Oxindole synthesis by palladium-catalysed aromatic C-H alkenylation

Satoshi Ueda, Takahiro Okada and Hideko Nagasawa

Laboratory of Medicinal and Pharmaceutical Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.

SUPPORTING INFORMATION

Table of Contents

General Method	S2
General Procedure for the Synthesis of Anilides	S2
General Procedure for the Synthesis of Oxindoles	S 6
References	S11
Spectra	S12

General Method

¹H and ¹³C NMR spectra were recorded at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR) frequency in CDCl₃ or DMSO-*d6*. Chemical shifts are calibrated to the solvent signals. Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. All reagents and solvents were used without further purification from commercial sources. Column chromatography was carried out with silica gel (300-350 mesh). Merck Art 7749 Kieselgel 60 PF 254 was used in preparative thin-layer chromatography (TLC). Exact mass (HRMS) spectra were recorded on a JEOL JMS-SX102A mass spectrometer.

General Procedure for the Synthesis of Anilides

Procedure A: To a stirred solution of aniline (1.0 eq.) in EtOAc were added triethylamine (1.05 eq.) and acid chloride (1.05 eq.) at 0 °C. The reaction mixture was stirred at room temperature for 4 h after which it was extracted with EtOAc. The extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure and purification by recrystalization afforded pure anilide.

Procedure B: To a stirred solution of carboxylic acid (1.1 eq.) in DMF were added EDC·HCl (1.1 eq.), HOBt·H₂O (1.1 eq.) and aniline (1.1 eq.) at 0 °C. The reaction mixture was stirred at room temperature for 12 h after which it was extracted with EtOAc. The extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure and purification by recrystalization afforded pure anilide.

Procedure C: To a stirred solution of aniline (1.0 eq.) in DMF were added NaH (60% in mineral oil, 1.1 eq.) and acid chloride (1.1 eq.) at 0 °C. The reaction mixture was stirred at 60 °C for 6 h after which it was extracted with EtOAc. The extract was washed with brine and dried over MgSO₄. Concentration under reduced pressure and purification by recrystalization afforded pure anilide.

N-Phenylcinnamamide (1a)¹

Following the procedure A for anilide synthesis, the reaction was performed on a 20.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (4.19 g, 94%). m.p. 151-152 °C (lit.¹ m.p. 150-153 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.74-7.65 (m, 3H),

7.38-7.33 (m, 2H), 7.30-7.20 (m, 5H), 7.07 (t, 1H, J = 7.6 Hz), 6.70 (d, 1H, J = 16.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 142.1, 138.1, 134.5, 129.7, 128.9, 128.7, 127.9, 124.4, 121.1, 120.4; MS (EI), m/z 223 (M⁺)

N-p-Tolylcinnamamide (1b)²

Following the procedure A for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (1.04 g, 88%). m.p. 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 7.68 (d, 1H, *J* = 15.6 Hz), 7.56 (d, 2H, *J*

= 8.4 Hz), 7.34-7.29 (m, 2H), 7.26-7.16 (m, 3H), 7.03 (d, 2H, J = 8.4 Hz), 6.71 (d, 1H, J = 16.0 Hz), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 141.7, 135.6, 134.6, 133.9, 129.6, 129.4, 128.6,

N-4-Fluorophenylcinnamamide (1c)²

Following the procedure A for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (0.86 g, 82%). m.p. 139-141 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.27 (s, 1H), 7.80-7.74 (m,

2H), 7.66-7.61 (m, 3H), 7.49-7.40 (m, 3H), 7.19 (t, 2H, J = 8.8 Hz), 6.84 (d, 1H, J = 16.0 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.4, 158.0 (J = 241.1 Hz), 140.2, 135.6(J = 2.4 Hz), 134.7, 129.7, 128.9, 127.6, 122.1, 120.9 (J = 8.2 Hz), 115.2 (J = 22.2 Hz); MS (EI), m/z 241 (M⁺)

N-4-Chlorophenylcinnamamide (1d)³

Following the procedure A for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (1.08 g, 92%). m.p. 172-173 °C (lit.³ m.p. 170 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 10.36 (s,

1H), 7.79 (d, 2H, J = 8.8 Hz), 7.69-7.63 (m, 3H), 7.48-7.38 (m, 5H), 6.87 (d, 1H, J = 16.0 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.6, 140.4, 138.2, 134.6, 129.7, 128.9., 128.6, 127.7, 126.9, 122.0, 120.7; MS (EI), m/z 257 (M⁺)

