Supplementary Information

Self-assembly of neutral hexanuclear circular copper(II) *meso*helicates: topological control by sulfate ions

Harold B. Tanh Jeazet, Kerstin Gloe, Thomas Doert, Olga N. Kataeva, Anne Jäger, Gerhard Geipel, Gert Bernhard, Bernd Büchner, and Karsten Gloe*

Experimental Section

L¹ was synthesized with a slightly modification of the previously reported method.¹ 4,4'-Diaminodiphenylsulfide (1 g, 4.62 mmol) was dissolved in acetonitrile (30 mL) and stirred under a nitrogen atmosphere. A solution of 2-pyridinecarboxyaldehyde (0.99 g, 9.24 mmol) in acetonitrile was added dropwise and the mixture was refluxed for 5 h. The brown solution was then concentrated by rotary evaporation to produce a brown solid (1.619 g, 89%). IR (KBr): $\tilde{v} = 3430$ m, 3050w, 1626s, 1586s, 1483s, 1467m, 1345m, 1087m, 881m, 831s, 771m, 739m, 711w cm⁻¹; ESI-MS (MeOH): m/z 395 [M + H]; ¹H NMR (200 MHz, CDCl₃, 25 °C, TMS): d = 8.71 (d, *J* = 4.3, 0.9 Hz, 2H, H_{Py}), 8.60 (s, 2H, H_{im}), 8.18 (d, *J* = 7.9 Hz, 2H, H_{Py}), 7.81 (t, *J* = 1.6 Hz, 2H, H_{Py}), 7.40 (dd, *J* = 1.9, 2.0 Hz, 2H, H_{Py}), 7.35 (m, 4H, H_{Ph}), 7.24 (d, *J* = 3.0 Hz, 4H, H_{Ph}). elemental analysis Calc. for C₂₄H₁₈N₄S (%): C 73.07, H 4.60, N 14.20, S 8.13; Found: C 72.49, H 4.73, N 14.10, S 7.68.

 L^2 and L^3 were prepared *via* the previously reported method.²

[CuL¹(SO₄)]₆ · 24H₂O (1): Copper(II) sulfate pentahydrate (6.33 mg, 0.025 mmol) in methanol /water (2:1) (1.5 ml) was slowly layered on the top of a acetonitrile solution (1 ml) containing ligand L¹ (15.0 mg, 0.038 mmol). Dark brown needles of the title compound were obtained by slow diffusion of diethylether into the resulting solution after 3 weeks. The crystals were collected, washed with ether, and dried under vacuum (0.021 g, 89%). IR (KBr): $\tilde{v} = 3430m$, 3063w, 1630m, 1593m, 1483s, 1351w, 1088m, 890w, 837m, 769w, 745w, 690w cm⁻¹; ESI-MS (MeOH): m/z 457 [Cu(L¹)₂ + 2MeOH]²⁺, 554 {[CuL¹(SO₄)] + H}; elemental analysis indicated the stoichiometric formula of [CuL¹(SO₄)]₆ · 22H₂O, Cal. for C₁₄₄H₁₅₂Cu₆N₂₄O₄₆S₁₂ (%): C 46.48%, H 4.12%, N 9.03%, S 10.34%; Found: C 46.51%, H 4.36%, N 9.04%, S 9.94%; UV/Vis (MeCN): 418 ($\varepsilon = 4734$), 325 ($\varepsilon = 5213$), 309 ($\varepsilon = 8530$) nm.

