Supporting Information

Tin-Lanthanoid Donor-Acceptor Bonds

Kornelia Zeckert, $*^a$ Stefan Zahn^b and Barbara Kirchner^b

^a Universität Leipzig, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany; E-mail: zeckert@uni-leipzig.de

^b Universität Leipzig, Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig, Germany; E-mail: bkirchner@uni-leipzig.de

General Methods

All manipulations were carried out using Schlenk line techniques under an atmosphere of dry nitrogen. [Ln(η^5 -C₅H₅)₃)] (Ln = La, Yb) were prepared and purified by sublimation as described in the literature.¹ [La(η^5 -C₅H₅)₃(thf)] was recrystallised from THF. THF was refluxed over sodium. Toluene was taken from a MBRAUN solvent purification system. NMR spectroscopic grade d_8 -THF was dried over molecular sieve and stored under nitrogen prior to use. NMR spectra were recorded on a BRUKER DRX 400 spectrometer. Chemical shifts reported in ppm (δ) are relative to the proton chemical shift of tetramethylsilane (TMS) for ¹H, ¹³C, ⁷Li and ¹¹⁹Sn NMR. The ¹³⁹La NMR chemical shifts are relative to the lanthanum chemical shift of LaCl₃ (0.1M in D₂O) with 4,4-dimethyl-4-silapenta-1-sulfonic acid (DSS) as internal reference standard.

Fig. S1: ¹H NMR spectrum of $[(thf)Li(2-C_5H_3N-5-Me)_3Sn-La(Cp)_3]$ (2) in d_8 -THF at 298K.

Fig. S2: Variable temperature ¹¹⁹Sn NMR spectra of $[(thf)Li(2-C_5H_3N-5-Me)_3Sn-La(Cp)_3]$ (2) in d_8 -THF.

Fig. S3: ¹³⁹La NMR spectrum of $[(thf)Li(2-C_5H_3N-5-Me)_3Sn-La(Cp)_3]$ (2) in d_8 -THF at 298K.

Computational Details

Structure optimisation was performed with the TURBOMOLE-suite² program package. The DFT calculations employed the BP86-D³⁻⁵ density functional, allowing the use of the resolution of identity approximation.⁶⁻⁸ The TZVP⁹ basis set was applied for structure optimisation and the convergence criterion of the iteration cycle was increased to 10^{-8} Hartree. All calculations were free of spin contamination. The program SNF¹⁰ was applied for frequency calculation. The NBO¹¹ analysis was carried out using a NBO 5.0 augmented Gaussian03 Revision D01¹² employing the BP86^{3,4} functional with the SDD¹³ basis set.

Fig. S4: Investigated compounds $\{Ln(Cp)_3\}$ (I), $\{(thf)LiSn(2-C_5H_3N-5-Me)_3\}$ (II) and $\{[(thf)Li(2-C_5H_3N-5-Me)_3Sn-Ln(Cp)_3]\}$ (Ln = La (2), Yb (3)).

Table-S1: Coordinates of calculated structure for **2**. SCF-energy for def-TZVP/BP86-D(RI): -1717.5956130460 Hartree

atom	Х	У	Z		
La	-0.851818	7.752029	7.083780		
Sn	1.524810	7.520585	4.907813		
Ο	5.147735	6.941063	1.216608		
Ν	4.513696	8.263664	4.177162		
Ν	2.119360	8.121024	1.850598		
Ν	3.184661	5.336928	3.278086		
С	3.584452	8.399656	5.156820		
С	3.906663	9.119173	6.324432		
С	5.167117	9.695906	6.473688		
С	6.118892	9.559369	5.451093		
С	5.727103	8.827152	4.326142		
С	7.490191	10.174399	5.547812		
С	1.195029	8.316282	2.824812		
С	0.006636	9.011984	2.527136		
С	-0.225809	9.493773	1.239778		
С	0.734515	9.286624	0.237202		
С	1.890061	8.593497	0.610858		
С	0.539909	9.781527	-1.171742		
С	2.217400	5.486530	4.220015		
С	1.611513	4.343723	4.781455		
С	1.995598	3.065462	4.382605		
С	2.998223	2.917871	3.411660		

