Platinum(II)-Catalyzed Intermolecular Hydroamination of

Monosubstituted Allenes with Secondary Alkylamines

Kristina L. Toups and Ross A. Widenhoefer*

Duke University

Department of Chemistry

French Family Science Center

Durham, NC 27708-0346

rwidenho@chem.duke.edu

Supporting Information

Experimental procedures, analytical and spectroscopic data, and copies of NMR spectra for hydroamination products (35 pages).

Experimental Section

General Methods. Catalytic reactions were performed in thick-walled pressure tubes (Ace Glass) under an atmosphere of dry nitrogen. NMR spectra were obtained on a Varian spectrometer operating at 500 MHz for ¹H NMR and 126 MHz for ¹³C NMR in CDCl₃ at 25°C unless noted otherwise. IR spectra were obtained on a Nicolet Avatar 360-FT IR spectrometer. Gas chromatography was performed on a Hewlett-Packard 5890 gas chromatograph equipped with a 15 m or 25 m polydimethylsiloxane capillary column and FID detector. Column chromatography was performed on silica gel (Silicycle). Thin layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ (EMD Chemicals Inc.). Elemental analyses were performed by Complete Analysis Laboratories (Parsippany, NJ).

All solvents were purchased from Aldrich or Acros in anhydrous form and used as received. Phosphine ligands, silver salts, PtCl₂, secondary amines, and cyclohexylallene were purchased from major suppliers and were used as received. [P(*t*-Bu)₂*o*-biphenyl]AuCl,¹ dimethyl 2-(2,3butadienyl)malonate,² (dppp)PtCl₂,³ (BINAP)PtCl₂,⁴ (dppf)PtCl₂,⁵ (BIPHEP)PtCl₂,⁶ (DPEphos)PtCl₂,⁷ (xantphos)PtCl₂,⁸ *n*-octylallene,⁹ phenylallene,¹⁰ benzylallene,¹¹ and napthylallene¹⁰ were prepared employing published procedures.

Bis(phosphine) platinum dichloride complex

(Nixantphos)PtCl₂. (Nixantphos)PtCl₂ was synthesized in 90% yield as a green solid employing a procedure similar to that used to synthesize (xantphos)PtCl₂.⁸ ¹H NMR (dmso- d_6): δ 9.10 (s, 1 H), 7.32-7.01 (m, 24 H), 6.95 (t, *J* = 7.2 Hz, 2 H). ³¹P{¹H} NMR (dmso- d_6): δ 4.9 (J_{Pt-P} = 4600 Hz). Anal. calcd (found) for C₃₆H₂₇Cl₂NOP₂Pt: C, 52.89 (52.86); H, 3.33 (3.38).

Allylic Amines

Dimethyl 4-[benzyl(*n***-butyl)amino]-2-butenylmalonate (2a).** A suspension of (dppf)PtCl₂ (8.2 mg, 0.010 mmol), AgOTf (2.6 mg, 0.010 mmol), ferrocene (3.7 mg, 0.020 mmol; internal standard),

benzyl *n*-butyl amine (36 μL, 33 mg, 0.20 mmol), dimethyl 2,3-butadienylmalonate (**1**; 74 mg, 0.40 mmol) in toluene (0.4 mL) was heated at 80 °C for 24 h. Column chromatography of the crude reaction mixture (SiO₂ pretreated with Et₃N; hexanes–EtOAc = 9:1) gave **2a** (pale yellow oil, 56 mg, 81%) as a 10:1 mixture of *E* and *Z* diastereomers. TLC (hexanes–EtOAc = 7:3): $R_f = 0.41$. ¹H NMR (*E*-isomer): δ 7.32-7.18 (m, 5 H), 5.60 (td, *J* = 6.2, 15.5 Hz, 1 H), 5.50 (td, *J* = 6.5, 15.5 Hz, 1 H), 3.69 (s, 6 H), 3.49 (s, 2 H), 3.41 (t, *J* = 7.5 Hz, 1 H), 2.97 (d, *J* = 6.0 Hz, 2 H), 2.61 (t, *J* = 6.7 Hz, 2 H), 2.35 (t, *J* = 7.5 Hz, 2 H), 1.45-1.39 (m, 2 H), 1.30-1.22 (m, 2 H), 0.85 (t, *J* = 7.2 Hz, 3 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.53-5.39 (m, 2 H), 3.06 (d, *J* = 6 Hz, 2 H). ¹³C{¹H} NMR (*E*-isomer): δ 169.4, 139.8, 131.1, 128.9, 128.3, 128.2, 126.7, 57.9, 55.5, 53.1, 52.6, 51.8, 31.8, 29.2, 20.6, 14.1. ¹³C{¹H} NMR (*Z*-isomer; partial spectrum): δ 126.9, 58.4, 53.5, 51.6, 50.5, 29.3, 27.1. IR (neat, cm⁻¹): 2954, 2929, 1737, 1436, 1227, 1154, 732, 699. HRMS calcd (found) for C₂₀H₂₉NO₄ (MH⁺): 348.2177 (348.2166). Anal. calcd (found) for C₂₀H₂₉NO₄: C 69.14 (68.99); H 8.41 (8.32).