[CuL²(SO₄)]₆ · 24H₂O (**2**): The same procedure was used as for the preparation of (**1**). The complex (green block-like crystals) was obtained after 3 days (0.022 g, 91%). IR (KBr): $\tilde{v} = 3428s$, 3063m, 2854w, 1630s, 1598s, 1503s, 1481m, 1363w, 1129s, 863w, 817w, 785m, 745w, 709w cm⁻¹; ESI-MS (MeOH): m/z 439 [Cu(L²)₂ + 2MeOH]²⁺, 536 {[CuL²(SO₄)] + H}; elemental analysis indicated the stoichiometric formula of [CuL²(SO₄)]₆ · 18H₂O, Cal. for C₁₅₀H₁₅₆Cu₆N₂₄O₄₂S₆ (%): C 50.88%, H 4.44%, N 9.49%, S 5.43%; Found: C 51.50%, H 4.41%, N 9.66%, S 5.30%; UV/Vis (MeCN): 401 (ε = 912), 327 (ε = 2160), 300 (ε = 5324) nm.

[CuL³(SO₄)]₆ · 24H₂O (**3**): The same procedure was used as for the preparation of (**1**). The complex (dark green needles) was obtained after 2 months (0.020 g, 85%). IR (KBr): $\tilde{v} = 3435$ m, 3063w, 1630m, 1598m, 1494s, 1349w, 1243m, 1130m, 872w, 838m, 775w, 747w, 695w cm⁻¹; ESI-MS (MeOH): m/z 441 [Cu(L³)₂ + 2MeOH]²⁺, 538 {[CuL³(SO₄)] + H}; elemental analysis indicated the stoichiometric formula of [Cu(L³)SO₄]₆ · 18H₂O, Cal. for C₁₄₄H₁₄₄Cu₆N₂₄O₄₈S₆ (%): C 48.69%, H 4.09%, N 9.46%, S 5.42%; Found: C 48.22%, H 4.28%, N 9.04%, S 5.57%; UV/Vis (MeCN): 425 ($\epsilon = 4397$), 336 ($\epsilon = 4615$), 309 ($\epsilon = 7003$) nm.

Thermogravimetric Analysis

Figure S1: Thermogravimetric measurements (static air, heating rate: 5 K·min⁻¹) of $[CuL^{1}(SO_{4})]_{6} \cdot 24H_{2}O$ (1) show a weight loss of 9 % in the temperature range between 30 and 150 °C (calc.: 9.2 %) corresponding with the loss of 19 moles of H₂O.

Figure S2: Thermogravimetric measurements (static air, heating rate: 5 K·min⁻¹) of $[CuL^{2}(SO_{4})]_{6} \cdot 24H_{2}O$ (2) show a weight loss of 8.9 % in the temperature range between 30 and 110 °C (calc.: 8.88 %) corresponding with the loss of 18 moles of H₂O.

Figure S3: Thermogravimetric measurements (static air, heating rate: 5 K·min⁻¹) of $[CuL^{3}(SO_{4})]_{6} \cdot 24H_{2}O$ (**3**) show a weight loss of 8.86 % in the temperature range between 30 and 150 °C (calc.: 8.85 %) corresponding with the loss of 18 moles of H₂O.

Figure S4. Space-filling representation of the crystal structures of $[CuL^1(SO_4)]_6$ (1), $[CuL^2(SO_4)]_6$ (2) and $[CuL^3(SO_4)]_6$ (3). Top: top view; Bottom: side view. The ligands are shown in different patterns. Cu in orange, N in blue, O in red, S in yellow. Hydrogen atoms are omitted for clarity.

Figure S5. Ball-and-stick representation of the crystal structures of the circular *meso*-helicates $[CuL^{1}(SO_{4})]_{6}$ (1), $[CuL^{2}(SO_{4})]_{6}$ (2) and $[CuL^{3}(SO_{4})]_{6}$ (3). Cu in orange, N in blue, O in red, S in yellow. The ligands are shown in different colors. Hydrogen atoms are omitted for clarity.

Figure S6. Overlay of the structures of the hexanuclear circular *meso*-helicates $[CuL^1(SO_4)]_6$ (1) in violet, $[CuL^2(SO_4)]_6$ (2) in light brown and $[CuL^3(SO_4)]_6$ (3) in blue. Color of the bridging atoms: S yellow, C black, O red. Hydrogen atoms are omitted for clarity.

