Remarkably Variable Reaction Modes of Frustrated Lewis Pairs with Non-Conjugated Terminal Diacetylenes

Chao Chen, Roland Fröhlich, Gerald Kehr, Gerhard Erker

Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40,

48149 Münster, Germany

Supporting Information

Experimental Section

All experiments were carried out under a dry Argon atmosphere using standard Schlenk techniques or in a glovebox. Solvents (including deuterated solvents used for NMR) were dried and distilled prior to use. ¹H, ¹³C, ¹¹B, ¹⁹F, ³¹P NMR spectra were recorded on a Varian 500 MHz INOVA or a Varian 600 MHz UNITY plus NMR spectrometer at ambient temperature unless otherwise stated. Chemical shifts are given in ppm relative to solvents (¹H and ¹³C) or an external standard [$\delta(BF_3 \cdot OEt_2) = 0$ for ¹¹B NMR, $\delta(CFCl_3) =$ 0 for ¹⁹F NMR and $\delta(85\% H_3PO_4) = 0$ for ³¹P NMR). Coupling constants are in Hz. Elemental analysis data was recorded on Foss-Heraeus CHNO-Rapid. HRMS was recorded on GTC Waters Micromass (Manchester, UK). UV/Vis: UV double-ray spectrometer Uvikon 923 (Kontron Instruments, Zürich, Switzerland), using SUPRASIL Quarz glass (200–2500 nm). X-ray structure analysis: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods in Enzymology, 1997, 276, 307-326), absorption correction Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Cryst. 2003, A59, 228-234), structure solution SHELXS-97 (G.M. Sheldrick, Acta Cryst. 1990, A46, 467-473), structure refinement SHELXL-97 (G.M. Sheldrick, Acta Cryst. 2008, A64, 112-122), graphics XP (BrukerAXS, 2000). R-value is given for the observed reflections, the weighted R-value is given for all unique reflections. All figures are drawn at the 50% probability level.

B(C₆F₅)₃ was prepared according to procedures reported in the literature (caution: the intermediate involved is explosive) [(a) A. G. Massey, A. J. Park. *J. Organomet. Chem.* **1964**, *2*, 245-250. (b) Wang, C.; Erker, G.; Kehr, G.; Wedeking, K.; Fröhlich, R. *Organometallics*, **2005**, *24*, 4760-4773].

Preparation of compound 1:

Dipropargyl ether (9.4 mg, 0.1 mmol) and bis-2,5-(trifluoromethyl)phenyldiphenylphosphine (39.8 mg, 0.1 mmol) were dissolved in pentane (5 mL). Then a solution of $B(C_6F_5)_3$ (52 mg, 0.1 mmol) in pentane (5 mL) was added. The reaction mixture was stirred at room temperature overnight. Subsequently all solvent was decanted and the residue was washed with pentane (3×mL). The product was dried overnight and collected as a white, crystalline solid (82 mg, 82%) which was suitable for X-ray crystal structure analysis.

¹H NMR (500 MHz, CD₂Cl₂, 298K): δ 8.33 (d, ³*J*_{PH} = 15.8 Hz, 1H, *o*-Ar), 8.21 (d, ³*J*_{HH} = 8.1 Hz, ¹*H*, *p*-Ar), 8.11 (dd, ³*J*_{HH} = 8.1 Hz, ⁴*J*_{PH} = 4.6 Hz, 1H, *m*-Ar), 7.78 (m, 2H, *p*-Ph), 7.70 (d, ³*J*_{PH} = 35.9 Hz, 1H, ⁼CH), 7.63 (md, ⁴*J*_{PH} = 3.9 Hz, 4H, *m*-Ph), 7.58 (dm, ³*J*_{PH} = 12.7 Hz, 4H, *o*-Ph), 4.10 (d, ³*J*_{PH} = 17.6 Hz, 2H, ⁼CH₂), 3.49 (d, ⁴*J*_{HH} = 2.4 Hz, 2H, ⁼CH₂), 2.19 (t, ⁴*J*_{HH} = 2.4 Hz, 1H, =CH). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298K): δ 186.3 (q(1:1:1:1), ¹*J*_{CB} = 52.5 Hz, ⁼CH), 148.1 (dm, ¹*J*_{FC} = 238.7 Hz), 139.1 (dm, ¹*J*_{FC} = 247.5 Hz), 137.1 (dm, ¹*J*_{FC} = 250.6 Hz) (C₆F₅), 137.2 (qd, ²*J*_{FC} = 33.7 Hz, ²*J*_{PC} = 4.3 Hz, *o*-Ar^{CF3}), 136.4 (dq, ²*J*_{PC} = 12.4 Hz, ³*J*_{FC} = 3.7 Hz, *o*-Ar^{CH}), 135.1 (qd, ²*J*_{FC} = 34.6 Hz, ³*J*_{PC} = 12.8 Hz, *m*-Ar^{CF3}), 135.0 (d, ⁴*J*_{PC} = 3.1 Hz, *p*-Ph), 134.3 (d, ²*J*_{PC} = 9.9 Hz, *o*-Ph), 132.1 (qd, ³*J*_{FC} = 13.0 Hz, *m*-Ar^{CH}), 131.0 (dq, ³*J*_{PC} = 8.0 Hz, ³*J*_{FC} = 4.6 Hz, *m*-Ar^{CH}), 130.1 (d, ³*J*_{PC} = 1.7 Hz) (CF₃), 121.7 (dq, ¹*J*_{PC} = 79.9 Hz, ³*J*_{FC} = 1.0 Hz, *i*-Ar), 119.5 (d, ¹*J*_{PC} = 88.7 Hz, *i*-Ph), 118.2 (d, ¹*J*_{PC} = 70.7 Hz, =C^P), 77.8 (-C=), 75.2