N-4-Ethoxyphenylcinnamamide (1e)⁴

Following the procedure A for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (1.05 g, 79%). m.p. 148-149 °C (lit.⁴ m.p.145 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 10.09 (s,

1H), 7.68-7.57 (m, 5H), 7.48-7.38 (m, 3H), 6.91 (d, 2H, J = 8.8 Hz), 6.84 (d, 1H, J = 16.0 Hz), 3.99 (t, 2H, J = 7.2 Hz), 1.32 (t, 3H, J = 7.2 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.0, 154.6, 139.6, 134.8, 132.4, 129.6, 129.0, 127.6, 122.4, 120.7, 114.4, 63.1, 14.7; MS (EI), m/z 267 (M⁺)

N-Phenyl-4-methoxycinnamamide (1f)⁵

Following the procedure B for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound was isolated by recrystalization (EtOAc-hexane) as a white solid (0.97 g, 77%). m.p. 127-129 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.14 (s, 1H), 7.76 (d,

2H, J = 7.6 Hz), 7.64-7.58 (m, 3H), 7.39-7.32 (m, 2H), 7.10-6.98 (m, 3H), 6.75 (d, 1H, J = 15.6 Hz), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.9, 160.5, 139.9, 139.4, 129.3, 128.7, 127.3, 123.1, 119.7, 119.2, 111.4, 55.2; MS (EI), m/z 253 (M⁺)

N-Phenyl-4-isopropylcinnamamide (1g) CAS:541520-03-0

Following the procedure B for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (0.78 g, 63%). m.p. 121-122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.72 (d, 1H, *J* =

15.6 Hz), 7.64 (d, 2H, J = 7.2 Hz), 7.39 (d, 2H, J = 8.4 Hz), 7.31 (t, 2H, J = 8.0 Hz), 7.17 (d, 2H, J = 8.0 Hz), 7.10 (t, 1H, J = 7.2 Hz), 6.58 (d, 1H, J = 16.4 Hz), 2.94-2.84 (m, 1H), 1.24 (s, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 151.1, 142.3, 138.1, 132.2, 129.0, 128.0, 126.9, 124.3, 120.1, 119.9, 34.0, 23.7; HRMS (EI), *m/z* calcd. for C₁₈H₁₉NO (M⁺) 265.1467, found: 265.1460.

N-(3-Methylphenyl)-3-methyl-2-butenamide (1h) CAS: 171662-30-9

Following the procedure A for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (0.86 g, 91%). m.p. 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.42 (s, 1H), 7.30 (d, 1H, *J* = 7.6 Hz), 7.13 (m, 1H), 6.86 (d, 1H, *J* = 7.2 Hz), 5.73 (s, 1H), 2.27 (s, 3H), 2.19 (s, 3H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 152.7, 138.6, 138.2, 128.5, 124.6, 120.5, 118.9, 116.9, 27.2, 21.3, 19.8; HRMS (EI), *m/z* calcd. for C₁₂H₁₅NO (M⁺) 189.1154, found: 189.1152.

N-(4-Chlorophenyl)-3-methyl-2-butenamide (1i)⁶

Following the procedure A for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (g, 66%). m.p. 117-118 °C (lit.⁶ m.p. 116-117 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.48 (d, 2H, J = 8.0 Hz), 7.18 (d, 2H, J = 8.4 Hz), 5.74 (s, 1H), 2.17 (s, 3H), 1.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 153.5, 136.8, 128.7, 128.6, 121.3, 118.5, 27.2, 19.9; MS (EI), m/z 209 (M⁺)

(E)-2-Methyl-N-phenyl-2-butenamide $(1j)^7$

Following the procedure B for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (0.58 g, 86%). m.p. 72-73 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.58-7.53 (m, 2H), 7.30-7.24 (m, 3H), 7.09-7.04 (m, 1H), 6.49-6.44 (m, 1H), 1.88 (s, 3H), 1.74 (d, 1H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 138.1, 132.7, 131.4, 131.0, 128.7, 123.9, 120.1, 13.9, 12.3; MS (EI), *m/z* 175 (M⁺)

N,N-Diphenylcinnamamide (3a)⁸

Following the procedure C for anilide synthesis, the reaction was performed on a 10.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (2.09 g, 78%). m.p. 153-154 °C (lit.⁸ m.p. 152-153 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, 1H, J = 16.4 Hz),

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2010 7.40-7.25 (m, 15H), 6.48 (d, 1H, J = 15.6 Hz),; ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 142.7, 142.6, 135.0, 129.6, 129.2, 128.7, 127.9, 127.5, 126.8, 119.7; MS (EI), m/z 299 (M⁺)

3-Methyl-*N*,*N*-diphenyl-2-butenamide (3b) (New compound)

Following the procedure C for anilide synthesis, the reaction was performed on a 10.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (1.96 g, 78%). m.p. 94-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 4H), 7.22-7.16 (m, 6H), 5.61 (s, 1H), 2.17 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 152.2, 142.8, 128.8, 127.2, 126.1, 118.2, 27.4, 20.0; HRMS (EI), *m/z* calcd. for C₁₇H₁₇NO (M⁺) 251.1310, found: 251.1308.

