Enantioselective Construction of Allylic Phosphine Oxides through Substitution of Morita-Baylis-Hillman Carbonates with Phosphine Oxides

Liang Hong, Wangsheng Sun, Chunxia Liu, Depeng Zhao, and Rui Wang*

State Key Laboratory of Applied Organic Chemistry and Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou 730000, China. Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong.

wangrui@lzu.edu.cn

Index:	
General Methods	S2
General Procedure for the Synthesis of 4	S3
Spectral Data for the Products 4	S3-S10
X-ray Structure of 4h	S11
HPLC Analytic Conditions	S12-S14
Copies of HPLC data	S15-S24
Copies of ¹ H, ¹³ C and ³¹ PNMR Spectra	S25-S69

General Methods:

Unless stated otherwise, all reactions were carried out in flamedried glassware. All solvents were purified and dried according to standard methods prior to use. 4 Å molecular sieves were dried at 200 °C under vacuum for 12 h before usage. Morita-Baylis-Hillman carbonates 1 were prepared according to the literature.¹ Catalysts **3a-3e**, **3i** were purchased from Aldrich Chemical Company. Cinchona alkaloids catalysts **3f**², **3g**,³ **3h**³ were prepared according to the literature. Phosphine oxides 2 were prepared according to the literature.^{4 1}H, ¹³C and ³¹P NMR spectra were recorded on a Varian instrument (300, 75 and 121 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C and ³¹P NMR are reported in terms of chemical shift (δ , ppm). IR spectra were recorded on a FT-IR spectrometer and only major peaks were reported in cm⁻¹. Optical rotations were reported as follows: [α]_D^{rt} (c: g/100 mL, in solvent). Highresolution mass spectra (HRMS) were obtained by the ESI ionization sources. The ee value determination was carried out using chiral HPLC with Daicel Chiracel OD-H, or AD column on Waters with a 996 UV-detector.

[1] J. Feng, X. Lu, A. Kong, X. Han, Tetrahedron. 2007, 63, 6035.

[2] F.-X. Chen, C. Shao, Q. Wang, P. Gong, D.-Y. Zhang, B.-Z. Zhang, R. Wang, *Tetrahedron Letters*, 48, 2007, 8456.

[3] B. Vakulya, S. Varga, A. Csampai, T. Soos, Org. Lett. 2005, 7, 1967.

[4] Y. Uozumi, M. Kawatsura, T. Hayashi, Org. Synth. 2002, 78, 1.

Experimental Procedures and Characterizations:

General Procedure A: Enantioselective Synthesis of 4.

To a solution of Morita-Baylis-Hillman carbonates 1 (0.40 mmol) in the presence of 20 mol % catalyst **3e** and 4Å MS (100 mg) in xylenes (4.0 mL) was added phosphine oxides 2 (0.20 mmol) and the resulting solution was stirred for 60 h at 0 $^{\circ}$ C. The reaction mixture was directly purified by silica gel chromatography without work-up and fractions were collected and concentrated in vacuo to provide the pure desired products.

General procedure B: Synthesis of Racemic Product 4.

To a solution of Morita-Baylis-Hillman carbonates 1 (0.10 mmol) in the presence of 20 mol % DABCO in xylenes (1.0 mL) was added phosphine oxides 2 (0.10 mmol) and the resulting solution was stirred for 24 h at room temperature. The reaction mixture was directly purified by silica gel chromatography without work-up and fractions were collected and concentrated in vacuo to provide the pure desired products.

(R)-methyl 2-((diphenylphosphoryl)(phenyl)methyl)acrylate (4a)

4a was isolated by column chromatography using silica gel in 77% yield.

¹**H NMR** (300 MHz, CDCl₃): δ 7.88 (t, *J* = 9.0 Hz, 2H), 7.49-7.16 (m, 13H), 6.82 (s, 1H), 6.43 (s, 1H), 5.06 (d, *J* = 8.4 Hz, 1H), 3.61(s, 3H);

¹³**C** NMR (75 MHz, CDCl₃): δ 166.8 (J = 9.75 Hz), 136.5 (J = 2.25 Hz), 134.7(J = 5.25 Hz), 132.9 (J = 6.75 Hz), 131.7 (J = 2.25 Hz), 131.5 (J = 3.0 Hz), 131.4 (J = 3.0 Hz), 131.2 (J = 9.0 Hz), 131.0 (J = 9.0 Hz), 130.4 (J = 6.0 Hz), 130.1 (J = 6.0 Hz), 128.6 (J = 11.25 Hz), 128.3 (J = 1.5 Hz), 128.1 (J = 12 Hz), 127.2 (J = 1.5 Hz), 52.3, 45.6 (J = 67.5 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 31.6;

IR: 3058, 2226, 1718, 1438, 1241, 1187, 1125, 699 cm⁻¹;

HRMS (ESI): C₂₃H₂₁O₃P+H, Calc: 377.1301, Found: 377.1309;

 $[\alpha]_{D}^{rt} = -224 (c = 1.11, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 7.8$, $t_{minor} = 11.3$, 95% ee.

