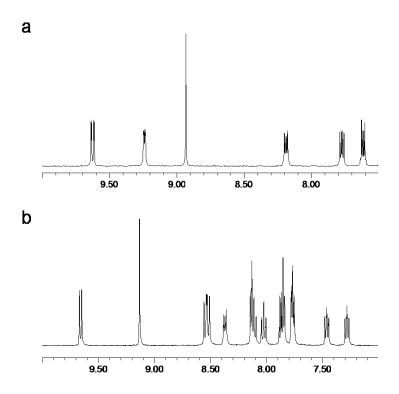
Supporting Information


Efficient DNA photocleavage by [Ru(bpy)₂(dppn)]²⁺ with visible light

Yujie Sun, Lauren E. Joyce, Nicole M. Dickson and Claudia Turro* Department of Chemistry, The Ohio State University, Columbus, Ohio, 43210

Synthesis and characterization

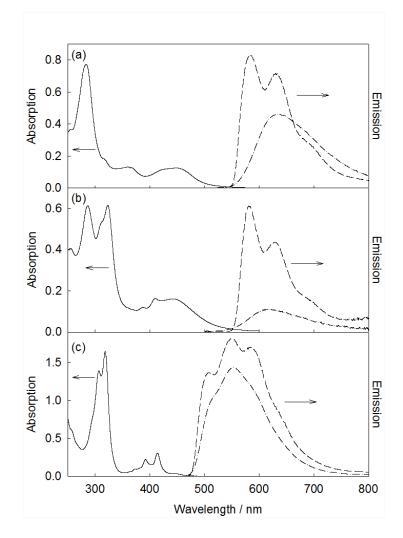
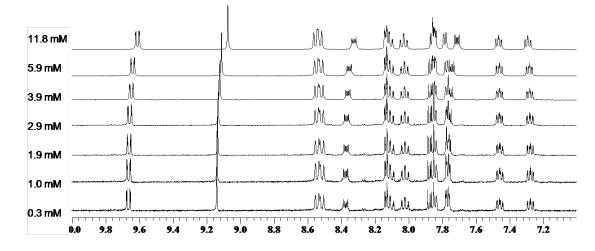
Dppn was synthesized according to a modified method.^{S1} 1,10-Phenthroline-5,6-dione (0.210 g) and 2,3-naphthalenediamine (0.158 g) were refluxed in 10 ml CHCl₃ under N₂ for 2 h. Dppn was precipitated by cooling the solution, was then filtered and washed with ether, and dried under vacuum. Yield: 0. 211 g (64%). ¹H NMR (400 MHz, *CDCl₃*) δ (ppm): 9.63 (dd, *J* = 8.08, 1.75 Hz, 1H), 9.24 (dd, *J* = 4.39, 1.62 Hz, 1H), 8.93 (s, 1H), 8.19 (dd, *J* = 6.50, 3.27 Hz, 1H), 7.77 (dd, *J* = 8.07, 4.46 Hz, 1H), 7.62 (m, 1H).

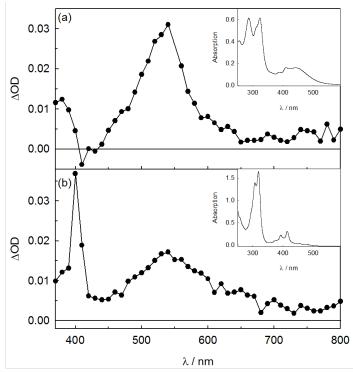
[Ru(bpy)₂(dppn)](PF₆)₂, [**3**](PF₆)₂, was synthesized by the direct coordination of dppn (0. 020 g) to Ru(bpy)₂Cl₂ (0.028 g) in refluxing 15 ml ethylene glycol under N₂ for 8 h. The cool mixture was filtered through Celite to remove free dppn ligand. An equal volume of a saturated NH₄PF₆ solution was added to the filtrate to precipitate the red product, followed by filtration. The powder was washed with water and ether, and was dried under vacuum. Yield: 0.035 g (63 %).¹ ¹ H NMR (400 MHz, *CD*₃*CN*) δ (ppm): 9.66 (dd, *J* = 8.20, 1.29 Hz, 2H), 9.13 (s, 2H), 8.53 (dd, *J* = 11.30, 8.14 Hz, 4H), 8.37 (dd, *J* = 6.54, 3.25 Hz, 2H), 8.19-8.06 (m, 4H), 8.02 (dt, *J* = 8.07, 8.07, 1.45 Hz, 2H), 7.93-7.81 (m, 4H), 7.80-7.72 (m, 4H), 7.46 (ddd, *J* = 7.57, 5.62, 1.29 Hz, 2H), 7.28 (m, 2H). MALDI/MS, [Ru(bpy)₂(dppn)]⁺, 746.327.

Fig. S1 ¹H NMR spectrum of (a) dppn in CDCl₃ and (b) $[3](PF_6)_2$ in CD₃CN.