(=CH), 67.2 (br d, ${}^{2}J_{PC}$ = 12.3 Hz, ⁼CH₂), 57.8 (⁼CH₂). ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298K): δ -16.1 (d, ${}^{3}J_{PB} \sim 14$ Hz). ¹⁹F NMR (470 MHz, CD₂Cl₂, 298K): δ -55.2, -64.2 (each 3F, CF₃), -132.5 (6F, *o*), -161.8 (3F, *p*), -165.9 (6F, *m*) (C₆F₅). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298K): δ 29.3 (partial relaxed q(1:1:1:1), ${}^{3}J_{PB} \sim 14$ Hz).

Element analysis: calcd. for $C_{44}H_{19}BF_{21}OP$: C, 52.62; H, 1.91. Found: C, 52.68; H, 1.55. HMRS: calcd. for $C_{44}H_{19}BF_{21}OP$ +Na⁺: 1027.0823. Found: 1027.0812.

X-ray crystal structure analysis of 1: formula C₄₄H₁₉ BF₂₁OP, M = 1004.37, colorless crystal 0.40 x 0.20 x 0.03 mm, a = 9.7019(9), b = 20.5980(13), c = 20.7265(4) Å, $\beta = 97.341(3)^{\circ}$, V = 4106.2(5) Å³, $\rho_{calc} = 1.625$ g cm⁻³, $\mu = 1.817$ mm⁻¹, empirical absorption correction (0.530 $\leq T \leq 0.948$), Z = 4, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 28157 reflections collected ($\pm h, \pm k, \pm l$), [(sin θ)/ λ] = 0.59 Å⁻¹, 6488 independent ($R_{int} = 0.101$) and 3983 observed reflections [$I \geq 2 \sigma(I)$], 632 refined parameters, R = 0.066, $wR^2 = 0.206$, max. (min.) residual electron density 0.44 (-0.30) e Å⁻³, hydrogen atoms calculated and refined as riding atoms, group C5-C6-C7 refined with split positions using geometrical and thermal restraints. (CCDC 759353).

50% probability level

Preparation of compound 2a:

1,7-Octadiyne (10.6 mg, 0.1 mmol) and tri(*o*-tolyl)phosphine (30.4 mg, 0.1 mmol) were dissolved in pentane (5 mL), and a solution of $B(C_6F_5)_3$ (51.1 mg, 0.1 mmol) in pentane (5 mL) was added. The reaction mixture was stirred overnight at room temperature. Then the solvent was decanted and the residue was washed with pentane (3×1 mL). The crude product was purified via crystallization by slow diffusion of pentane into the dichloromethane solution (46 mg, 49%) at -20 °C. The obtained crystals were suitable for X-ray structure analysis.

