Mullite-supported Rh catalyst:

a promising catalyst for the decomposition of N_2O propellant[†]

Xiangyun Zhao,^{*a,b*} Yu Cong,^{*a*} Fei Lv,^{*a*} Lin Li,^{*a*} Xiaodong Wang^a and Tao Zhang^{*a*}

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences. PO Box 110, Dalian, 116023, P. R. China. Fax:

+86-411-84691570; Tel: +86-411-84379015.

^bGraduate University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Corresponding author: Tao Zhang

e-mail: taozhang@dicp.ac.cn

Supplemental Materials

Experimental details

The supports were prepared in our laboratory by the co-precipition method, with inexpensive Al(NO₃)₃ and tetraethylorthosilicate (TEOS) as precursors and $(NH_4)_2CO_3$ as a precipitant. Mullite precursors was firstly prepared by mixing 18.75 g Al(NO₃)₃·9H₂O, 2.49 g ml TEOS homogenized in the 10 ml ethanol at pH 1 and 36.7 g $(NH_4)_2CO_3$, followed by stirring for 5 h in the water bath at 60 °C. The resultant precipitate was then dried at 120 °C in an air oven for 64 h and followed by calcination in air for 4 h at 500 °C and 1200 °C. By the impregnation method, the precursor of the active phase (RhCl₃·3H₂O) is introduced from aqueous solutions onto the surface of the support. After the impregnation step the catalyst precursors were dried at 120 °C in air oven for overnight. One portion of the catalysts was calcined at 500 °C for 4 h, the other was calcined at 1200 °C for 4 h. Finally, all the catalysts were pelletized into grain of 20-40 meshes for the catalytic tests.

The catalytic reactor is a fix-bed flow quartz reactor with inner diameter of 6 mm. 100 mg catalyst diluted with 400 mg quartz sand was fixed in the middle part of the reactor. The reacting gas contained 30 v/v% N₂O in Ar, and was introduced at a flow rate of 50 mL min⁻¹, corresponding to a gas hourly space velocity of 30,000 mL g⁻¹ h⁻¹. The remaining N₂O at the exit of the reactor was determined by a gas chromatography (Agilent GC-6890N, TCD detector) with a Porapak Q column (2 m in length). Amounts of N₂ and O₂ which produced from N₂O decomposition were examined with a 13 X column (2.5 m in length). Prior to each test, the catalysts were

in situ reduced with pure H_2 at 500 °C for 2 h, and then cooled to 40 °C in Ar. Each data point in X-versus-temperature curves was measured after staying at a set temperature for 0.5 h to ensure both the reaction and thermal environment reached steady state.

Oxygen adsorption was carried out with a BT2.15 heat-flux calorimeter. Prior to the measurement, a catalyst sample was preheated in a special treatment quartz cell in H₂ from room temperature to 500 °C and held at that temperature for 2 h. Then, the samples were outgassed in situ in high vacuo (3×10^{-4} Pa) at 500 °C for 0.5 h. After being cooled to room temperature, the sample was transferred to a side-armed Pyrex vessel and sealed in a Pyrex capsule. The capsule can minimize the possible contamination in the high vacuum system in the course of thermal equilibrium (6-8 h) with the calorimeter. After thermal equilibrium was reached, the capsule was broken by a vacuum feedthrough and fresh catalyst was exposed. The microcalorimetric data were then collected by sequentially introducing small doses (1-10 µmol) of O₂ onto the sample until it became saturated (665-798 Pa).

Sample	Rh content (wt %)	$S_{BET}/m^2 \ g^{\text{-}1}$	$V_{pore}(cm^3g^{-1})$	d (nm)	Dispersion(%)
Rh/M	4.24	46	0.134	8.34	46
Rh/AS	4.08	276	0.418	6.048	87
Rh/Al	4.01	265	0.868	6.09	83
Rh/M-HT	1.01	23	0.116	20	
Rh/AS-HT	0.96	37	0.121	15.63	
Rh/Al-HT	0.96	7	0.013	9.16	

Table S1 Physico-chemical properties of the Rh impregnated catalysts

Fig. S1 N₂O conversion as a function of temperature over the Rh impregnated catalysts.

Fig. S2 X-Ray diffraction patterns of Rh impregnated catalysts calcined at 773 K: (•) γ -Al₂O₃ (JCPDS 1-1303), (•) mullite (JCPDS 79-1275), (•)SiO₂ (JCPDS 29-0085).

Fig. S3 X-Ray diffraction patterns of Rh impregnated catalysts calcined at 1473 K : $(\bullet)\alpha$ - Al₂O₃ (JCPDS 81-2267), (\bullet) mullite, (\blacktriangle) Rh₂O₃ (JCPDS 76-0148).