N-Methyl-*N*-phenylcinnamamide (3c)⁹

Following the procedure A for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (9.36 g, 79%). m.p. 67-68 °C (lit.⁹ m.p. 70 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, 1H, J = 15.6 Hz), 7.44-7.38 (m, 2H), 7.36-7.20 (m, 8H), 6.38 (d, 1H, J = 15.6 Hz), 3.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 143.4, 141.4, 135.0, 129.4, 129.2, 128.4, 127.6, 127.3, 127.1, 118.6, 37.3; MS (EI), m/z 237 (M⁺)

N-Cinnamoyltetrahydroquinoline (3d)¹⁰

Following the procedure A for anilide synthesis, the reaction was performed on a 5.0 mmol scale. The title compound as isolated by recrystalization (EtOAc-hexane) as a white solid (1.14 g, 87%). m.p. 90-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, 1H, *J* = 16.0 Hz), 7.44-7.40 (m, 2H), 7.33-7.30 (m, 3H), 7.21-7.10 (m, 4H), 6.84 (d, 1H, *J* = 15.6 Hz), 3.91 (t, 2H, *J* = 6.8 Hz), 2.74 (t, 2H, *J* = 6.8 Hz), 2.03-1.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 141.6, 138.5, 135.2, 133.1, 129.4, 128.6, 128.4, 127.7, 126.0, 125.1, 124.7, 120.1, 43.2, 26.9, 23.9; MS (EI), *m/z* 263 (M⁺)

(Z)-N,3-Diphenylacrylamide (5)¹¹

To a stirred solution of ethyl-3-phenylpropiolate (1.65 ml, 10 mmol) in MeOH (20 ml) was added Lindlar catalyst (5% Pd on CaCO₃, poisned with lead) (1.06 g, 1 mmol), and pyridine (815 μ l, 10 mmol). The reaction mixture was stirred under H₂ balloon for 2 h at room temperature. The reaction mixture was filtered through a Celite pad and concentrated in vacuo. The residue was purified by column chromatography (Hexane-AcOEt, 20:1) to afford **S1** as colorless oil (1.54 g, 88 % yield). ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.55 (m, 2H), 7.37-7.32 (m, 3H), 6.94 (d, 1H, *J* = 12.8 Hz), 5.95 (d,

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 1H, J = 12.8 Hz), 4.17 (q, 2H, J = 7.6 Hz), 1.24 (t, 3H, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 142.9, 134.9, 129.7, 129.6, 127.9, 119.9, 60.2, 14.0; MS (EI), *m/z* 176 (M⁺).

To a stirred solution of S1 (1.54 g 8.8 mmol) in EtOH (15 ml) and THF (15 ml) was added 1M aqueous NaOH (15 ml) and the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was concentrated in vacuo and extracted with EtOAc. The organic layer was washed with 5% aqueous citric acid and brine. The extract was dried over MgSO4 and concentrated in vacuo to afford crude (Z)-3-phenylacrylic acid which was used in next step without further purification.

Following procesure B using (Z)-3-phenylacrylic acid and aniline, 5 was isolated by recrystalization (EtOAc-hexane) as a white solid (1.56 g, 80% from S1). m.p. 93-94 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.47 (m, 2H), 7.37-7.23 (m, 8H), 7.07 (t, 1H, J = 7.2 Hz), 6.89 (d, 1H J = 12.0 Hz), 6.10 (d, 1H J = 12.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 137.5, 134.7, 129.0, 128.9, 128.6, 128.6, 125.0, 124.4, 119.9; MS (EI), *m/z* 223 (M⁺)

General Procedure for the Synthesis of Oxindoles

To a dried screw-cap vial was added anilide (0.3 mmol), AgOCOCF₃ (132.5 mg, 0.6 mmol), PdCl₂MeCN₂ (3.5 mg, 0.015 mmol) and chlorobenzene. The reaction mixture was stirred at 100-120 °C for 6-12 h in pre-heated oil bath. After cooling to room temperature, the reaction was diluted with EtOAc and filtered over glass filter. The filtrate was washed with 5% aqueous NaHCO₃ and brine. The extract was dried over MgSO₄ and concentrated in vacuo. The crude was purified by preparative TLC.