The *E*-configuration of the major diasteromer of **2a** (and other allylic amines) was established by the large (${}^{3}J_{HH} \approx 15 \text{ Hz}$) coupling constant between the olefinic hydrogen atoms. Assignment of the minor isomer as the Z-diastereomer (Z)-**2a**, as opposed to a regioisomer dimethyl 2-[benzyl(butyl)amino]-3-butenyl)malonate (**2a**') formed by attack of the amine at the more substituted terminal allene carbon, was made from the presence of a two-proton doublet at δ 3.06 (*J* = 6 Hz) assigned to the allylic proton α -to the nitrogen atom of (Z)-**2a**, which would appear as a one-proton multiplet in **2a**', and by the absence of resonances consistent with a terminal vinyl moiety.

All remaining allylic amines were synthesized employing a procedure similar to that used to synthesize **2a**.

Dimethyl (4-(benzyl(methyl)amino)-2-butenyl)malonate (2b). Pale yellow oil. TLC (hexanes–EtOAc = 2:3): $R_f = 0.26$. ¹H NMR (*E*-isomer): δ 7.32-7.22 (m, 5 H), 5.65 (td, *J* = 6.2, 15 Hz, 1 H), 5.56 (td, *J* = 6.5, 15.5 Hz, 1 H), 3.71 (s, 6 H), 3.45 (t, *J* = 7.5 Hz, 1 H), 3.44 (s, 2 H), 2.96 (d, *J* = 6 Hz, 2 H), 2.65 (t, *J* = 6.75 Hz, 2 H), 2.14 (s, 3 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.59-5.45 (m,

2 H), 3.72 (s, 6 H), 3.06 (d, J = 6.5 Hz, 2 H), 2.67 (t, J = 7 Hz, 2 H), 2.17 (s, 3 H). ¹³C{¹H} NMR (Eisomer): δ 169.4, 139.0, 130.9, 129.1, 128.8, 128.3, 127.0, 61.6, 59.3, 52.6, 51.7, 42.0, 31.8. ¹³C{¹H} NMR (Z-isomer; partial spectrum): δ 130.7, 127.4, 62.0, 54.0, 52.6, 51.5, 42.3, 27.1. IR (neat, cm⁻¹): 2952, 2785, 1736, 1436, 1229, 1153, 739, 700. HRMS calcd (found) for C₁₇H₂₃NO₄ (MH⁺): 306.1707 (306.1920). Anal. calcd (found) for C₁₇H₂₃NO₄: C, 66.86 (66.77); H, 7.59 (7.48).