(S)-methyl 2-((diphenylphosphoryl)(2-fluorophenyl)methyl)acrylate (4b)

4b was isolated by column chromatography using silica gel in 74% yield.

¹**H** NMR (300 MHz, CDCl₃): δ 7.92-7.85 (m, 3H), 7.56-7.09 (m, 10H), 6.82-6.78 (m, 2H), 6.49 (d, J = 2.4 Hz, 1H), 5.53 (d, J = 8.7 Hz, 1H), 3.61 (s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.4 (*J* = 9.75 Hz), 160.0 (*J* = 6.75 Hz, *J* = 245.25 Hz), 135.8 (*J* = 2.25 Hz), 132.4, 131.8(*J* = 3.0 Hz), 131.6 (*J* = 3.0 Hz), 131.4 (*J* = 1.5 Hz, *J* = 4.5 Hz), 131.3 (*J* = 13.5 Hz), 131.2, 131.1, 130.8 (*J* = 9.0 Hz), 128.9 (*J* = 2.25 Hz, *J* = 8.25 Hz), 128.5 (*J* = 12.0 Hz), 128.0 (*J* = 11.25 Hz), 124.2 (*J* = 2.25 Hz, *J* = 3.75 Hz), 122.2 (*J* = 4.5 Hz, 14.25 Hz), 114.8 (*J* = 0.75 Hz, 22.5 Hz), 52.3, 36.5 (*J* = 2.25 Hz, *J* = 67.5 Hz);

³¹**P** NMR(121 MHz, CDCl₃): δ 31.3 (J = 2.78 Hz);

IR: 3059, 2951, 1719, 1489, 1438, 1233, 1190, 1125, 728, 700, 521 cm⁻¹;

HRMS (ESI): C₂₃H₂₀FO₃P+H, Calc: 395.1207, Found: 395.1212;

 $[\alpha]_{D}^{rt} = -138 (c = 1.10, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 80/20, flow rate = 1.0 mL/min, retention time: $t_{major} = 14.8$, $t_{minor} = 27.1$, 81% ee.

(S)-methyl 2-((2-chlorophenyl)(diphenylphosphoryl)methyl)acrylate (4c)

4c was isolated by column chromatography using silica gel in 83% yield.

¹**H** NMR (300 MHz, CDCl₃) : δ 8.05 (d, *J* = 7.8 Hz, 1H), 7.91-7.85 (m, 2H), 7.56-7.09 (m, 11H), 6.69 (d, *J* = 2.4 Hz, 1H), 6.49 (d, *J* = 2.4 Hz, 1H), 5.72 (d, *J* = 9.0 Hz, 1H), 3.57 (s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.3 (J = 9.0 Hz), 135.8 (J = 3.0 Hz), 134.6 (J = 8.25 Hz), 133.1 (J = 3.75 Hz), 132.2 (J = 6.75 Hz), 131.8(J = 2.25 Hz), 131.7 (J = 5.25 Hz), 131.6 (J = 3.0 Hz), 131.5, 131.4 (J = 3.0 Hz), 131.0 (J = 9.0 Hz), 130.9 (J = 4.5 Hz), 129.2 (J = 0.75 Hz), 128.5 (J = 2.25 Hz), 128.4, 128.0 (J = 11.25 Hz), 126.9 (J = 1.5 Hz), 52.2, 41.1 (J = 66.75 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 31.5;

IR: 3059, 2950, 1721, 1473, 1438, 1237, 1193, 1122, 728, 697, 522 cm⁻¹;

HRMS (ESI): C₂₃H₂₀ClO₃P+H, Calc: 411.0911, Found: 411.0904;

 $[\alpha]_{D}^{rt} = -90 (c = 1.00, CHCl_3);$

HPLC: DAICEL CHIRALCEL OD-H, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 7.1$, $t_{minor} = 4.8$, 76% ee.

(R)-methyl 2-((diphenylphosphoryl)(2-methoxyphenyl)methyl)acrylate (4d)

4d was isolated by column chromatography using silica gel in 61% yield.