(*E*)-3-Benzylideneoxindole (2a)¹²

The title compound was isolated by preparative TLC (hexane-EtOAc 2:1) as a orange solid (48.4 mg, 73%). m.p. 178-179 °C (lit.¹² m.p. 179-180 °C); ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 7.85 (s, 1H), 7.69-7.61 (m, 3H), 7.48-7.42(m, 3H), 7.20 (t, 1H, J = 8.0 Hz), 6.92 (d, 1H, J = 7.6 Hz), 6.85 (t, 1H, J = 7.2 Hz); ¹³C NMR (100 MHz, -0 CDCl₃) δ 170.6, 141.8, 137.5, 134.8, 129.9, 129.6, 129.3, 128.6, 127.7, 123.0, 121.7, 121.6, 110.4; MS (EI), *m/z* 221 (M⁺).

(Z)-3-Benzylideneoxindole (2a)¹²

The title compound was isolated by preparative TLC (hexane-EtOAc 2:1) as a orange solid (5.3 mg, 8%). m.p. 172-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29-8.25 (m, 2H), 7.78 (s, 1H), 7.57-7.51 (m, 2H), 7.48-7.42(m, 3H), 7.22 (t, 1H, J = 8.0 Hz), 7.04 (d, 1H, J = 7.6 Hz), 6.84 (t, 1H, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 139.5, 137.6, 133.7, 132.0, 130.6, 128.9, 128.3, 126.1, 125.3,

121.8, 119.3, 109.4; MS (EI), *m/z* 221 (M⁺).

(*E*)-3-Benzylidene-5-methyoxindole $(2b)^{13}$

The title compound was isolated by column chromatography (hexane-EtOAc 2:1) as a orange solid (46.5 mg, 66%). m.p. 178-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 7.81, (s, 1H), 7.68-7.64 (m, 2H), 7.50-7.42 (m, 4H), 7.01 (d, 1H, J Supplementary Material (ESI) for Chemical Communications

 $\begin{array}{l} \text{This journal is (c) The Royal Society of Chemistry 2010} \\ = 8.4 \text{ Hz}), \ 6.81 \ (d, \ 1H, \ J = 7.6 \text{ Hz}), \ 2.20 \ (s, \ 3H); \ ^{13}\text{C} \ \text{NMR} \ (100 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 170.7, \ 139.6, \ 137.1, \end{array}$ 134.9, 131.0, 130.4, 129.6, 129.3, 128.6, 127.9, 123.5, 121.7, 110.1, 21.1; MS (EI), *m/z* 235 (M⁺).

(Z)-3-Benzvlidene-5-methyoxindole (2b)¹⁴

The title compound was isolated by column chromatography (hexane-EtOAc 2:1) as a orange solid (6.3 mg, 9%). m.p. 184-185 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28-8.24 (m, 2H), 8.00 (s, 1H), 7.52 (s, 1H), 7.48-7.41 (m, 3H), 7.34 (s, 1H), 7.02 (d, 1H, J = 8.4 Hz), 6.72 (d, 1H, J = 8.0 Hz), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ167.9, 137.4, 137.2, 133.8, 131.9, 131.2, 130.4,

129.4, 128.3, 126.4, 125.3, 120.0, 109.2, 21.2; MS (EI), *m/z* 235 (M⁺).

(E)-3-Benzylidene-5-fluorooxindole (2c) CAS: 686726-35-2

The title compound was isolated by preparative TLC (hexane-EtOAc 2:1) as a orange solid (45.2 mg, 63%). m.p.196-197 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 7.89 (s, 1H), 7.66-7.61 (m, 2H), 7.52-7.44(m, 3H), 7.36-7.31 (m, 1H), 6.94-6.89 (m, 1H), 6.86-6.81 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 158.3 (d, J = 239.5 Hz) 139.0, 137.8, 134.3, 130.1, 129.2, 128.8, 127.5, 122.6 (d, J = 9.6 Hz), 116.2 (d, J = 2.4 Hz), 110.7 (d, J = 8.2 Hz), 110.4 (d, J = 26.4 Hz); MS (EI),

m/z 239 $(M^{+}).$

(Z)-3-Benzylidene-5-fluorooxindole (2c) CAS: 686726-35-2

The title compound was isolated by preparative TLC (hexane-EtOAc 2:1) as a orange solid (7.9 mg, 11%). m.p. 212-213 °C °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.63 (s, 1H), 8.40-8.37 (m, 2H), 7.89 (s, 1H), 7.66 (dd, 1H, J = 2.8 Hz, J = 9.2 Hz), 7.50-7.46(m, 3H), 7.08-7.01 (m, 1H), 6.83-6.78 (m, 1H; ¹³C NMR (100 MHz, DMSO- d_6) δ 167.1, 157.9 (d, J = 236.2 Hz) 138.4, 137.0,

