.79,55.11,51.75,50.82,39.69$; HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 517.1985$, found 517.1983.

($2 S^{*}, 3 S^{*}$)-2-benzyloxy-2-(4-bromo-phenyl)-5-oxo-3,5-diphe nyl-pentanoic acid methyl ester (4r): White solid, mp $134-135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 9 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (dd, $J=9.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=17.5$, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=17.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.58$, 171.46, 138.34, 138.19, 136.88, 135.27, 132.77, 130.75, 129.94, 129.91, 128.32, $128.15,127.87,127.53,127.21,127.06,126.82, \quad 122.29,88.22,68.09,51.96,50.50$, 39.36; HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{BrNaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 565.0985$, found 565.0989 .

(2S*,3S*)-2-hydroxy-5-oxo-2,3,5-triphenyl-pentanoic acid methyl ester (syn-5): White solid, mp 140-141 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51-7.49 (m, $1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18-7.11 (m, 5H), 7.01-6.97 (m, 3H), $4.41(\mathrm{dd}, J=9.5,3.5 \mathrm{~Hz}$, 1 H), $3.94(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=17.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.13$ (dd, $J=17.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.96, 175.40, 140.16, 138.89, 136.97, 132.97, 129.75, 128.47, 128.06, 127.78, 127.47, 127.45, 126.45, 125.76, 81.49, 53.58, 48.51, 40.91; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$397.1410, found 397.1418

Dehydrogenated product exists in solution as a mixture of hemiketal 6^{\prime} (lactol, $\mathbf{\sim 8 0 \%}$) and the ring open form 6 ($\mathbf{2 0 \%}$): White solid, $\mathrm{mp} 94-95{ }^{\circ} \mathrm{C}$; hemiketal 6' (lactol, $\sim 80 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.49$ ($\mathrm{s}, 1 \mathrm{H}$, exchanged by $\mathrm{D}_{2} \mathrm{O}$ addition, OH), $3.84(\mathrm{~s}, 3 \mathrm{H})$; the ring open form $6:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.32(\mathrm{~m}$, 5 H), 7.31-7.23 (m, 6H), $646(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.09\left(\mathrm{~s}, 1 \mathrm{H}\right.$, exchanged by $\mathrm{D}_{2} \mathrm{O}$ addition, OH) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.17$ (170.76), (143.52) 141.55, 140.71 (139.35), 137.39, 131.81, 130.80 (130.19), 128.61, 128.45, 128.30, 128.17, 128.11, 128.03, 127.96, 127.86, 127.74, 127.33, 125.88, (109.83) 109.67, (94.51) 94.23, 53.24 (52.31); HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$395.1254, found 395.1266.

2,3,5-triphenyl-furan (7): colorless crystalline solid, mp 90-91 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.61 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}$, $4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H})$;

[^0]128.67, 128.63, 128.36, 127.48, 127.45, 127.26, 126.10, 124.51, 123.79, 109.43;

HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}(\mathrm{M}+\mathrm{H}){ }^{+}$297.1274, found 297.1264.

($2 S^{*}, 3 S^{*}$)-2,3,5-triphenyl-2,3-dihydro-furan-2-carboxylic acid methyl ester (cis-8): White solid, mp 104-105 ${ }^{0} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47-7.39 (m, 3H), $7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.00(\mathrm{~m}$, $8 \mathrm{H}), 5.64(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.24,155.32,138.77,135.83,130.21,129.24,128.99,128.44$, 127.72, 127.52, 127.33, 126.77, 126.04, 125.65, 101.20, 93.55, 56.80, 53.15; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 379.1304$, found 379.1311

($2 \mathrm{~S}^{*}, 3 \mathrm{SS}^{*}, 5 \mathrm{R}$ *)-2,3,5-triphenyl-tetrahydro-furan-2-carbox ylic acid methyl ester (cis-9): White solid, mp 96-97 ${ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ (t, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H})$, 7.07-7.05 (m, 3H), 7.01-6.99 (m, 3H), 6.94-6.91 (m, 2H), $5.21(\mathrm{dd}, J=10.1,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{dd}, J=8.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{ddd}, J=12.4,10.1,8.9 \mathrm{~Hz}$, 1 H), 2.26 (ddd, $J=12.4,7.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.27$, $140.47,139.74,137.81,129.21,128.43,127.66,127.56,127.29,127.10,126.32$, 126.09, 126.04, 90.68, 79.95, 52.84, 52.82, 41.92; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$381.1461, found 381.1474.