¹H NMR (600 MHz, CD₂Cl₂, 213K): δ 7.92 (*o*), 7.70 (*p*), 7.57 (*m*), 7.39 (*m*') (each m, each 1H, ^ATol), 7.67 (*p*), 7.58 (*m*'), 7.35 (*m*), 7.26 (*o*) (each m, each 1H, ^CTol), 7.58 (*p*), 7.38 (*o*), 7.37 (*m*[']), 7.32 (*m*) (each m, each 1H, ^BTol), 6.70 (br s, 1H, =CH^B), 5.78 (d, ${}^{2}J_{PH}$ = 26.8 Hz, 1H, =CH^P), 2.45 (s, 3H, ^CTol^{CH3}), 2.32, 1.64 (each m, each 1H, 3-CH₂), 2.08 (s, 3H, ^BTol^{CH3}), 1.88, 1.44 (each m, each 1H, 6-CH₂), 1.73 (s, 3H, ^ATol^{CH3}), 1.45, 1.23 (each m, each 1H, 4-CH₂), 1.38, 1.31 (each m, each 1H, 5-CH₂). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 213K): 177.2, 142.2 (d, $J_{PC} = 17.1$ Hz) (1,2-C), 151.0 (br, =CH^B), 147.4 (dm, ${}^{1}J_{FC} = 239.6$ Hz), 137.4 (dm, ${}^{1}J_{FC} = 244.2$ Hz), 135.8 (dm, ${}^{1}J_{FC} = 247.0$ Hz) (C₆F₅), 144.1 (d, ${}^{2}J_{PC} = 8.7$ Hz, $o' {}^{-C}$ Tol), 143.0 (d, ${}^{2}J_{PC} = 8.5$ Hz, $o' {}^{-A}$ Tol), 142.4 (d, ${}^{2}J_{PC} = 9.1$ Hz, o'^{-B} Tol), 134.8 (d, ${}^{2}J_{PC} = 14.2$ Hz, o^{-A} Tol), 134.7 (d, ${}^{4}J_{PC} = 3.1$ Hz, p^{-A} Tol), 134.36 (d, ${}^{4}J_{PC} = 2.9$ Hz, p^{-C} Tol), 134.37 (d, ${}^{2}J_{PC} = 12.6$ Hz, o^{-C} Tol), 134.1 (d, ${}^{4}J_{PC} = 2.2$ Hz, p^{-C} ^BTol), 134.0 (d, ${}^{2}J_{PC} = 12.1$ Hz, o-^BTol), 133.44 (d, ${}^{3}J_{PC} = 10.9$ Hz, m'-^ATol), 133.40 (d, ${}^{3}J_{PC} = 11.1$ Hz, $m' {}^{-C}$ Tol), 133.3 (d, ${}^{3}J_{PC} = 11.3$ Hz, $m' {}^{-B}$ Tol), 127.6 (d, ${}^{3}J_{PC} = 13.2$ Hz, m-^ATol), 127.4 (d, ${}^{3}J_{PC} = 13.0$ Hz, m^{-C} Tol), 126.7 (d, ${}^{3}J_{PC} = 12.8$ Hz, m^{-B} Tol), 125.1 (br, *i*- C_6F_5), 118.0 (d, ${}^{1}J_{PC} = 87.2$ Hz, *i*- B Tol), 116.3 (d, ${}^{1}J_{PC} = 85.2$ Hz, *i*- A Tol), 116.1 (d, ${}^{1}J_{PC} =$ 85.6 Hz, *i*-^CTol), 95.1 (d, ${}^{1}J_{PC}$ = 86.6 Hz, =CH^P), 34.2 (d, ${}^{3}J_{PC}$ = 7.7 Hz, 6-CH₂), 30.4 (3CH₂), 25.0 (5-CH₂), 24.2 (4-CH₂), 23.3 (d, ${}^{3}J_{PC}$ = 4.5 Hz, ${}^{C}Tol^{CH3}$), 22.6 (d, ${}^{3}J_{PC}$ = 4.3 Hz, ${}^{A}Tol^{CH3}$), 21.0 (d, ${}^{3}J_{PC}$ = 4.3 Hz, ${}^{B}Tol^{CH3}$). ${}^{11}B{}^{1}H$ } NMR (160 MHz, CD₂Cl₂, 213K): δ - 17.2 (v_{1/2} ~ 230 Hz). ${}^{19}F$ NMR (470 MHz, CD₂Cl₂, 213K): δ -133.2 (2F, *o*), -163.5 (1F, *p*), -166.7 (2F, *m*) (C₆F₅). ${}^{31}P{}^{1}H$ } NMR (202 MHz, CD₂Cl₂, 213K): δ 11.7 (s, v_{1/2} ~ 3 Hz).