133.7, 132.0, 130.7, 128.2, 127.7, 126.3 (d, J = 9.1 Hz), 115.1 (d, J = 23.9 Hz), 110.0 (d, J = 8.3 Hz), 107.3 (d, J = 25.5 Hz); MS (EI), m/z 239 (M⁺).

(*E*)-3-Benzylidene-5-chlorooxindole (2d)¹²

The title compound was isolated by column chromatography (hexane-EtOAc 2:1) as a orange solid (44.4 mg, 58%). m.p. 219-220 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.89 (s, 1H), 7.66-7.60 (m, 3H), 7.54-7.46 (m, 3H), 7.19 (d, 1H, J = 8.4 Hz), 6.85 (d, 1H, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 140.0, 139.2, 134.3, 130.2, 129.6, 129.3, 128.9, 127.2, 126.8, 123.0, 111.1; MS (EI), m/z

255 (M⁺).

(Z)-3-Benzylidene-5-chlorooxindole (2d)¹²

The title compound was isolated by column chromatography (hexane-EtOAc 2:1) as a orange solid (7.6 mg, 10%). m.p. 218-220 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.75 (d, 1H, J = 6.8 Hz), 8.41-8.37 (m, 2H), 7.95 (s, 1H), 7.86

(s, 1H), 7.51-7.46 (m, 3H), 7.25 (d, 1H, J = 8.4 Hz), 6.84 (d, 1H, J = 8.4 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ 166.8, 139.4, 138.7, 133.7, 132.1, 130.8, 128.3, 128.2, 126.8, 125.7, 119.9, 110.7; MS (EI), m/z 255 (M⁺).

(E)-3-Benzylidene-5-ethoxyoxindole (2e) (New compound)

The title compound was isolated by column chromatography (hexane-EtOAc 3:2) as a red solid (46.1 mg, 58%). m.p. 179-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.75 (s, 1H), 7.60-7.56 (m, 2H), 7.42-7.35 (m, 3H), 7.14 (s, 1H), 6.73-6.69 (m, 2H), 3.78 (q, 2H, J = 7.2 Hz), 1.26 (t, 2H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 154.3, 137.6, 135.4, 134.8, 129.7, 129.2, 128.6, 128.1, 122.5, 116.1, 110.5, 110.3, 64.1, 14.8; HRMS (EI), *m/z* calcd. for

 $C_{17}H_{15}NO_2 (M^+)$ 265.1103, found: 265.1110.

(*E*)-3-(4-Methoxybenzylidene)oxindole (2f)¹²

The title compound was isolated by column chromatography (hexane-EtOAc 3:2) as a red solid (39.1 mg, 52%). m.p. 203-204 °C (lit.¹² m.p. 158-159 °C); ¹H NMR (400 MHz, CDCl₃) δ 9.17 (s, 1H), 7.80 (s, 1H), 7.75 (d, 1H, *J* = 8.0 Hz), 7.68 (m, 2H, *J* = 8.8 Hz), 7.20 (t, 1H, *J* = 7.2 Hz), 7.00 (d, 2H, *J* = 8.8 Hz), 6.95-6.87 (m, 2H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 160.9, 141.5, 137.7, 131.5, 129.4, 127.2, 125.7, 122.6, 122.0, 121.6, 114.1, 110.2, 55.4; MS (EI), *m/z*

(Z)-3-(4-Methoxybenzylidene)oxindole (2f)¹⁵

The title compound was isolated by column chromatography (hexane-EtOAc 3:2) as a red solid (7.5 mg, 10%). m.p. 177-178 °C (lit.¹⁵ m.p. 174-176 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 2H, J = 9.2 Hz), 8.22 (s, 1H), 7.57-7.47 (m, 2H), 7.19 (t, 1H, J = 8.0 Hz), 7.06-6.95 (m, 3H), 6.84 (d, 1H, J = 7.6 Hz), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0,

161.7, 139.2, 137.6, 134.5, 128.2, 127.0, 125.8, 123.6, 121.6, 118.8, 113.8, 109.3, 55.4; MS (EI), *m/z* 251 (M⁺).