Dimethyl 2-(4-morpholinobut-2-enyl)malonate (2c). Peach oil. TLC (hexanes–EtOAc = 1:4): $R_f = 0.12$. ¹H NMR (*E*-isomer): δ 5.53-5.51 (m, 2 H), 3.67 (s, 6 H), 3.64 (t, *J* = 4.5 Hz, 4 H), 3.39 (t, *J* = 7.5 Hz, 1 H), 2.87 (d, *J* = 5 Hz, 2 H), 2.58 (t, *J* = 6.25 Hz, 2 H), 2.34 (s, 4 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.46-5.43 (m, 2 H), 3.68 (s, 6 H), 3.67 (t, *J* = 7.5 Hz, 1 H), 2.98 (d, *J* = 6.5 Hz, 2 H), 2.64 (t, *J* = 7.5 Hz, 2 H), 2.38 (s, 4 H). ¹³C{¹H} NMR (*E*-isomer): δ 169.2, 129.6, 129.5, 66.9, 60.9, 53.5, 52.5, 51.6, 31.6. ¹³C{¹H} NMR (*Z*-isomer; partial spectrum): δ 169.3, 129.2, 128.1, 67.9, 55.3, 53.6, 52.6, 51.4, 30.9, 27.0. IR (neat, cm⁻¹): 2954, 2853, 2808, 1734, 1437, 1227, 1154, 1116, 864. HRMS calcd (found) for C₁₃H₂₁NO₅ (M⁺): 271.1420 (271.1418). Anal. calcd (found) for C₁₃H₂₁NO₅: C, 57.55 (57.44), H, 7.80 (7.70).

Dimethyl 2-(4-(piperidin-1-yl)but-2-enyl)malonate (2d). Caramel oil. TLC (CH₂Cl₂–MeOH = 9:1): $R_f = 0.25$. ¹H NMR (*E*-isomer): δ 5.60 (td, J = 7, 15 Hz, 1 H), 5.51 (td, J = 7, 15.5 Hz, 1 H), 3.71 (s, 6 H), 3.43 (t, J = 7.5 Hz, 1 H), 2.87 (d, J = 6.5 Hz, 2 H), 2.61 (t, J = 7.25 Hz, 2 H), 2.47-2.19 (m, 4 H), 1.58-1.53 (m, 4 H), 1.43-1.32 (m, 2 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.55-5.41 (m, 2 H), 3.72 (s, 6 H), 3.40 (t, J = 8 Hz, 1 H), 2.98 (d, J = 7 Hz, 2 H), 2.66 (t, J = 7.4 Hz, 2 H). ¹³C{¹H} NMR (*E*-isomer): δ 169.4, 130.4, 128.9, 61.4, 54.4, 52.6, 51.7, 31.7, 26.0, 24.4. ¹³C{¹H} NMR (*Z*-isomer; partial spectrum): δ 130.2, 127.3, 54.6, 51.5, 31.6, 24.3, 22.7. IR (neat, cm⁻¹): 2933, 2852, 2796, 1736, 1436, 1229, 1153, 977. HRMS calcd (found) for C₁₄H₂₃NO₄ (M⁺): 269.1627 (269.1625). Anal. calcd (found) for C₁₄H₂₃NO₄: C, 62.43 (62.29); H, 8.61 (8.45).

Dimethyl 2-(4-(pyrrolidin-1-yl)but-2-enyl)malonate (2e). Golden yellow oil. TLC (CH₂Cl₂– MeOH = 9:1): R_f = 0.22. ¹H NMR (*E*-isomer): δ 5.66 (td, *J* = 6.5, 15.5 Hz, 1 H), 5.56 (td, *J* = 7, 15 Hz, 1 H), 3.71 (s, 6 H), 3.43 (t, J = 7.5 Hz, 1 H), 3.05 (d, J = 6 Hz, 2 H), 2.61 (t, J = 7 Hz, 2 H), 2.54-2.45 (m, 4 H), 1.81-1.70 (m, 4 H). ¹H NMR (Z-isomer; partial spectrum): δ 5.59-5.33 (m, 2 H), 3.72 (s, 6 H), 3.40 (t, J = 7.5 Hz, 1 H), 3.18 (d, J = 6.5 Hz, 2 H), 2.67 (t, J = 7 Hz, 2 H). ¹³C{¹H} NMR (*E*-isomer): δ 169.3, 130.6, 128.5, 57.9, 53.8, 52.6, 51.6, 31.6, 23.4. ¹³C{¹H} NMR (Z-isomer; partial spectrum): δ 54.0, 51.5, 51.0, 27.1, 23.3. IR (neat, cm⁻¹): 2956, 2787, 1734, 1436, 1228, 1198, 1153. HRMS calcd (found) for C₁₃H₂₁NO₄ (MH⁺): 256.1551 (256.1548).