Element analysis: calcd. for C₄₇H₃₁BF₁₅P·0.5CH₂Cl₂·C₅H₁₂: C, 59.99; H, 3.83. Found: C, 59.95; H, 3.52.

HMRS: calcd. for C₄₇H₃₁BF₁₅P +Na⁺: 945.1915. Found: 945.1909.

X-ray crystal structure analysis of **2a**: formula $C_{47}H_{31}BF_{15}P \times \frac{1}{2} CH_2Cl_2$, M = 964.96, colorless crystal 0.35 x 0.20 x 0.20 mm, a = 12.3976(5), b = 13.8705(4), c = 15.1225(6) Å, $\alpha = 108.590(1)$, $\beta = 99.318(2)$, $\gamma = 112.299(2)^{\circ}$, V = 2158.56(14) Å³, $\rho_{calc} = 1.485$ g cm⁻³, $\mu = 2.031$ mm⁻¹, empirical absorption correction (0.537 $\leq T \leq 0.687$), Z = 2, triclinic, space group *P*1bar (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 26830 reflections collected ($\pm h, \pm k, \pm l$), [($\sin \theta$)/ λ] = 0.60 Å⁻¹, 7574 independent ($R_{int} = 0.039$) and 7062 observed reflections [$I \geq 2 \sigma(I)$], 607 refined parameters, R = 0.050, $wR^2 = 0.142$, max. (min.) residual electron density 1.04 (-0.59) e Å⁻³, hydrogen atoms calculated and refined as riding atoms. (CCDC 759354).

50% probability level

UV-vis spectra of compound 2a (dichlormethane).

 1 H / 13 C ghsqc NMR experiment (500 / 126 MHz, CD₂Cl₂, 213K) (p = pentane)

 ^1H / ^{13}C ghsqc NMR experiment (500 / 126 MHz, CD_2Cl_2, 213K)

Preparation of PPh₂(2,5-(CF₃)₂C₆H₃):

Bis(trifluoromethyl)benzene (4.8 mL, 6.42 g, 30 mmol) was dissolved in ether (60 mL) and cooled to 0 °C under argon amosphere. Then BuLi (20 mL, 1.6 M in hexane, 32 mmol) was added dropwise. Afterwards, the solution was allowed to stir for 1 h at room temperature and reflux for further 4 h. The resulting solution was cooled to 0 °C and ClPPh₂ (5.6 mL, 30 mmol) was added via syringe. The suspension was stirred at room temperature overnight, before it was quenched with brine (20 mL). The organic phase was separated, dried over MgSO₄ and filtered. Finally the solvent was removed. The obtained crude product was first purified by column chromatography (pentane : DCM = 10 : 1) and subsequently crystallized from pentane (10.1 g, 85%, colorless crystal). ¹H NMR (500 MHz, CD₂Cl₂, 298K): δ 7.93 (dd, ${}^{3}J_{HH} = 8.3$ Hz, ${}^{4}J_{PH} = 3.4$ Hz, 1H, *m*-Ar), 7.75 (dm, ${}^{3}J_{HH}$ = 8.3 Hz, 1H, *p*-Ar), 7.44 (br m, 1H, *o*-Ar), 7.41 (m, 2H, *p*-Ph), 7.39 (m, 4H, *m*-Ph), 7.28 (m, 4H, *o*-Ph). ${}^{13}C{}^{1}H{}$ NMR (126 MHz, CD₂Cl₂, 298K): δ 139.7 (d, ${}^{1}J_{PC}$ = 35.2 Hz, *i*-Ar), 138.1 (qd, ${}^{2}J_{FC}$ = 30.8 Hz, ${}^{3}J_{PC}$ = 24.8 Hz, *m*-Ar^{CF3}), 135.7 (d, ${}^{1}J_{PC}$ = 11.7 Hz, *i*-Ph), 134.1 (d, ${}^{2}J_{PC}$ = 20.8 Hz, *o*-Ph), 133.9 (q, ${}^{2}J_{FC}$ = 32.8 Hz, *o*-Ar^{CF3}), 132.8 (m, o-Ar^{CH}), 129.8 (p-Ph), 129.2 (d, ${}^{3}J_{PC} = 7.0$ Hz, m-Ph), 127.6 (sept, ${}^{3}J_{FC} \sim {}^{3}J_{PC} = 5.4$ Hz, *m*-Ar^{CH}), 126.4 (q, ${}^{3}J_{FC} = 3.4$ Hz, *p*-Ar^{CH}), 124.2 (q, ${}^{1}J_{FC} = 275.9$ Hz, *o*-CF₃), 123.7 (q, ${}^{1}J_{\text{FC}} = 273.2 \text{ Hz}$, *m*-CF₃). ${}^{19}\text{F}$ NMR (470 MHz, CD₂Cl₂, 298K): δ -57.8 (d, ${}^{4}J_{\text{PF}} = 53.0$ Hz, *o*-CF₃), -63.8 (*m*-CF₃). ³¹P{1H} NMR (CD₂Cl₂, 298K): δ -10.2 (g, ⁴J_{PF} = 53.0 Hz). Element analysis: calcd. for C₂₀H₁₃BF₆: C, 60.31; H, 3.28. Found: C, 60.16; H, 3.26. HMRS: calcd. for C₂₀H₁₃F₆P: 398.0659. Found: 398.0659.