Figure S7. Coordination geometry around the Cu(II) ion in $[CuL^1(SO_4)]_6(1)$.

atoms	$[CuL^{1}(SO_{4})]_{6} \cdot 24H_{2}O$	$[CuL^{2}(SO_{4})]_{6} \cdot 24H_{2}O$	$[CuL^{3}(SO_{4})]_{6} \cdot 24H_{2}O$
	(1)	(2)	(3)
Cu – N1	2.027(3)	2.020(3)	2.022(2)
Cu – N16	2.026(3)	2.018(3)	2.017(2)
Cu – N8	2.242(4)	2.246(2)	2.261(2)
Cu – N23	2.070(3)	2.045(2)	2.051(2)
Cu – O1	1.974(3)	1.959(2)	1.963 (2)
Cu - O2	2.790(3)	2.770(2)	2.792(2)
O1 - Cu - N1	93.81(12)	93.91(11)	93.01(7)
O1 - Cu - N16	93.19(12)	92.65(10)	92.83(8)
O1 - Cu - N8	90.55(12)	93.36 (9)	93.27 (8)
O1 - Cu - N23	165.41(13)	163.34(9)	164.14(8)
N1 - Cu - N16	169.63(15)	170.64(10)	171.05(10)
N1 - Cu - N23	91.51(12)	91.96(10)	92.65(8)
N16 - Cu - N23	79.92(12)	79.94(10)	79.99(8)
N1 - Cu - N8	77.71(12)	77.90(11)	77.94(8)
N8 - Cu - N23	103.85(12)	103.12(9)	102.39(8)
N8 – Cu – N16	109.86(13)	108.37(11)	108.49(8)
O2 - Cu - N1	82.56(8)	82.67(8)	81.46(8)
O2 - Cu - N16	94.80(8)	95.21(10)	95.99(10)
O2 - Cu - N8	141.17(8)	144.06(10)	143.20(10)
O2 - Cu - N23	109.82(8)	107.52(10)	108.75(10)

Table S1. Selected Bond lengths [A	Å] and angles [°]	of the circular me	so-helicates 1, 2 and 3

Table S2. π - π interactions in (1), (2) and (3).

Cg	Cg	<i>Cg</i> … <i>Cg</i> [Å]	β[°]	<i>CgI</i> …perp [Å]
[CuL ¹ (SO	₀₄)] ₆ · 24H ₂ O	(1)		
Cg4	Cg5 ⁱ	3.640	25	0.52
Cg4	Cg7	3.940	18	3.05
$\frac{[CuL^2(SO)]}{Cg4}$	$(4)]_6 \cdot 24 H_2 O$ $Cg5^{ii}$ Cg6	(2) 3.613 3.899	24 18	6.64 3.16
[CuL ³ (SO	₀₄)] ₆ · 24H ₂ O	(3)		
Cg4	Cg5 ⁱ	3.630	25	0.32
Cg4	Cg7	3.926	19	3.09