¹**H** NMR (300 MHz, CDCl₃) : δ 7.93-7.86 (m, 2H), 7.79-7.76 (m, 1H), 7.54-7.11 (m, 9H), 6.94 (t, *J* = 7.2 Hz, 1H), 6.77 (d, *J* = 2.4 Hz, 1H), 6.57 (d, *J* = 8.1 Hz, 1H), 6.45 (d, *J* = 2.1 Hz, 1H), 5.77 (d, *J* = 8.7 Hz, 1H), 3.58 (s, 3H), 3.41 (s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.7 (J = 9.75 Hz), 156.4 (J = 5.25 Hz), 136.4 (J = 2.25 Hz), 133.1, 132.9, 131.8, 131.6 (J = 3.0 Hz), 131.4, 131.3, 131.1 (J = 3.75 Hz), 131.0 (J = 4.5 Hz), 130.9 (J = 2.25 Hz), 128.4 (J = 6.0 Hz, 7.5 Hz), 127.5 (J = 12.0 Hz), 122.9 (J = 5.25 Hz), 120.5 (J = 1.5 Hz), 110.1 (J = 1.5 Hz), 55.2, 52.1, 36.6 (J = 68.25 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 32.1;

IR: 3057, 2950, 1720, 1491, 1438, 1247, 1185, 1126, 727, 699, 522 cm⁻¹;

HRMS (ESI): C₂₄H₂₃O₄P+H, Calc: 407.1407, Found: 407.1404;

 $[\alpha]_{D}^{rt} = -143 (c = 0.80, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 8.3$, $t_{minor} = 22.9$, 90% ee.

(R)-methyl 2-((3-chlorophenyl)(diphenylphosphoryl)methyl)acrylate (4e)

4e was isolated by column chromatography using silica gel in 81% yield.

¹**H** NMR (300 MHz, CDCl₃) : δ 7.90-7.83 (m, 2H), 7.53-7.08 (m, 12H), 6.81 (d, *J* = 2.4 Hz), 6.45 (d, *J* = 2.1 Hz, 1H), 4.99 (d, *J* = 8.7 Hz, 1H), 3.64 (s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.6 (J = 9.75 Hz), 136.8 (J = 5.25 Hz), 135.9 (J = 2.25 Hz), 134.0 (J = 0.75 Hz), 132.5 (J = 8.25 Hz), 131.9 (J = 3.0 Hz), 131.7 (J = 3.0 Hz), 131.2 (J = 2.25 Hz), 131.0 (J = 6.75 Hz), 130.9 (J = 6.75 Hz), 130.8, 130.1 (J = 6.0 Hz), 129.4 (J = 1.5 Hz), 128.7 (J = 11.25 Hz), 128.3 (J = 12.0 Hz), 122.2 (J = 5.25 Hz), 127.5 (J = 2.25 Hz), 52.4, 45.4 (J = 66.75 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 31.3;

IR: 3056, 1717, 1591, 1438, 1238, 1185, 1130, 699, 517 cm⁻¹;

HRMS (ESI): C₂₃H₂₀ClO₃P+H, Calc: 411.0911, Found: 411.0909;

 $[\alpha]_{D}^{rt} = -241 (c = 0.97, CHCl_3);$

HPLC: DAICEL CHIRALCEL OD-H, Hexane/iPrOH = 95/5, flow rate = 0.5 mL/min, retention time: $t_{major} = 26.1$, $t_{minor} = 29.9$, 89% ee.

(R)-methyl 2-((diphenylphosphoryl)(3-methoxyphenyl)methyl)acrylate (4f)

4f was isolated by column chromatography using silica gel in 82% yield.

¹**H NMR** (300 MHz, CDCl₃) : δ 7.90-7.83 (m, 2H), 7.54-6.69 (m, 13H), 6.43 (d, *J* = 2.1 Hz, 1H), 5.04 (d, *J* = 8.7 Hz, 1H), 3.67 (s, 3H), 3.62 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): δ 166.7 (J = 9.75 Hz), 159.3 (J = 0.75 Hz), 136.3 (J = 2.25 Hz), 136.1 (J = 5.25 Hz), 132.8 (J = 6.75 Hz), 131.6 (J = 3.0 Hz, 20.25 Hz), 131.4 (J = 3.0 Hz), 131.2, 131.0 (J = 2.25 Hz), 130.9, 130.5 (J = 6.75 Hz), 129.1 (J = 1.5 Hz), 128.5 (J = 11.25 Hz), 128.1 (J = 11.25 Hz), 122.4 (J = 6 Hz), 115.2 (J = 6 Hz), 113.3 (J = 1.5 Hz), 55.1, 52.3, 45.5 (J = 67.5 Hz); ³¹P NMR(121 MHz, CDCl₃): δ 31.4;

IR: 3057, 2952, 1716, 1599, 1438, 1234, 1191, 1123, 1047, 700, 519 cm⁻¹;

HRMS (ESI): C₂₄H₂₃O₄P+H, Calc:407.1407, Found:407.1400;

 $[\alpha]_{D}^{rt} = -208 (c = 0.96, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 10.4$, $t_{minor} = 12.1$, 97% ee.

(R)-methyl 2-((diphenylphosphoryl)(4-fluorophenyl)methyl)acrylate (4g)

4g was isolated by column chromatography using silica gel in 55% yield.