С	3.549684	4.095859	2.901328
С	3.462487	1.566720	2.936517
С	6.239587	6.179106	1.781374
С	6.786441	5.374533	0.604733
С	5.498809	4.988662	-0.156712
С	4.501300	6.113057	0.207535
С	-2.506209	7.023875	4.819407
С	-3.375495	7.003683	5.938630
С	-3.009843	5.896889	6.760371
С	-1.921492	5.228764	6.136860
С	-1.604693	5.926162	4.940579
Ċ	-1.747212	10.231258	5.880603
С	-0.335765	10.379701	5.941738
С	0.035563	10.494225	7.313251
С	-1.143864	10.417137	8.094904
Ċ	-2.249173	10.245761	7.209725
Č	0.988798	7.800012	9.317746
Č	-0.223636	7.261797	9.829120
Č	-0.393511	5.958588	9.274976
C	0.698926	5,703770	8.410726
Č	1.557074	6.842775	8.436992
Li	3,755283	7.218398	2.626458
Н	3,153701	9.219710	7.109969
Н	5 419327	10.256264	7.378572
Н	6 426967	8.691343	3.494291
Н	8.101142	9.917864	4.669553
Н	8.019863	9.825867	6.448840
Н	7.426087	11.272805	5.608796
Н	-0.727984	9.166548	3.321403
Н	-1.148827	10.032139	1.005472
Н	2.677457	8.410362	-0.128541
Н	1.398101	9.513615	-1.805938
Н	0.427117	10.877343	-1.195170
Н	-0.367570	9.348061	-1.621807
Н	0.827897	4.479636	5.531334
Н	1.523252	2.179961	4.817645
Н	4.334016	4.032146	2.140003
Н	4.253351	1.665739	2.177808
Н	2.631771	0.995238	2.492393
Н	3.862681	0.969110	3.771138
Н	5.861326	5.524379	2.586912
Н	6.950054	6.899074	2.208211
Н	7.426219	6.016065	-0.018141
Н	7.369191	4.499596	0.924286
Η	5.122994	4.014306	0.185663
Н	5.663994	4.921577	-1.240175
Η	4.268217	6.772373	-0.639948
Η	3.561554	5.715102	0.624991
Η	-2.532572	7.735909	3.996876
Η	-4.189901	7.700174	6.129448
Η	-3.509906	5.588059	7.677220

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Н	-1.424965	4,335030	6.509682
н	-0.854405	5 633279	4 208957
н	-2 3/3600	10 131613	1.200937
11	-2.343000	10.151015	7.00000
Η	0.336151	10.45/583	5.089144
Η	1.046599	10.635664	7.689575
Η	-1.199077	10.491133	9.179683
Η	-3.297275	10.186141	7.498643
Η	1.407146	8.773949	9.563640
Н	-0.878145	7.737355	10.558066
Н	-1.216172	5.277676	9.484422
Н	0.871035	4.791414	7.843305
Η	2.511128	6.934307	7.920276

Table-S2: Coordinates of calculated structure for **3**. SCF-energy for def-TZVP/BP86-D(RI): -2845.8840419200 Hartree

atom	X	У	Ζ		
Yb	-0.796506	7.608188	6.990199		
Sn	1.473301	7.394148	4.905956		
0	5.118503	6.895823	1.213441		
Ν	4.456786	8.207887	4.149271		
Ν	2.103219	8.031434	1.847783		
Ν	3.205508	5.253664	3.253786		
С	3.527868	8.316511	5.133347		
С	3.837387	9.050558	6.296086		
С	5.079056	9.668998	6.435350		
С	6.027179	9.561952	5.405683		
С	5.651916	8.811885	4.287040		
С	7.377296	10.224706	5.489410		
С	1.167429	8.210259	2.815036		
С	-0.010778	8.922201	2.512058		
С	-0.219530	9.437998	1.234021		
С	0.754868	9.248722	0.241647		
С	1.897542	8.535461	0.616371		
С	0.588836	9.786871	-1.155198		
С	2.229369	5.380640	4.190892		
С	1.655438	4.219594	4.749896		
С	2.078203	2.951662	4.357396		
С	3.089466	2.830392	3.391652		
С	3.608084	4.023014	2.881012		
С	3.592587	1.491978	2.919110		
С	6.244215	6.166836	1.753290		
С	6.803912	5.394983	0.560082		
С	5.520285	4.975506	-0.189888		
С	4.494575	6.067886	0.190953		
С	-2.382877	6.993973	4.849984		
С	-3.235667	7.094500	5.988466		
С	-2.932651	6.024657	6.862294		
С	-1.899612	5.247057	6.255721		
С	-1.561885	5.850455	5.014800		
С	-1.756522	9.918638	5.944155		