Dimethyl 2-(4-(dibutylamino)but-2-entyl)malonate (2f). Amber oil. TLC (hexanes–EtOAc = 1.5:1): $R_f = 0.20$. ¹H NMR (*E*-isomer): δ 5.57 (td, J = 6.5, 15.5 Hz, 1 H), 5.49 (td, J = 6.5, 15 Hz, 1 H), 3.70 (s, 6 H), 3.41 (t, J = 7.5 Hz, 1 H), 2.98 (d, J = 6.3 Hz, 2 H), 2.60 (t, J = 7 Hz, 2 H), 2.33 (dd, J = 7.0, 8.5 Hz, 4 H), 1.40-1.34 (m, 4 H), 1.25 (qd, J = 7.4, 8 Hz, 4 H), 0.87 (t, J = 7.2 Hz, 6 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.51-5.36 (m, 2 H), 3.71 (s, 6 H), 3.39 (t, J = 7.5 Hz, 1 H), 3.07 (d, J = 5 Hz, 2 H), 2.65 (t, J = 7.5 Hz, 2 H). ¹³C{¹H} NMR (*E*-isomer): δ 169.4, 131.0, 128.1, 56.0, 53.4, 52.5, 51.8, 31.8, 29.2, 20.8, 14.1. ¹³C{¹H} NMR (*Z*-isomer; partial spectrum): δ 126.6, 53.8, 52.6, 51.6, 50.9, 29.3, 27.1. IR (neat, cm⁻¹): 2955, 2931, 2863, 2798, 1738, 1436, 1228, 1153, 974. HRMS calcd (found) for C₁₇H₃₁NO₄ (M⁺): 313.2253 (313.2252). Anal. calcd (found) for C₁₇H₃₁NO₄: C, 65.14 (65.01); H, 9.97 (9.92).

Dimethyl 2-(4-(diethylamino)but-2-enyl)malonate (2g). Amber oil. TLC (CH₂Cl₂–MeOH = 9:1): $R_f = 0.39$. ¹H NMR (*E*-isomer): δ 5.56 (td, J = 6.5, 15 Hz, 1 H), 5.49 (td, J = 6.5, 15 Hz, 1 H), 3.68 (s, 6 H), 3.40 (t, J = 7.5 Hz, 1 H), 2.99 (d, J = 6 Hz, 2 H), 2.58 (t, J = 7 Hz, 2 H), 2.44 (q, J = 7 Hz, 4 H), 0.96 (t, J = 7 Hz, 6 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.52-5.38 (m, 2 H), 3.69 (s, 6 H), 3.37 (t, J = 7.5 Hz, 1 H), 3.08 (d, J = 6.5 Hz, 2 H). ¹³C{¹H} NMR (*E*-isomer): δ 169.3, 130.6, 128.4, 54.9, 52.3, 51.7, 46.4, 31.7, 11.6. ¹³C{¹H} NMR (*Z*-isomer; partial spectrum): δ 126.9, 52.6, 51.5, 49.7, 46.8, 27.1, 11.8. IR (neat, cm⁻¹): 2968, 2799, 1736, 1436, 1227, 1199, 1154, 1030, 975. HRMS calcd (found) for C₁₃H₂₃NO₄ (M⁺): 257.1627 (257.1626). Anal. calcd (found) for C₁₃H₂₃NO₄: C, 60.68 (60.44); H, 9.01 (8.98).

Dimethyl 2-(4-(dibenzylamino)but-2-enyl)malonate (2h). Pale yellow oil. TLC (hexanes– EtOAC = 7:3): $R_f = 0.59$. ¹H NMR (*E*-isomer): δ 7.36 (d, J = 7 Hz, 4 H), 7.32 (t, J = 7.5 Hz, 4 H), 7.23 (t, J = 7.5 Hz, 2 H), 5.66 (td, J = 6.5, 16 Hz, 1 H), 5.57 (td, J = 6.5, 15.5 Hz, 1 H), 3.69 (s, 6 H), 3.54 (s, 4 H), 3.45 (t, J = 7.5 Hz, 1 H), 3.01 (d, J = 6 Hz, 2 H), 2.65 (t, J = 7.2 Hz, 2 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.60-5.45 (m, 1 H), 3.70 (s, 6 H), 3.56 (s, 4 H), 3.38 (t, J = 7.5 Hz, 1 H), 3.09 (d, J = 6.5 Hz, 2 H), 2.63 (t, J = 8 Hz, 2 H). ¹³C{¹H} NMR (*E*-isomer): δ 169.4, 139.7, 131.0, 128.8, 128.7, 128.2, 126.9, 67.7, 55.1, 52.6, 51.8, 31.8. ¹³C{¹H} NMR (*Z*-isomer; partial spectrum): δ 130.9, 128.9, 58.2, 51.6, 50.2, 27.1. IR (neat, cm⁻¹): 3027, 2952, 2796, 1736, 1436, 1230, 1153, 743, 699. HRMS calcd (found) for C₂₃H₂₇NO₄ (M⁺): 381.1940 (381.1940). Anal. calcd (found) for C₂₃H₂₇NO₄: C, 72.42 (72.58); H, 7.13 (7.05).