¹**H** NMR (300 MHz, CDCl₃) : δ 7.90-7.84 (m, 2H), 7.55-7.25 (m, 10H), 6.86 (t, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 1.8 Hz, 1H), 6.42 (d, *J* = 1.8 Hz, 1H), 5.01 (d, *J* = 8.4 Hz, 1H), 3.64 (s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.6 (J = 9.75 Hz), 163.6 (J = 2.25 Hz), 160.4 (J = 2.25 Hz), 136.5 (J = 0.75 Hz), 132.6 (J = 15.0 Hz), 131.8 (J = 2.25Hz), 131.7, 131.6 (J = 2.25 Hz), 131.5 (J = 1.5 Hz), 131.3 (J = 12.0 Hz), 131.0 (J = 9.0 Hz, J = 17.25 Hz), 130.4, 128.6 (J = 11.25 Hz), 128.2 (J = 12 Hz), 115.1 (J = 2.25 Hz, J = 21.75 Hz), 52.3, 44.8 (J = 67.5 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 31.5 (*J* = 2.78 Hz);

IR: 3058, 2953, 1717, 1507, 1438, 1238, 1189, 1124, 729, 700, 561 cm⁻¹;

HRMS (ESI): C₂₃H₂₀FO₃P+H, Calc: 395.1207, Found: 395.1209;

 $[\alpha]_{D}^{rt} = -183 (c = 0.80, CHCl_3);$

HPLC: DAICEL CHIRALCEL OD-H, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 8.8$, $t_{minor} = 9.4$, 90% ee.

(R)-methyl 2-((4-chlorophenyl)(diphenylphosphoryl)methyl)acrylate (4h)

4h was isolated by column chromatography using silica gel in 84% yield.

¹**H** NMR (300 MHz, CDCl₃) : δ 7.86 (t, *J* = 7.8 Hz, 2H), 7.52-7.13 (m, 12H), 6.78 (d, *J* = 1.5 Hz, 1H), 6.43 (s, 1H), 5.00 (d, *J* = 8.4 Hz, 1H), 3.63 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): δ 166.6 (J = 9.75 Hz), 136.2 (J = 1.5 Hz), 133.2, 132.5 (J = 9.0 Hz), 131.8 (J = 2.25Hz), 131.6 (J = 2.25 Hz), 131.3 (J = 5.25 Hz), 131.2, 131.1, 131.0, 130.9 (J = 9.0 Hz), 130.5 (J = 6.75 Hz), 128.6 (J = 11.25 Hz), 128.4 (J = 1.5 Hz), 128.2 (J = 12 Hz), 52.4, 45.0 (J = 67.5 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 31.3;

IR: 3057, 2952, 1720, 1489, 1438, 1240, 1189, 1126, 727, 697, 550 cm⁻¹;

HRMS (ESI): C₂₃H₂₀ClO₃P+H, Calc: 411.0911, Found: 411.0910;

 $[\alpha]_{D}^{rt} = -246 (c = 0.98, CHCl_3);$

HPLC: DAICEL CHIRALCEL OD-H, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 4.6$, $t_{minor} = 5.2$, 92% ee.

(R)-methyl 2-((4-bromophenyl)(diphenylphosphoryl)methyl)acrylate (4i)

4i was isolated by column chromatography using silica gel in 85% yield.

¹**H NMR** (300 MHz, CDCl₃) : δ 7.86 (t, *J* = 7.8 Hz, 2H), 7.52-7.22 (m, 12H), 6.78 (s, 1H), 6.43 (s, 1H), 4.99 (d, *J* = 8.4 Hz, 1H), 3.63 (s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.6 (*J* = 9.0 Hz), 136.2 (*J* = 2.25 Hz), 133.8 (*J* = 5.25 Hz), 132.5 (*J* = 7.5 Hz), 131.8 (*J* = 2.25Hz), 131.7, 131.6, 131.3 (*J* = 0.75 Hz), 131.1 (*J* = 3.75 Hz), 131.0 (*J* = 7.5 Hz), 130.9 (*J* = 9.0 Hz), 130.5 (*J* = 4.5 Hz), 128.6 (*J* = 11.25 Hz), 128.3 (*J* = 11.25 Hz), 121.4 (*J* = 2.25 Hz), 52.4 (*J* = 7.5 Hz), 45.0 (*J* = 66.75 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 31.2;

IR: 3057, 2951, 1716, 1485, 1438, 1238, 1189, 1122, 727, 702, 547 cm⁻¹;

HRMS (ESI): C₂₃H₂₀BrO₃P+H, Calc: 455.0406, Found: 455.0407;

 $[\alpha]_{D}^{rt} = -259 (c = 0.99, CHCl_3);$

HPLC: DAICEL CHIRALCEL OD-H, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 4.7$, $t_{minor} = 5.3$, 92% ee.