Preparation of compound 2b:

1,7-Octadiyne (10.6 mg, o.1 mmol) and bis-2,5-(trifluoromethyl)phenyldiphenylphosphine (39.8 mg, 0.1 mmol) were dissolved in pentane (5 mL). Then a solution of $B(C_6F_5)_3$ (52 mg, 0.1 mmol) in pentane (5 mL) was added. The reaction mixture was stirred overnight at room temperature. Subsequently the solvent was decanted and the residue was washed with pentane (3×1 mL). The crude product was purified via crystallization by slow diffusion of pentane into a solution of **2b** in dichloromethane (48 mg, 48%). Crystals suitable for crystal structure analysis were obtained form a solution of **2b** in dichloromethane by slow evaporation of the solvent.

¹H NMR (500 MHz, CD₂Cl₂, 298K): δ 8.22 (br m, 2H, *m,p*-Ar), 7.60 (br d, ${}^{3}J_{PH}$ = 15.9 Hz, 1H, *o*-Ar), 7.87 (m, 2H, *p*-Ph), 7.73 (m, 4H, *m*-Ph), 7.60 (m, 4H, *o*-Ph), 6.96 (br, 1H, =CH^B), 6.07 (d, ${}^{2}J_{PH}$ = 26.7 Hz, 1H, =CH^P), 2.17 (br m, 2H, 3-CH₂), 1.92 (br m, 2H, 6-CH₂), 1.54 (br, 2H, 4-CH₂), 1.38 (m, 2H, 5-CH₂), 1.35 (m, 2H, 4-CH₂). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298K): δ 183.3, 142.8 (d, *J*_{PC} = 17.7 Hz) (1,2-C), 152.7 (br, =CH^B), 148.4 (dm, ${}^{1}J_{FC}$ = 241.9 Hz), 138.3 (dm, ${}^{1}J_{FC}$ = 250.3 Hz), 136.6 (dm, ${}^{1}J_{FC}$ = 247.8 Hz) (C₆F₅), 135.8 (*p*-Ph), 133.7 (d, ${}^{2}J_{PC}$ = 10.7 Hz, *o*-Ph), 133.6, 132.7, 132.2 (each m, Ar^{CH}), 131.0 (d, ${}^{3}J_{PC}$ = 13.2 Hz, *m*-Ph), 126.1 (br, *i*-C₆F₅), 122.62 (q, ${}^{1}J_{FC}$ = 275.9 Hz), 122.54 (q, ${}^{1}J_{FC}$ = 88.7 Hz, =CH^P), 36.1 (d, ${}^{3}J_{PC}$ = 7.3 Hz, 6-CH₂), 31.2 (3-CH₂), 26.0 (5-CH₂), 24.5 (4-CH₂), n.o. (*o*,*m*-Ar^{CF3}). ¹¹B{¹H</sup> NMR (160 MHz, CD₂Cl₂, 298K): δ -16.5 (v_{1/2} ~ 60 Hz). ¹⁹F NMR (470 MHz, CD₂Cl₂, 298K): δ -55.9, -64.1 (each 3F, CF₃), -132.7

(6F, *o*), -164.0 (3F, *p*), -167.4 (6F, *m*) (C₆F₅). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298K): δ 16.8 (v_{1/2} ~ 10 Hz),.