С	-0.348377	10.109566	5.933676
С	0.091939	10.170979	7.279019
С	-1.047273	10.025727	8.123938
С	-2.187559	9.857516	7.303056
С	0.806746	7.715866	9.164189
С	-0.442640	7.181274	9.595189
С	-0.568692	5.884746	9.040658
C	0.587630	5.623425	8.249177
С	1.437852	6.753626	8.328636
Li	3.723648	7.135024	2.624611
Н	3.085972	9.129658	7.085740
Н	5.319301	10.240217	7.336883
Н	6.349827	8.696367	3.450122
Н	7.985794	9.994890	4.602067
Н	7.930310	9.889790	6.381650
Н	7.275880	11.319858	5.558152
Н	-0.756115	9.065625	3.298060
Н	-1.134021	9.990464	0.998491
Н	2.695773	8.363676	-0.114291
Н	1.447519	9.515292	-1.787213
Н	0.504126	10.885529	-1.149027
Н	-0.324037	9.389733	-1.627417
Н	0.866004	4.335122	5.497034
Н	1.630624	2.053869	4.793888
Н	4.397758	3.980440	2.123123
Н	4.415918	1.612225	2.198972
Н	2.790667	0.917569	2.427789
Н	3.960932	0.885663	3.761908
Н	5.901872	5.489707	2.556128
Н	6.934407	6.906797	2.179500
Н	7.415008	6.064195	-0.062694
Н	7.418628	4.535526	0.861908
Н	5.176448	3.989560	0.153194
Н	5.674609	4.917760	-1.275539
Н	4.245878	6.733617	-0.647118
Н	3.564886	5.639817	0.600737
Н	-2.375474	7.663083	3.992907
Н	-3.988915	7.861062	6.152607
Н	-3.424700	5.807421	7.807983
Н	-1.462686	4.340271	6.666596
Н	-0.840499	5.470631	4.294800
Н	-2.398980	9.847963	5.070088
Н	0.271834	10.236976	5.049374
Н	1.118299	10.317035	7.607578
Η	-1.039087	10.040848	9.211073
Η	-3.214157	9.744141	7.644112
Н	1.211360	8.686795	9.438429
Н	-1.151215	7.666359	10.262873
Н	-1.403135	5.204077	9.190473
Н	0.790806	4.710614	7.694365
Η	2.419039	6.851939	7.868728

complex	parameter	BP86-D	XRD	
2	La–Sn	3.23	3.3175	
	La–Cg	2.619 - 2.624	2.586 - 2.587	
	C _{ipso} –Sn–C _{ipso}	94.7, 95.6, 96.0	93.0, 95.4, 98.8	
	La–Sn–C _{ipso}	119.3, 119.7, 124.8	117.0, 120.1, 126.2	
	Cg–La–Cg	119.1 – 119.8	117.5 – 118.2	
	Cg–La–Sn	93.7, 95.0, 95.2	95.1, 98.1, 102.1	
3	Yb–Sn	3.09	3.0740	
	Yb–Cg	2.420 - 2.424	2.422 - 2.428	
	C _{ipso} –Sn–C _{ipso}	93.9, 94.2, 95.2	93.3, 96.9, 97.2	
	Yb–Sn–C _{ipso}	119.9, 121.3, 124.8	119.6, 120.7, 122.8	
	Cg–Yb–Cg	118.3 – 118.4	116.5 – 118.7	
	Cg–Yb–Sn	96.6, 97.4, 98.4	97.2, 98.3, 100.0	

Table-S3: selected computed (BP86-D) and experimental (XRD)^[a] structural parameters of complex 2 and 3.

^[a] XRD = data from single-crystal X-ray diffraction experiments. Cg = centroid of each of the Cp rings.

Table-S4: Dissociation energy ΔE (2/3 \rightarrow I + II) and free reaction enthalpy ΔG of the dissociation in kJ mol⁻¹, natural partial charge q^{NPA} and bond order BO_{*MIM2*} as well as the calculated Wiberg bond order BO_{*W*}.¹⁴

complex	M1	M2	ΔΕ	ΔG	q_{M1}^{NPA}	q_{M2}^{NPA}	BO _{M1M2}	BO_W
	La	Sn			2.307	0.783		
	Yb	Sn			2.053	0.783		
2	La	Sn	121.1	57.9	2.218	0.851	0.38	0.37
3	Yb	Sn	96.6	49.2	2.007	0.887	0.46	0.30

References

- 1. J. M. Birmingham, G. Wilkinson, J. Am. Chem. Soc., 1956, 78, 42.
- 2. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett., 1989, 162, 165.
- 3. A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
- 4. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822.
- 5. S. Grimme, J. Comput. Chem., 2006, 27, 1787.
- 6. B. I. Dunlap, J. W. D. Connolly, J. R. Sabin, J. Chem. Phys., 1979, 71, 3396.
- 7. E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys., 1973, 2, 41.
- 8. K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc., 1997, 97, 119.
- 9. A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829.
- 10. J. Neugebauer, M. Reiher, C. Kind, B. A. Hess, J. Comput. Chem., 2002, 23, 895.

11. A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88, 899.

12. J. Neugebauer, M. Reiher, C. Kind, B. A. Hess, J. Comput. Chem., 2002, 23, 895.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian03, revision D.01, 2004, Gaussian, Inc.: Wallingford, CT, http://www.gaussian.com.

- 13. X. Cao, M. Dolg, J. Mol. Struct. (Theochem), 2002, 581, 139.
- 14. K. B. Wiberg, *Tetrahedron*, 1968, **24**, 1083.