(R)-methyl 2-((diphenylphosphoryl)(4-methoxyphenyl)methyl)acrylate (4j)

4j was isolated by column chromatography using silica gel in 87% yield.

¹**H** NMR (300 MHz, CDCl₃) : δ 7.90-7.83 (m, 2H), 7.51-7.24 (m, 10H), 6.76-6.70 (m, 3H), 6.40 (d, J = 2.1 Hz, 1H), 4.99 (d, J = 8.7 Hz, 1H), 3.72 (s, 3H), 3.62 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 166.8 (J = 9.75 Hz), 158.7 (J = 2.25 Hz), 136.7 (J = 1.5 Hz), 132.9 (J = 8.25 Hz), 131.6 (J = 2.25Hz), 131.3 (J = 3.0 Hz), 131.1 (J = 5.25 Hz), 131.0 (J = 5.25 Hz), 131.0, 130.9, 130.0 (J = 6.75 Hz), 128.5 (J = 11.25 Hz), 128.1 (J = 12 Hz), 126.5 (J = 5.25 Hz), 113.7 (J = 1.5 Hz), 55.1, 52.3, 44.7 (J = 68.25 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 31.7;

IR: 3057, 2953, 1717, 1510, 1438, 1253, 1183, 1124, 727, 700, 519 cm⁻¹;

HRMS (ESI): C₂₄H₂₃O₄P+H, Calc: 407.1407, Found: 407.1403;

 $[\alpha]_{D}^{rt} = -247 (c = 0.95, CHCl_3);$

HPLC: DAICEL CHIRALCEL OD-H, Hexane/iPrOH = 70/30, flow rate = 0.5 mL/min, retention time: $t_{major} = 10.3$, $t_{minor} = 11.4$, 95% ee.

(S)-methyl 2-((diphenylphosphoryl)(furan-2-yl)methyl)acrylate (4k)

4k was isolated by column chromatography using silica gel in 98% yield.

¹**H NMR** (300 MHz, CDCl₃): δ 7.81-7.65 (m, 4H), 7.52-7.35 (m, 6H), 7.24 (t, *J* = 0.9 Hz, 1H), 6.52 (m, 2H), 6.39 (t, *J* = 2.7 Hz, 1H), 6.22 (*J* = 1.8 Hz, 1H), 5.36 (d, *J* = 10.8 Hz, 1H), 3.56(s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.4 (*J* = 6.0 Hz), 148.5 (*J* = 4.5 Hz), 142.1 (*J* = 2.25 Hz), 133.3 (*J* = 3.75 Hz), 132.2 (*J* = 18.75 Hz), 131.8, 131.8 (*J* = 3.0 Hz), 131.7, 131.6, 131.4 (*J* = 9.0 Hz), 131.1 (*J* = 9.0 Hz), 130.8 (*J* = 16.5 Hz), 128.3 (*J* = 12 Hz), 110.7 (*J* = 1.5 Hz), 109.8 (*J* = 4.5 Hz), 52.3, 39.9 (*J* = 66.0 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 29.2;

IR: 3057, 1717, 1438, 1271, 1199, 1120, 699, 526 cm⁻¹;

HRMS (ESI): C₂₁H₁₉O₄P+H, Calc: 367.1094, Found: 367.1088;

 $[\alpha]_{D}^{rt} = +3 (c = 1.04, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 13.4$, $t_{minor} = 16.6$, 44% ee.

(R)-methyl 2-((dinaphthalen-1-ylphosphoryl)(phenyl)methyl)acrylate (41)

41 was isolated by column chromatography using silica gel in 80% yield.

¹**H NMR** (300 MHz, CDCl₃): δ 8.72 (d, J = 8.4 Hz, 1H), 8.54 (d, J = 8.4 Hz, 1H), 8.04-6.95 (m, 18H), 6.56 (d, J = 1.8 Hz, 1H), 5.29 (d, J = 9 Hz, 1H), 3.58(s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.9 (J = 10.5 Hz), 137.0 (J = 2.25 Hz), 134.7(J = 5.25 Hz), 134.0 (J = 2.25 Hz, J = 8.25 Hz), 133.9, 133.2 (J = 9.0 Hz), 133.0 (J = 2.25 Hz), 132.7 (J = 3.0 Hz), 132.0 (J = 10.5 Hz), 131.4 (J = 9.75 Hz, J = 17.25Hz), 130.1 (J = 12.0 Hz), 129.8, 128.7, 128.5 (J = 0.75 Hz), 128.3, 128.0 (J = 1.5 Hz), 127.3, 127.1 (J = 5.25 Hz, J = 9.0 Hz), 126.8, 126.3, 126.2 (J = 3.75 Hz), 125.8, 124.1 (J = 11.25 Hz, J = 13.5 Hz),52.3, 46.5 (J = 68.25 Hz); ³¹**P NMR**(121 MHz, CDCl₃): δ 38.4;

IR: 3059, 2230, 1714, 1505, 1438, 1241, 1174, 775, 732 cm⁻¹;

HRMS (ESI): C₃₁H₂₅O₃P+H, Calc: 477.1614, Found: 477.1606;

 $[\alpha]_{D}^{rt} = -16 (c = 1.34, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 80/20, flow rate = 1.0 mL/min, retention time: $t_{major} = 25.4$, $t_{minor} = 42.7$, 95% ee.