N-benzyl-*N*-butylundec-2-en-1-amine (2i). Pale yellow oil. TLC (hexanes–EtOAc = 9:1): R_f = 0.46. ¹H NMR (*E*-isomer): δ 7.34-7.29 (m, 4 H), 7.23 (t, *J* = 6.75 Hz, 1 H), 5.56 (td, *J* = 6.5, 15 Hz, 1 H), 5.49 (td, *J* = 6, 15.75 Hz, 1 H), 3.55 (s, 2 H), 3.01 (d, *J* = 6 Hz, 2 H), 2.42 (t, *J* = 7.5 Hz, 2 H), 2.03 (td, *J* = 6.5, 7 Hz, 2 H), 1.50-1.44 (m, 2 H), 1.38-1.21 (m, 14 H), 0.88 (t, *J* = 7.25 Hz, 6 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.59-5.56 (m, 2 H), 3.07 (d, *J* = 6 Hz, 2 H). ¹³C{¹H} NMR (*E*-isomer): δ 140.1, 134.0, 129.0, 128.1, 127.3, 126.7, 58.0, 56.0, 53.1, 32.5, 32.0, 29.6, 29.5, 29.4, 29.3, 29.2, 22.8, 20.7, 14.2, 14.1. ¹³C{¹H} NMR (*Z*-isomer): δ 132.7, 128.6, 127.1, 58.3, 53.4, 50.4, 31.7, 29.7, 27.6, 20.6. IR (neat, cm⁻¹): 2955, 2924, 1854, 1454, 971, 732, 697. HRMS calcd (found) for C₂₂H₃₇N (M⁺): 315.2926 (315.2929). Anal. calcd (found) for C₂₂H₃₇N: C, 83.74 (83.69); H, 11.82 (11.74).

N-benzyl-*N*-(3-cyclohexylallyl)butan-1-amine (2j). Pale yellow oil. TLC (hexanes-EtOAc = 9:1): $R_f = 0.39$. ¹H NMR (E-isomer): δ 7.34-7.28 (m, 4 H), 7.24-7.21 (m, 1 H), 5.52 (dd, J = 6.2, 15.7 Hz, 1 H), 5.44 (dtd, J = 1, 6.5, 15.5 Hz, 1 H), 3.55 (s, 2 H), 3.01 (d, J = 6.5 Hz, 2 H), 2.41 (t, J = 7.5 Hz, 2 H), 1.99-1.93 (m, 1 H), 1.74-1.66 (m, 4 H), 1.67-1.62 (m, 1 H), 1.49-1.43 (m, 2 H), 1.33-1.23 (m, 4 H), 1.20-1.14 (m, 1 H), 1.12-1.03 (m, 2 H) 0.88 (t, J = 7.25 Hz, 3 H). ¹H NMR (Z-isomer; partial spectrum): δ 5.47-5.36 (m, 2 H), 3.08 (d, J = 6 Hz, 2 H). ¹³C{¹H} NMR (*E*-isomer): δ 140.1, 139.9, 129.0, 128.1,

126.7, 124.6, 58.0, 56.1, 53.1, 40.6, 33.1, 29.2, 26.3, 26.1, 20.7, 14.1. ${}^{13}C{}^{1}H{}$ NMR (Z-isomer; partial spectrum): δ 31.7, 22.7. IR (neat, cm⁻¹): 2923, 2851, 2792, 1449, 971, 732, 697. HRMS calcd (found) for C₂₀H₃₁N (M⁺): 285.2457 (285.2458). Anal. calcd (found) for C₂₀H₃₁N: C, 84.15 (84.06); H, 10.95 (10.76).