(*E*)-3-(4-Isopropylbenzylidene)oxindole (2g)¹⁶

The title compound was isolated by column chromatography (hexane-EtOAc 2:1) as a red solid (45.7 mg, 58%). m.p. 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.74 (s, 1H), 7.65 (d, 1H, J = 8.0 Hz), 7.54 (d, 2H, J = 8.4 Hz), 7.24 (d, 2H, J = 8.0 Hz), 7.11 (t, 1H, J = 8.0 Hz), 6.86 (d, 1H, J = 8.0 Hz), 6.77 (t, 1H, J = 8.0 Hz), 2.93-2.85 (m, 1H), 1.23 (s, 3H), 1.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 151.0, 141.8, 137.8, 132.2, 129.7, 129.6, 126.9, 126.7, 122.9, 121.8, 121.6, 110.4, 34.1, 23.8; MS (EI), m/z 263 (M⁺).

(Z)-3-(4-Isopropylbenzylidene)oxindole (2g)¹⁶

The title compound was isolated by column chromatography (hexane-EtOAc 2:1) as a red solid (9.4 mg, 12%). m.p. 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 8.24 (d, 2H, J = 8.4 Hz), 7.54 (s, 1H), 7.51 (d, 1H, J = 7.6 Hz), 7.31 (d, 2H, J = 8.4 Hz), 7.20 (t, 1H, J = 7.6 Hz), 7.02 (t, 1H, J = 7.6 Hz), 6.84 (d, 1H, J = 8.0 Hz), 3.00-2.92 (m, 1H), 1.23 (s, 3H), 1.28 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 168.0, 152.0, 139.5, 137.8, 132.3, 131.5, 128.6, 126.7, 126.5, 125.3, 121.7, 119.1, 109.5, 34.2, 23.8; MS (EI), m/z 263 (M⁺).

6-Methyl-3-(propan-2-ylidene)oxindole (2h) (New compound)

The title compound was isolated by column chromatography (hexane-EtOAc 2:1) as a pale yellow solid (30.8 mg, 55%). m.p. 174-175 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.37 (d, 1H, *J* = 8.4 Hz), 6.80 (d, 1H, *J* = 7.6 Hz), 6.71 (s, 1H), 2.60 (s, 3H), 2.34 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 153.8, 139.6, 137.8, 123.4, 123.0, 122.1, 121.7, 110.2, 25.1, 22.9, 21.6; HRMS (EI), *m/z*

calcd. for $C_{12}H_{13}NO(M^{+})$ 187.0997, found: 187.0996.

5-Chloro-3-(propan-2-ylidene)oxindole (2i) (New compound)

The title compound was isolated by column chromatography (hexane-EtOAc 2:1) as a pale yellow solid (23.6 mg, 38%). m.p. 213-214 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.47 (d, 1H, *J* = 2.4 Hz), 7.15 (dd, 1H, *J* = 2.4 Hz, *J* = 8.4 Hz), 6.79 (d, 1H, *J* = 8.4 Hz), 2.62 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 169.3, 157.6, 137.7, 127.2, 126.8, 125.6, 123.8, 122.4, 110.1, 25.3, 23.3; HRMS (EI), *m/z* calcd. for C₁₁H₁₁ClNO (M⁺) 207.0451, found: 207.0449.

3-Methyl-3-vinylinoxindole (2j)¹⁷

The title compound was isolated by column chromatography (hexane-EtOAc 3:2) as a colorless oil (14.4 mg, 28%). ¹H NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 7.25-7.18 (m, 1H), 7.18-7.14 (m, 1H), 7.05 (dt, 1H, J = 1.8 Hz, J = 7.4 Hz), 6.96 (d, 1H, J = 8.0 Hz), 5.97 (dd, 1H, J = 10.4 Hz, J = 17.6 Hz), 5.21-5.14 (m, 2H), 1.52 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 181.6, 140.3, 137.8, 133.3, 128.0, 124.1, 122.5, 115.5, 110.2, 51.7, 22.3; MS (EI), *m*/*z* 173 (M⁺).