Single-crystal X-ray structure determinations were performed on a Bruker SMART APEX II diffractometer using graphite-monochromated Mo-K α radiation (λ $=0.71073 \AA$). Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software. Scaling and absorption corrections were applied using SADABS multi-scan technique supplied by George Sheldrick. ${ }^{6}$ The structures were solved by direct methods and refined by full-matrix least-squares on F^{2} with anisotropic displacement parameters for non-H atoms using SHELX-97. ${ }^{7}$

Crystal data of the three-component product syn-4r

Identification code	z
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{BrO}_{4}$
Formula weight	543.44
Temperature	$296(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Monoclinic, $\quad P 2_{1} / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=11.0837(4) \AA \quad$ alpha $=90 \mathrm{deg}$.
	$\mathrm{b}=12.5162(4) \AA \quad$ beta $=105.7030(10) \mathrm{deg}$.
	$\mathrm{c}=19.9846(7) \AA \quad$ gamma $=90 \mathrm{deg}$.
Volume	$2668.91(16) \AA^{3}$
Z, Calculated density	$4, \quad 1.352 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.574 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1120

Crystal size	$0.48 \times 0.26 \times 0.22 \mathrm{~mm}$
Theta range for data collection	1.91 to 25.01 deg.
Limiting indices	$-13<=\mathrm{h}<=13,-14<=\mathrm{k}<=14,-23<=\mathrm{l}<=23$
Reflections collected / unique	$30268 / 4691[\mathrm{R}($ int $)=0.0283]$
Completeness to theta $=25.01$	99.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.606688
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$4691 / 0 / 325$
Goodness-of-fit on F^{2}	1.031
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0471, \mathrm{wR} 2=0.1131$
R indices (all data)	$\mathrm{R} 1=0.0630, \mathrm{wR} 2=0.1251$
Largest diff. peak and hole	0.646 and $-0.768 \mathrm{e} . \AA^{-3}$

Crystal data of polysubstituted furan 7

Identification code
z
Empirical formula
$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}$
Formula weight
296.35

Temperature
Wavelength
173(2) K

Crystal system, space group
Unit cell dimensions
0.71073 Á

Orthorhombic, Pbca

$$
\begin{array}{lr}
a=7.7124(4) \AA ́ \quad \text { alpha }=90 \text { deg. } \\
b=19.8082(9) \AA & \text { beta }=90 \text { deg. } .
\end{array}
$$

	$\mathrm{c}=20.3303(10)$ Á gamma $=90 \mathrm{deg}$.
Volume	3105.8(3) \AA^{3}
Z, Calculated density	8, $\quad 1.268 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.076 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	1248
Crystal size	$0.52 \times 0.48 \times 0.36 \mathrm{~mm}$
Theta range for data collection	2.06 to 25.01 deg .
Limiting indices	$-9<=\mathrm{h}<=9,-23<=\mathrm{k}<=23,-24<=1<=24$
Reflections collected / unique	$32737 / 2731[\mathrm{R}(\mathrm{int})=0.0247]$
Completeness to theta $=25.01$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9731 and 0.9615
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2731 / 0 / 208
Goodness-of-fit on F^{2}	1.087
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0501, \mathrm{wR} 2=0.1258$
R indices (all data)	$\mathrm{R} 1=0.0559, \mathrm{wR} 2=0.1334$
Largest diff. peak and hole	0.308 and -0.391 e. A^{-3}

Crystal data of polysubstituted tetrahydrofuran cis-9

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}$
Formula weight	358.42
Temperature	173(2) K
Wavelength	0.71073 Á
Crystal system, space group	Orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}$
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=8.6978(3) \AA & \text { alpha }=90 \mathrm{deg} . \\ \mathrm{b}=9.0256(3) \AA & \text { beta }=90 \mathrm{deg} . \\ \mathrm{c}=23.8222(9) \AA & \text { gamma }=90 \mathrm{deg} . \end{array}$
Volume	1870.11(11) \AA^{3}
Z, Calculated density	4, $1.273 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.083 \mathrm{~mm}^{-1}$
F(000)	760
Crystal size	$0.52 \times 0.44 \times 0.32 \mathrm{~mm}$
Theta range for data collection	2.41 to 25.01 deg .
Limiting indices	$-10<=\mathrm{h}<=10,-10<=\mathrm{k}<=10,-28<=1<=28$
Reflections collected / unique	$21736 / 1903[\mathrm{R}(\mathrm{int})=0.0862]$
Completeness to theta $=25.01$	99.4 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9740 and 0.9582
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1903 / 0 / 244
Goodness-of-fit on F^{2}	1.082
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$) $]$	$\mathrm{R} 1=0.0293, \mathrm{wR} 2=0.0734$
R indices (all data)	$\mathrm{R} 1=0.0302, \mathrm{wR} 2=0.0742$
Largest diff. peak and hole	0.135 and -0.180 e. A^{-3}

Notes and references

1 X.-C. Luo, H. Zhang, H. Duan, Q. Liu, L.-Z. Zhu, T. Zhang and A.-W. Lei, Org. Lett., 2007, 9, 4571.

2 R. P. Mariella and R. R. Raube, J. Am. Chem. Soc., 1952, 74, 521.
3 M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.

4 T. Mukaiyama, M. Hayashi and J. Ichikawa, Chem. Lett., 1986, 1157.
5 H.-U. Reissig, H. Holzinger and G. Glomsda, Tetrahedron, 1989, 45, 3139.
6 SAINT V 7.34 Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Madison, WI, 2001.

7 Sheldrick, G. M. SHELX-97; Bruker Analytical X-Ray Systems, Inc.: Madison, WI, 1997.

5
$\stackrel{5}{2}$

syn-4b

syn-4e

syn-4j

syn-4I

皆

syn-4p

毞

D：IWHHLHZGZYGVZYG1017C．als

 બ㘶

그으웅

[^0]: ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 152.53,147.87,134.30,131.09,130.51,128.69$,