N-benzyl-*N*-butyl-4-phenylbut-2-en-1-amine (2k). Yellow oil. TLC (hexanes–EtOAc = 9:1): R_f = 0.32. ¹H NMR (*E*-isomer): δ 7.40-7.19 (m, 10H), 5.75 (td, *J* = 7, 15 Hz, 1 H), 5.57 (td, *J* = 6.5, 15.5 Hz, 1 H), 3.58 (s, 2 H), 3.39 (d, *J* = 6.5 Hz, 2 H), 3.07 (d, *J* = 6.25 Hz, 2 H), 2.45 (t, *J* = 7.25 Hz, 2 H), 1.51-1.45 (m, 2 H), 1.35-1.27 (m, 2 H), 0.89 (t, *J* = 7.25 Hz, 3 H). ¹H NMR (*Z*-isomer; partial spectrum): δ 5.78-5.59 (m, 2 H), 3.60 (s, 2 H), 3.20 (d, *J* = 6 Hz, 2 H), 2.50 (t, *J* = 7.25 Hz, 2 H). ¹³C{¹H} NMR (*E*isomer): δ 140.7, 140.0, 132.1, 129.2, 129.0, 128.6, 128.5, 128.2, 126.7, 126.0, 58.2, 55.8, 53.2, 39.0, 29.3, 20.3, 14.1. ¹³C{¹H} NMR (*Z*-isomer): δ 126.8, 126.3, 56.3, 53.4, 29.4, 20.6. IR (neat, cm⁻¹): 3027, 2955, 2929, 2794, 1453, 972, 732, 696. HRMS calcd (found) for C₂₁H₂₇N (MH⁺): 294.2223 (294.2221). Anal. calcd (found) for C₂₁H₂₇N: C, 85.95 (85.76); H, 9.27 (8.97).

N-benzyl-*N*-(3-phenylallyl)butan-1-amine (2I). Pale yellow oil. TLC (hexanes–EtOAc = 9:1): $R_f = 0.45$. ¹H NMR (*E*-isomer): δ 7.37 (t, *J* = 7 Hz, 4 H), 7.34-7.30 (m, 4 H), 7.26-7.21 (m, 2 H), 6.53 (d, *J* = 16 Hz, 1 H), 6.30 (td, *J* = 6.5, 16 Hz, 1 H), 3.63 (s, 2 H), 3.24 (d, *J* = 6.75 Hz, 2 H), 2.50 (t, *J* = 7.5 Hz, 2 H), 1.55-1.49 (m, 2 H), 1.37-1.30 (m, 2 H), 0.90 (t, *J* = 7.25 Hz, 3 H). ¹³C{¹H} NMR (*E*isomer): δ 139.9, 137.4, 132.2, 129.0, 128.6, 128.2, 128.1, 127.3, 126.8, 126.3, 58.3, 56.3, 53.4, 29.4, 20.7, 14.2. IR (neat, cm⁻¹): 3026, 2955, 2929, 2869, 2794, 966, 732, 693. HRMS calcd (found) for C₂₀H₂₅N (MH⁺): 280.2067 (280.2066).

N-benzyl-*N*-(3-(naphthalene-1-yl)allyl)butan-1-amine (2m). Yellow oil. TLC (hexanes–EtOAc = 9:1): $R_f = 0.36$. ¹H NMR (*E*-isomer): δ 8.11 (d, J = 7.75 Hz, 1 H), 7.86 (d, J = 7.5 Hz, 1 H), 7.77 (d, J = 8.5 Hz, 1 H), 7.58 (d, J = 7 Hz, 1 H), 7.53-7.48 (m, 2 H), 7.45 (t, J = 7.5 Hz, 1 H), 7.41 (d, J = 7.75 Hz, 2 H), 7.35 (t, J = 7.5 Hz, 2 H), 7.30-7.25 (m, 2 H), 6.33 (td, J = 6.5, 15.5 Hz, 1 H), 3.70 (s, 2 H), 3.37 (d, J = 6.5 Hz, 2 H), 2.58 (t, J = 7.25 Hz, 2 H), 1.60-1.54 (m, 2 H), 1.41-1.33 (m, 2 H), 0.92 (t, J = 7.5 Hz, 3

H). ¹³C{¹H} NMR (*E*-isomer): δ 139.9, 135.2, 133.7, 131.3, 131.2, 129.4, 129.0, 128.6, 128.3, 127.7, 126.9, 126.0, 125.8, 123.9. IR (neat, cm⁻¹): 3059, 2954, 2929, 2864, 2796, 969, 775, 732, 698. HRMS calcd (found) for C₂₄H₂₇N (M⁺): 329.2143 (329.2148). Anal. calcd (found) for C₂₄H₂₇N: C, 87.49 (87.42); H, 8.26 (8.07).