Symmetry codes: (i) = 2/3+x-y, 1/3+x, 1/3-z; (ii) = x-y, -1+x, -z

С – Н	A	$H \cdots A [Å] C \cdots A [Å]$		С–Н…А [°]		
$[CuL^{I}(SO_4)]_6 \cdot 24$	$H_2O(1)$					
C2 - H2	O2	2.542(3)	3.143(5)	121		
C4 – H4	O3 ¹	2.577(3)	3.468(5)	156		
C7 – H7	O3 ⁱⁱ	2.430(3)	3.276(5)	148		
C25 – H25	O4 ⁱⁱ	2.581(3)	3.250(5)	128		
C22 - H22	O4 ⁱⁱⁱ	2.242(4)	3.164(6)	164		
$[CuL^2(SO_4)]_6 \cdot 24$	$H_2O(2)$					
C17 – H17A	O2	2.487(3)	3.101(4)	122		
C18 – H18A	$O2^{iv}$	2.527(3)	3.192(5)	127		
C7 – H7A	O3 ^v	2.208(3)	3.118(4)	160		
C19 – H19A	$O4^{iv}$	2.462(4)	3.353(5)	156		
C22 – H22A	O4 ^{vi}	2.411(2)	3.272(4)	151		
C15 – H15A	$Cg4^{vii}$	3.165	4.038	148		
C15 – H15A	$Cg7^{vii}$	3.312	3.637	101		
C15 – H15B	$Cg7^{vii}$	3.188	3.637	109		
2						
$[CuL^{3}(SO_{4})]_{6} \cdot 24$	$H_2O(3)$					
C17 – H17	01	2.599(2)	3.088(3)	112		
C2 - H2	O2	2.465(2)	3.072(3)	122		
C3 – H3	$O2^{1}$	2.569(2)	3.213(3)	125		
C4 - H4	O3 ¹	2.478(2)	3.390(3)	161		
C7 - H7	O3 ^{viii}	2.452(2)	3.301(3)	149		
C22 – H22	O4 ⁱⁱⁱ	2.193(2)	3.097(3)	158		
C28 – H28	Cg6 ^{ix}	3.112	3.600	114		

Table S3.	СН…О	and CH-	$\cdot Cg$ inter	ractions	in	(1),	(2)	and	(3)).
-----------	------	---------	------------------	----------	----	------	-----	-----	-----	----

Symmetry codes: (i) = 2/3+x-y,1/3+x,1/3-z; (ii) = 4/3-y,2/3+x-y,-1/3+z; (iii) = -1/3+y,1/3-x+y,1/3-z; (iv) = 1+y,1-x+y,-z; (v) = x-y,-1+x,-z; (vi) = 5/3-x+y,4/3-x,1/3+z; (vii) = 5/3-x,1/3-y,1/3-z; (viii) = 4/3-y,2/3+x-y,-1/3+z; (ix) = 1-x,1-y,-z

Figure S8. Top view of the packing of the hexanuclear circular *meso*-helicates $[CuL(SO_4)]_6$; each *meso*-helicates is shown in a different color. Hydrogen atoms are omitted for clarity.

Figure S9. Intra- and intermolecular hydrogen bonds (Å) of sulfate oxygen atoms in the circular *meso*-helicates (1), (2) and (3).

Figure S10. Wireframe representation of three single helicates of the assembly showing additional CH $-\pi$ interactions in [CuL³(SO₄)]₆ (**3**).

References

- 1 Y. Parajo, J. Malina, I. Meistermann, G. J. Clarkson, M. Pascu, A. Rodger, M. J. Hannon, P. Lincoln, *Dalton Trans.*, 2009, 4868.
- a) N. Yoshida, K. Ichikawa, *Chem. Commun.*, 1997, 1091; b) M. J. Hannon, C. L. Painting, N. W. Alcock, *Chem. Commun.*, 1999, 2023; c) N. Yoshida, K. Ichikawa, M. Shiro, *J. Chem. Soc., Perkin Trans.*2, 2000, 17; d) C. He, C. Y. Duan, C. J. Fang, Q. J. Meng, *J. Chem. Soc., Dalton Trans.*, 2000, 2419; e) M. J. Hannon, V. Moreno, M. J. Prieto, E. Moldrheim, E. Sletten, I. Meistermann, C. J. Isaac, K. J. Sanders, A. Rodger, *Angew. Chem. Int. Ed.*, 2001, 40, 879; f) L. Xu, X.-T. Chen, Y. Xu, D.-R. Zhu, X.-Z. You, L.-H. Weng, *J. Mol. Struct.*, 2001, 559, 361; g) J. Keegan, P. E. Kruger, M. Nieuwenhuyzen, N. Martin, *Cryst. Growth Des.*, 2002, 2, 329.