(*E*)-3-Benzylidene-1-phenyloxindole (4a)¹²

The title compound was isolated by column chromatography (hexane-EtOAc 5:1) as Orange oil (55.2 mg, 62%); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.71-7.65 (m, 3H), 7.55-7.37 (m, 8H), 7.16 (t, 1H, J = 8.0 Hz), 6.89 (t, 1H, J = 7.6 Hz), 6.81 (d, 1H, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 144.1, 137.8, 134.9, 134.5, 129.6, 129.6, 129.2, 128.6, 127.9, 127.0, 126.7, 122.8, 122.2, 121.1, 109.5; MS (EI), *m/z* 297

(Z)-3-Benzylidene-1-phenyloxindole (4a) (New compound)

 $(M^{+}).$

The title compound was isolated by column chromatography (hexane-EtOAc 5:1) as a orange solid (16.0 mg, 18%). m.p. 116-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33-8.28 (m, 2H), 7.66 (s, 1H), 7.62 (d, 1H, J = 7.2 Hz), 7.55-7.40 (m, 8H), 7.22 (t, 1H, J = 8.0 Hz), 7.10 (t, 1H, J = 8.0 Hz), 6.82 (d, 1H, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 142.2, 138.0, 134.7, 133.7, 132.1, 130.6, 129.5, 128.8, 128.2, 127.9, 126.8, 125.8, 124.4, 122.4, 119.2, 109.2; HRMS (EI), *m/z* calcd. for C₂₁H₁₅NO (M⁺) 297.1154, found: 297.1154.

1-Phenyl-3-(propan-2-ylidene)oxindole (4b) (New compound)

The title compound was isolated by column chromatography (hexane-EtOAc 5:1) as a orange oil (32.1 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, 2H, *J* = 7.6 Hz), 7.54-7.48 (m, 2H), 7.42-7.37 (m, 3H), 7.16 (t, 1H, *J* = 8.0 Hz), 7.06 (t, 1H, *J* = 7.6 Hz), 2.65 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 156.4, 142.4, 135.3, 129.9, 128.2, 127.9, 127.6, 124.1, 124.0, 122.9, 122.5, 109.3, 25.9, 23.8; HRMS (EI), *m/z* calcd. for C₁₇H₁₅NO (M⁺) 249.1154, found: 249.1150.

(*E*)-3-Benzylidene-1-methyloxindole (4c)¹²

The title compound was isolated by column chromatography (hexane-EtOAc 3:1) as yellow oil (24.6 mg, 35%); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.65-7.60 (m, 3H), 7.48-7.40 (m, 3H), 7.25 (t, 1H, J = 8.0 Hz), 6.87 (t, 1H, J = 8.0 Hz), 6.81 (d, 1H, J = 8.0 Hz), 3.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 144.2, 137.1, 134.9, 129.7, 129.4, 129.2, 128.6, 127.7, 122.7, 121.7, 121.1, 108.1, 26.1; MS (EI), *m/z* 235 (M⁺).

(Z)-3-Benzylidene-1-methyloxindole (4c)¹⁸

The title compound was isolated by column chromatography (hexane-EtOAc 3: 1) as a orange solid (4.3 mg, 6%). m.p. 90-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.31-8.27 (m, 2H), 7.55-7.52 (m, 2H), 7.47-7.41 (m, 3H), 7.29 (t, 1H, J = 8.0 Hz), 7.06 (t, 1H, J = 8.0 Hz), 6.81 (d, 1H, J = 8.0 Hz), 3.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 142.4, 137.1, 133.8, 131.9, 130.4, 128.9, 128.2, 18.9, 25.9 MS (EI) m/z 235 (M⁺)

126.1, 124.4, 121.8, 118.9, 25.9; MS (EI), *m/z* 235 (M⁺).

(E)-1-Benzylidene-5,6-dihydro-1*H*-pyrrolo[3,2,1-ij]quinolin-2(4*H*)-one (4d) (New Compound)

The title compound was isolated by column chromatography (hexane-EtOAc 3:1) as a orange solid (48.5 mg, 62%). m.p. 103-104 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.68-7.64 (m, 2H), 7.48-7.40 (m, 4H), 7.00 (d, 1H, J = 7.2 Hz), 6.77 (t, 1H, J = 8.0 Hz), 3.78 (t, 2H, J = 6.0 Hz), 2.76 (t, 2H, J = 6.0 Hz), 2.05-1.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 140.2, 136.9, 135.0, 129.4, 129.3, 128.5, 128.5, 128.2,

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2010 121.2, 120.1, 120.0, 119.6, 38.7, 24.6, 20.9; HRMS (EI), m/z calcd. for C₁₈H₁₅NO (M⁺) 261.1154, found: 261.1150.