Control Experiments

Treatment of a mixture of dimethyl (2,3-butadienyl) malonate (**1**; 74 mg, 0.40 mmol) and benzyl *n*-butyl amine (36 μ L, 0.20 mmol) with either PtCl₂(dppf) (8.2 mg, 0.010 mmol) or dppf (5.5 mg, 0.010 mmol) and triflic acid (0.9 μ L, 0.01 mmol) in toluene at 80 °C for 24 h resulted in no detectable formation of **2a** or other hydroamination products. These control experiments ruled out acid- and ligand-catalyzed pathways. Treatment of a mixture of **1** (74 mg, 0.40 mmol) and benzyl *n*-butyl amine (36 μ L, 0.20 mmol) with AgOTf (2.6 mg, 0.010 mmol) in toluene at 80 °C for 24 h formed traces (<10%) of **2a**. Although it is apparent that this reaction is slightly silver-catalyzed, the low yield established that both PtCl₂(dppf) and AgOTf are required for efficient hydroamination.

Figure S14. ¹³C NMR of dimethyl 2-(4-(diethylamino)but-2-enyl)malonate in (2g) CDCl₃.

Figure S16. ¹³C NMR (101 MHz) of dimethyl 2-(4-(dibenzylamino)but-2-enyl)malonate (2h) in CDCl₃.

Figure S17. ¹H NMR of N-benzyl-N-butylundec-2-en-1-amine (2i) in CDCl₃.

Figure S18. ¹³C NMR of N-benzyl-N-butylundec-2-en-1-amine (2i) in CDCl₃.

Figure S21. ¹H NMR of N-benzyl-N-butyl-4-phenylbut-2-en-1-amine (2k) in CDCl₃.

Figure S22. ¹³C NMR of N-benzyl-N-butyl-4-phenylbut-2-en-1-amine (2k) in CDCl₃.

Figure S23. ¹H NMR of N-benzyl-N-(3-phenylallyl)butan-1-amine (2I) in CDCl₃.

Figure S24. ¹³C NMR of N-benzyl-N-(3-phenylallyl)butan-1-amine (2I) in CDCl₃.

Figure S26. ¹³C NMR of N-benzyl-N-(3-(naphthalene-1-yl)allyl)butan-1-amine (**2m**) in CDCl₃.

References

- 1. Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178-6179.
- 2. Kinder, R. E.; Zhang, Z.; Widenhoefer, R. A. Org. Lett. 2008, 10, 3157-3159.
- 3. Appleton, T. G.; Bennett, M. A.; Tomkins, I. B. J. Chem. Soc., Dalton Trans. 1976, 5, 439-446.
- 4. Colladon, M.; Scarso, A.; Strukul, G. Synlett 2006, 20, 3515-3520.
- 5. Stang, P. J.; Olenyuk, B.; Fan, J.; Arif, A. M. Organometallics **1996**, *15*, 904-908.
- 6. Tudor, M. D.; Becker, J. J.; White, P. S.; Gagné, M. R. Organometallics 2000, 19, 4376-4384.
- Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Eur. J. Inorg. Chem. 1998, 155-157.
- 8. Petöcz, G.; Berente, Z.; Kégl, T.; Kollár, L. J. Organomet. Chem. 2004, 689, 1188-1193.
- 9. Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763-1765.
- 10. Nakamura, H.; Ishikura, M.; Sugiishi, T.; Kamakura, T.; Biellmann, J. Org. Biomol. Chem. 2008, 6, 1471-1477.
- 11. Hirao, T.; Misu, D.; Yao, K.; Agawa, T. *Tetrahedron Lett.* **1986**, *27*, 929-932.