(R)-methyl 2-((bis(4-fluorophenyl)phosphoryl)(phenyl)methyl)acrylate (4m)

4m was isolated by column chromatography using silica gel in 63% yield.

¹**H** NMR (300 MHz, CDCl₃): δ 7.91- 7.83 (m, 2H), 7.48-7.39 (m, 2H), 7.36-7.33 (dd, J = 2.1 Hz, J = 5.4 Hz, 2H), 7.22-7.15 (m, 5H), 6.99-6.92 (m, 2H), 6.79 (d, J = 2.4 Hz, 1H), 6.44 (d, J = 2.1 Hz, 1H), 4.99 (d, J = 8.4 Hz, 1H), 3.64(s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.7 (J = 9.75 Hz), 165.0 (J = 3.75 Hz, J = 252 Hz), 164.7 (J = 3.75 Hz, J = 252.25 Hz), 136.1 (J = 9.75 Hz), 134.3(J = 5.25 Hz), 133.6 (J = 8.25 Hz, J = 9.75 Hz), 133.4 (J = 9.0 Hz, J = 10.5 Hz), 130.5 (J = 6.0 Hz), 130.0 (J = 6.0 Hz), 128.5 (J = 3.0 Hz, J = 19.5 Hz), 128.4 (J = 1.5 Hz), 127.4 (J = 2.25 Hz), 127.1 (J = 3.75 Hz, J = 15.75 Hz), 116.1 (J = 12.75 Hz, J = 21.0 Hz), 115.6 (J = 12.75 Hz, J = 21.0 Hz), 52.4, 45.7 (J = 68.25 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 30.6;

IR: 2229, 1716, 1592, 1498, 1237, 1190, 1118, 830, 542 cm⁻¹;

HRMS (ESI): C₂₃H₁₉F₂O₃P+H, Calc: 413.1113, Found: 413.1121;

 $[\alpha]_{D}^{rt} = -199 (c = 1.11, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 8.3$, $t_{minor} = 11.7$, 90% ee.

(R)-methyl 2-((dip-tolylphosphoryl)(phenyl)methyl)acrylate (4n)

4n was isolated by column chromatography using silica gel in 81% yield.

¹**H** NMR (300 MHz, CDCl₃): δ 7.74 (dd, J = 7.8 Hz, J = 10.5 Hz, 2H), 7.36-7.03 (m, 11H), 6.80 (d, J = 2.4 Hz, 1H), 6.42 (d, J = 1.8 Hz, 1H), 4.99 (d, J = 8.7 Hz, 1H), 3.61(s, 3H), 2.37 (s, 3H), 2.26 (s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.8 (J = 9.75 Hz), 141.9 (J = 3.0 Hz), 141.6 (J = 3.0 Hz), 136.6 (J = 2.25 Hz), 134.9(J = 5.25 Hz), 131.1 (J = 9.0 Hz), 130.9 (J = 9.0 Hz), 130.2 (J = 6.75 Hz), 130.0 (J = 5.25 Hz), 129.8 (J = 9.0 Hz), 129.2 (J = 12.0 Hz), 128.8 (J = 12.0 Hz), 128.4 (J = 6.0 Hz), 128.2 (J = 0.75 Hz), 127.0 (J = 2.25 Hz), 52.2, 45.7 (J = 67.5 Hz), 21.5, 21.4;

³¹**P NMR**(121 MHz, CDCl₃): δ 31.9;

IR: 3027, 2223, 1716, 1440, 1239, 1185, 1118, 655 cm⁻¹;

HRMS (ESI): C₂₅H₂₅O₃P+H, Calc: 405.1614, Found: 405.1610;

 $[\alpha]_{D}^{rt} = -216 (c = 0.98, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 90/10, flow rate = 1.0 mL/min, retention time: $t_{major} = 12.3$, $t_{minor} = 9.3$, 94% ee.

(R)-methyl 2-((bis(4-methoxyphenyl)phosphoryl)(phenyl)methyl)acrylate (40)

40 was isolated by column chromatography using silica gel in 94% yield.