(Z)-1-Benzylidene-5,6-dihydro-1*H*-pyrrolo[3,2,1-ij]quinolin-2(4*H*)-one (4d) (New compound)

The title compound was isolated by column chromatography (hexane-EtOAc 3:1) as yellow oil (8.6 mg, 11%); ¹H NMR (400 MHz, CDCl₃) δ 8.32-8.28 (m, 2H), 7.51 (s, 1H), 7.47-7.40 (m, 3H), 7.34 (d, 1H, J = 8.0 Hz), 7.03 (d, 1H, J = 7.2 Hz), 6.95 (t, 1H, J = 7.6 Hz), 3.77 (t, 2H, J = 6.0 Hz), 2.78 (t, 2H, J = 6.0 Hz), 2.08-2.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 138.4, 137.4, 133.9, 131.9, 130.3, 128.7, 128.2, 127.4, 123.0, 121.4, 119.7, 116.9, 38.4, 24.3, 21.2; HRMS (EI), m/z

calcd. for C₁₈H₁₅NO (M⁺) 261.1154, found: 261.1153.

References

- 1. Cainelli, G.; Morrocchi, S.; Quilico, A. Tetrahedron. Lett. 1963, 28, 1959-1964.
- 2. Katritzky, A. R.; Chunming, C.; Singh, S. K. J. Org. Chem. 2006, 71, 3375-3380.
- 3. Narasimhan, B.; Belsare, D.; Pharande, D.; Mourya, V.; Dhake, A. *Eur. J. Med. Chem.* **2004,** 39, 827-834.
- 4. Singhal, O. P.; Khetan, S. K.; Ittyerah, P. I. J. Indian. Chem. Soc. 1965, 42, 479-482.
- 5. Hajra, S.; Maji, B.; Kaemakar, A. Tetrahedron Lett. 2005, 46, 8599-8603.
- 6. Golovyashkina, L. E.; Khakimoya, N.; Uzbekskii Khimicheskii Zhurnal 1968, 12, 43-45.
- 7. Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. Synlett 2006, 20, 3529-3532.
- 8. Wittig, G.; Hornberger, P. Justus Liebigs Annalen der Chemie 1952, 577, 11-25.
- 9. Maxim, N.; Ioanid, N. Bull. Soc. Chim. Roumania 1928, 10, 29-48.
- 10. Schuyler, P.; Popp, F. D.; Nobel, A. C.; Alwani, D. W. Master, B. R. J. Med. Chem. 1966, 9, 704-707.
- 11. Ando, K. Synlett. 2001, 8, 1272-1274.
- 12. Park, J. H.; Kim, E.; Chung, Y. K. Org. Lett. 2008, 10, 4719-4721.
- 13. Bencivenni, G.; Wu, L.-Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M.-P.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2009, 48, 7200-7203.
- Zhou, F.; Zheng, J.; Dong, X.; Zhang, Z.; Zhao, L.; Sha, X.; Li, L.; Wen, R. Lett. Org. Chem. 2007, 4, 601-605.
- 15. Elgazwy, A. S. H.; Atta-Allah, S. R. Afinidad 2008, 65, 148-155.
- McGovern, S. L.; Helfand, B. T.; Feng, B.; Shoichet, B. K. J. Med. Chem. 2003, 46, 4265-4272.
- McDermott, M. C.; Stephenson, G. R.; Hughes, D. L.; Walkington, A. J. Org. Lett. 2006, 8, 2917-2920.
- 18. Teichert, A.; Jantos, K.; Harms, K.; Studer, A. Org. Lett. 2004, 6, 3477-3480.

¹H NMR (E-**2a**)

¹³C NMR (E-**2a**)

¹³C NMR (Z-**2a**)

8

PPM

0

2

¹H NMR (E-**2b**)

¹³C NMR (E-**2b**)

¹³C NMR (E-**2c**)

¹H NMR (Z-**2c**)

¹³C NMR (Z-**2c**)

¹³C NMR (E-**2d**)

¹H NMR (E-**2d**)

¹H NMR (Z-**2d**)

¹³C NMR (Z-**2d**)

¹H NMR (**2e**)

¹³C NMR (**2e**)

¹H NMR (E-**2f**)

¹³C NMR (E-2f)

¹H NMR (Z-**2f**)

¹³C NMR (Z-2f)

¹³C NMR (E-**2g**)

¹³C NMR (Z-**2g**)

¹H NMR (**2h**)

¹H NMR (**2i**)

¹³C NMR (**2i**)

¹H NMR (**2j**)

¹³C NMR (**2j**)

¹³C NMR (E-**4a**)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

¹³C NMR (Z-**4a**)

00

¹H NMR (**4b**)

- 509 - 500 - 509 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500

12

2,09

7.615

7.536

3.03

¹H NMR (E-**4c**)

¹³C NMR (E-**4c**)

¹³C NMR (Z-**4c**)

¹³C NMR (E-**4d**)

¹³C NMR (Z-**4d**)