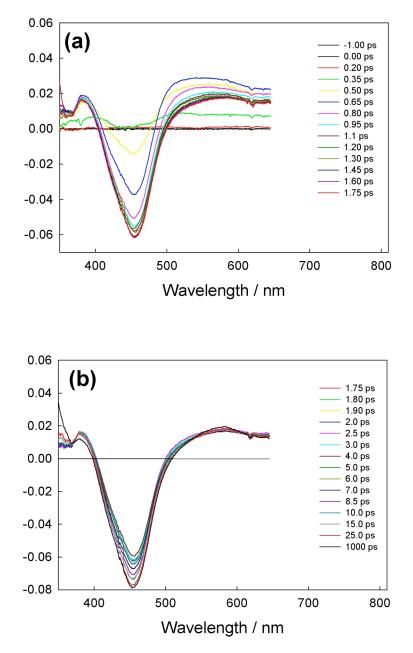
 $[Ru(bpy)_3](PF_6)_2$ ([1](PF_6)_2) and Ru(bpy)_2(dppz)](PF_6)_2 ([2](PF_6)_2) were synthesized by a similar method as that described $[Ru(bpy)_2(dppn)](PF_6)_2$. The chloride salts $[Ru(bpy)_2L]Cl_2$ (L = bpy, dppz, and dppn) were precipitated by the addition of a saturated Bu₄NCl acetone solution to the corresponding $[Ru(bpy)_2L](PF_6)_2$ complex in acetone. The solid was filtered, washed with acetone, diethyl ether, and dried under vacuum. Column chromatography using Sephadex G-15 solid phase was employed to obtain samples of high purity for luminescence studies.

Electronic absorption and emission spectra

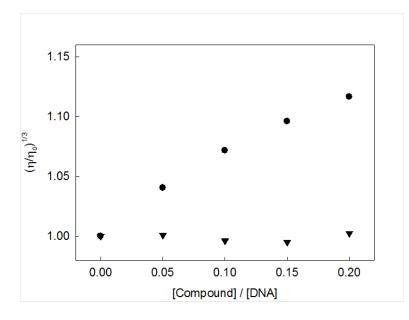




Fig. S2 Absorption (solid) and emission spectra at room temperature (dotted-dash) and at 77 K (dash) in ethanol/methanol (v/v: 4/1) of (a) $[2](PF_6)_2$, (b) $[3](PF_6)_2$, and (c) dppn. The room temperature absorption spectra of 2 and 3 were obtained in CH₃CN, and that of dppn was in CHCl₃.

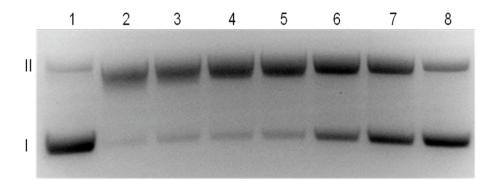
¹H NMR spectra as a function of concentration


Fig. S3 ¹H NMR spectra of $[3](PF_6)_2$ in CD₃CN as function of its concentration.

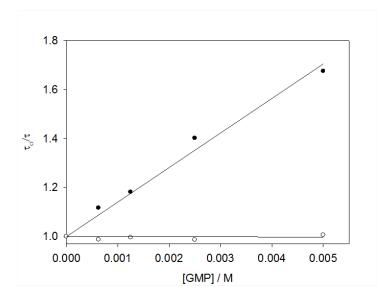
Nanosecond - microsecond transient absorption spectra


Fig. S4 Transient absorption spectra of (a) [**3**](PF₆)₂ (43 μ M) in deaerated CH₃CN collected at 0.6 μ s and (b) dppn (25 μ M) in deaerated CHCl₃ collected at 0.6 μ s after the laser pulse ($\lambda_{ex} = 355 \text{ nm}$, fwhm ~ 8 ns). Insets: corresponding ground state absorption spectra.

Ultrafast data for 2


Fig. S5 Transient absorption spectra of 73 μ M [**2**](PF₆)₂ in CH₃CN collected (a) 0 - 1.75 ps and (b) 1.75 to 1000 ps after excitation pulse (λ_{exc} = 290 nm, fwhm = 300 ps).

Relative viscosity plot


Fig. S6 Relative viscosity plot of $(\eta/\eta_o)^{1/3}$ vs [Compound]/[DNA] for complexes [1]Cl₂ ($\mathbf{\nabla}$) and [3]Cl₂ ($\mathbf{\bullet}$) at 24 ± 1 °C in 5 mM Tris (50 mM NaCl, pH = 7.5).

Wavelength dependence of irradiation light for DNA photocleavage by 3

Fig. S7 Ethidium bromide stained agarose gel of the photocleavage of 100 μ M pUC18 plasmid by 20 μ M [**3**]Cl₂ in air (t_{irr} = 5 min, 5 mM Tris, pH = 7.5, 50 mM NaCl) at various irradiation wavelengths: lane 1, dark; lane 2, $\lambda \ge 475$ nm; lane 3, $\lambda \ge 495$ nm; lane 4, $\lambda \ge 515$ nm; lane 5, $\lambda \ge 530$ nm; lane 6, $\lambda \ge 550$ nm; lane 7, $\lambda \ge 570$ nm; lane 8, $\lambda \ge 590$ nm.

Emission quenching by GMP

Fig. S8 Stern-Volmer plot obtained from the luminescence lifetimes of 20 μ M [1]Cl₂ (\circ) and 20 μ M [3]Cl₂ (\bullet) with addition of GMP in deaerated 50 mM Tris buffer (50 mM NaCl, pH = 7.5).

References

S1 Z. B. Zhang, W. P. Yan and M. G. Fan, *Chin. J. App. Chem.*, 2005, 22, 103-104.