¹**H** NMR (300 MHz, CDCl₃): δ 7.77 (dd, J = 8.7 Hz, J = 10.5 Hz, 2H), 7.37-7.30 (m, 4H), 7.22-7.17 (m, 3H), 6.97 (dd, J = 2.4 Hz, J = 9.0 Hz, 2H), 6.76 (dt, J = 2.4 Hz, J = 9.0 Hz, 3H), 6.42 (d, J = 2.1 Hz, 1H), 4.95 (d, J = 8.7 Hz, 1H), 3.83(s, 3H), 3.73 (s, 3H), 3.62 (s, 3H);

¹³**C NMR** (75 MHz, CDCl₃): δ 166.8 (J = 9.75 Hz), 162.2 (J = 3.0 Hz), 161.9 (J = 3.0 Hz), 136.6 (J = 2.25 Hz), 134.9(J = 5.25 Hz), 132.9 (J = 9.75 Hz), 132.8 (J = 10.5 Hz), 130.2 (J = 6.0 Hz), 130.0 (J = 6.0 Hz), 128.2 (J = 1.5 Hz), 127.0 (J = 1.5 Hz), 124.2 (J = 30.0 Hz), 122.8 (J = 26.25 Hz), 114.1 (J = 12.75 Hz), 113.5 (J = 12.75 Hz), 55.2, 55.1, 52.2, 46.0 (J = 67.5 Hz);

³¹**P NMR**(121 MHz, CDCl₃): δ 32.1;

IR: 2953, 2222, 1716, 1597, 1501, 1256, 1179, 1119, 1028, 732, 549 cm⁻¹;

HRMS (ESI): C₂₅H₂₅O₅P+H, Calc: 437.1512, Found: 437.1519;

 $[\alpha]_{D}^{rt} = -227 (c = 0.96, CHCl_3);$

HPLC: DAICEL CHIRALCEL AD, Hexane/iPrOH = 70/30, flow rate = 1.0 mL/min, retention time: $t_{major} = 37.3$, $t_{minor} = 35.4$, 94% ee.

X-ray Structure of (*R*)-4h:

Datablock: p21

Bond precision:		C-C = 0.0050 A				Wavelength=0.71073		
Cell:	a=5.7884(6)		b=19.67	(2)	c=9.4173(11)		
	alpha=90		beta=10	3.446(6)	gamma=9	0		
Temperature:	296 K							
		Calculate	ed			Reported		
Volume		1043.0(2)			1043.0(2)		
Space group		P 21				P2(1)		
Hall group		P 2yb				?		
Moiety formu	ıla	C23 H20	Cl O3 P	•		?		
Sum formula		C23 H20	Cl O3 P	•		C23 H20 Cl O3 P		
Mr		410.81				410.81		
Dx,g cm-3		1.308				1.308		
Z		2				2		
Mu (mm-1)		0.280				0.280		
F000		428.0				428.0		
F000'		428.67						
h,k,lmax		7,24,11				7,24,11		
Nref		2227[43	21]			4030		
Tmin,Tmax		0.899,0.9	930			0.901,0.931		
Tmin'		0.899						
Correction m	ethod= MUL	TI-SCAN	1					
Data complet	eness= 1.81/0	0.93		Theta(max)=	26.490			
R(reflections))= 0.0439(32	264)		wR2(refle	ections)= 0	.1017(4030)		
S = 1.042		Npar	r= 254					

Chiralcel Fluent phase Flow Retention ee Entry Product column Hexane/iPrOH (%) rate time $\stackrel{O}{\stackrel{II}{\stackrel{II}{\stackrel{P}{=}}} = Ph$ $t_{major} =$ COOMe 7.8 AD 70:30 1.0 95 1 $t_{minor} =$ 11.3 4a O Ph-P-Ph $t_{major} =$ COOMe 14.8 2 AD 80:20 1.081 $t_{minor} =$ F 27.1 4b $t_{major} =$ COOMe 7.1 3 70:30 1.0 OD-H 76 $t_{\rm minor} =$ CI 4.8 4c Ö Ph-P-Ph $t_{major} =$ 8.3 COOMe AD 70:30 1.0 90 4 $t_{minor} =$ OMe 22.9 4d O □ -P_−Ph Ph $t_{major} =$.COOMe 26.15 OD-H 95:5 0.5 89 $t_{minor} =$ 29.9 ĊI 4e $\begin{array}{c} O\\ H\\ Ph-P-Ph \end{array}$ $t_{major} =$ COOMe 10.4 6 AD 70:30 1.0 97 $t_{minor} =$ 12.1 ÓMe 4f

HPLC Analytic Conditions:

14	o P COOMe 4n	AD	90:10	1.0	$t_{major} = 12.3$ $t_{minor} = 9.3$	94
15	MeO P COOMe 40	AD	70:30	1.0	$t_{major} = 37.3$ $t_{minor} = 35.4$	94

	名称	保留时间	面积	% 面积	高度	积分类型	
1		7.817	8286292	97.36	629244	bb	
2		11.310	224453	2.64	11889	bb	

(S)-methyl 2-((diphenylphosphoryl)(2-fluorophenyl)methyl)acrylate (4b)

	名称	保留时间	面积	% 面积	高度	积分类型
1		14.766	10565042	90.43	385282	bb
2		27.132	1118001	9.57	24777	bb

(S)-methyl 2-((2-chlorophenyl)(diphenylphosphoryl)methyl)acrylate (4c)

Chiralpak OD-H column, hexane/iPrOH (70:30), flow rate 1.0 mL/min.

(R)-methyl 2	2-((diphe	nylphosph	oryl)(2-me	thoxyphenyl)methyl)acry	ylate (4d)
	· · ·		• • •			

Chiralpak AD column, hexane/iPrOH (70:30), flow rate 1.0 mL/min.

	名称	保留时间	面积	% 面积	高度	积分类型
1		8.334	5249128	94.95	291731	bb
2		22.947	279230	5.05	6879	bb

(R)-methyl 2-((3-chlorophenyl)(diphenylphosphoryl)methyl)acrylate (4e) Chiralpak OD-H column, hexane/iPrOH (95:5), flow rate 0.5 mL/min.

(R)-methyl 2-((diphenylphosphoryl)(3-methoxyphenyl)methyl)acrylate (4f)

	名称	保留时间	面积	% 面积	高度	积分类型
1		10.392	11178740	98.49	527224	bb
2		12.147	171823	1.51	8590	bb

 $(R)-methyl\ 2-((diphenylphosphoryl)(4-fluorophenyl)methyl)acrylate\ (4g)$

Chiralpak OD-H column, hexane/iPrOH (70:30), flow rate 1.0 mL/min.

(*R*)-methyl 2-((4-chlorophenyl)(diphenylphosphoryl)methyl)acrylate (4h)

(*R*)-methyl 2-((4-bromophenyl)(diphenylphosphoryl)methyl)acrylate (4i) Chiralpak OD-H column, hexane/iPrOH (70:30), flow rate 1.0 mL/min.

(R)-methyl 2-((diphenylphosphoryl)(4-methoxyphenyl)methyl)acrylate (4j)

(S)-methyl 2-((diphenylphosphoryl)(furan-2-yl)methyl)acrylate (4k)

Chiralpak AD column, hexane/iPrOH (70:30), flow rate 1.0 mL/min.

 $(R) - methyl \ 2 - ((dinaphthalen - 1 - ylphosphoryl)(phenyl)methyl)acrylate \ (4l)$

 $(\it R)\mbox{-methyl}\ 2\mbox{-}((bis(4\mbox{-fluorophenyl})\mbox{phosyhoryl})(\mbox{phenyl})\mbox{methyl})\mbox{acrylate}\ (4m)$

Chiralpak AD column, hexane/iPrOH (70:30), flow rate 1.0 mL/min.

	名称	保留时间	面积	% 面积	高度	积分类型
1		8.271	13521215	94.87	865031	bb
2		11.749	731488	5.13	35602	bb

	名称	保留时间	面积	% 面积	高度	积分类型
1		9.323	137087	2.75	3687	bb
2		12.337	4839363	97.25	96427	bb

 $(R) - methyl \ 2 - ((bis(4-methoxyphenyl)phosphoryl)(phenyl)methyl)acrylate \ (4o)$

4a

1	1	1	1											1
4 4 0	100	400	00	60	40	00	^		40	60	00	400	400	10 10 100
140	1/0	11111	80	D U	40	20		-/0	-40	-00	-80	-100	-1/0	nnm
	120	100					•		10			100	120	PPIII

-3.568

-0.00.0-

		l								l	l								
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	ppm

-31.285

ppm

--0.000

72 67 38	4 ア 5 ア 7 6 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	707	4 DD
		4 O U	m n n n
0 0 0	222222222222222222222222222222222222222		
0000	\neg	rr 9	7 07
\neg			U 44
$\forall \mid \mid$			

31.529

--0.000

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

TTTT

F P COOMe 4m

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 ppm

.....

30.63

77.42 77.00 76.58

17

52.21

46.11

 \backslash

21.49

Y

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

 166.31

 166.71

 166.71

 166.71

 166.71

 166.71

 1241.95

 1231.135

 1231.135

 1232.131

 1233.132

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1233.125

 1234.15

 1235.15

 1235.15

 1237.15

ì

			[
110	100	00	00	70	60	50	40	20	20	10	0	10	20	20	n n m
110	100	90	00	70	00	50	40	30	20	10	U	-10	-20	-30	ppm

32.07

.....

.....

.....