Element analysis: calcd. for $C_{46}H_{23}BF_{21}P$: C, 54.36; H, 2.28. Found: C, 53.45; H, 2.60. HMRS: calcd. for $C_{46}H_{23}BF_{21}P+Na^+$: 1039.1187. Found: 1039.1185.

X-ray crystal structure analysis of **2b**: formula C₄₆H₂₃BF₂₁P, M = 1016.42, colorless crystal 0.25 x 0.25 x 0.05 mm, a = 10.9971(5), b = 11.1320(5), c = 18.0736(7) Å, a = 80.920(2), $\beta = 75.060(2)$, $\gamma = 75.741(2)^{\circ}$, V = 2061.38(15) Å³, $\rho_{calc} = 1.638$ g cm⁻³, $\mu = 1.798$ mm⁻¹, empirical absorption correction ($0.662 \le T \le 0.916$), Z = 2, triclinic, space group P1bar (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 29925 reflections collected ($\pm h, \pm k, \pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 7197 independent ($R_{int} = 0.054$) and 6259 observed reflections [$I \ge 2 \sigma(I)$], 642 refined parameters, R = 0.057, $wR^2 = 0.150$, max. (min.) residual electron density 1.08 (-0.90) e Å⁻³, both CF₃-groups are disordered, refined with split positions using thermal and geometrical restraints, hydrogen atoms calculated and refined as riding atoms. (CCDC 759355).

In the figure of **2b** for both CF₃-groups the major component is shown.

50% probability level

UV-vis spectra of compound 2b (dichlormethane).

Preparation of compound 4:

Method 1: 1,6-Heptadiyne (10.6 mg, 0.1 mmol) and tri(*o*-tolyl)phosphine (30.0 mg, 0.1 mmol) were dissolved in C₆D₆ (0.3 mL). Subsequently a solution of B(C₆F₅)₃ (52 mg, 0.1 mmol) in C₆D₆ (0.5 mL) was added. The reaction mixture was kept for 1week at room temperature. Then all the solvent was decanted and the residue was quickly washed with cold ether (2×1 mL). The product was collected as colorless crystals (65 mg, 71%).

Method 2: 1,7-Heptadiyne (10.6 mg, 0.1 mmol) and tri(*o*-tolyl)phosphine (30.0 mg, 0.1 mmol) were dissolved in pentane (5 mL). Subsequently a solution of $B(C_6F_5)_3$ (52 mg, 0.1 mmol) in pentane (5 mL) was added. The mixture was stirred overnight at room temperature. Then all the solvent was decanted and the residue was washed with pentane. The crude product was purified via crystallization by slow diffusion of pentane into a solution of 4 in dichloromethane at -20 °C (43 mg, 48%). Crystals suitable for X-ray structure analysis were obtained from a solution of 4 in benzene after one week.

¹H NMR (500 MHz, CD₂Cl₂, 193K): δ 7.97 (*o*), 7.63 (*p*), 7.59 (*m*), 7.30 (*m*') (each m, each 1H, ^BTol), 7.65, 7.48 (m'), 7.34 (*m*), 7.34 (*o*) (each m, each 1H, ^CTol), 7.56 (*p*), 7.48 (*o*), 7.32 (*m*), 7.20 (*m*') (each m, each 1H, ^ATol), 7.66 (d, ³J_{PH} = 41.8 Hz, 1H, 8-CH), 5.79 (br, 1H, 3-CH), 3.77, 1.98 (each br, each 1H, 6-CH₂), 2.33, 2.02 (each br, each 1H, 4-CH₂), 2.21 (s, 3H, ^CTol^{CH3}), 1.61 (s, 3H, ^BTol^{CH3}), 1.42 (s, 3H, ^ATol^{CH3}), 1.25, 0.36 (each br, each 1H, 5-CH₂). ¹³C {¹H} NMR (126 MHz, CD₂Cl₂, 193K): δ 177.8 (br, 8-C), n.o. (C₆F₅), 144.5 (d, ²J_{PC} = 9.7 Hz, *o*'^{-C}Tol), 143.7 (d, ²J_{PC} = 7.9 Hz, *o*'^{-A}Tol), 143.1 (d, ²J_{PC} = 6.7 Hz, *o*'^{-B}Tol), 141.9 (br, 2-C), 139.8 (3-CH), 135.3 (d, ²J_{PC} = 12.4 Hz, *o*^{-B}Tol), 134.9 (d, ²J_{PC} = 11.8 Hz, *o*^{-A}Tol), 134.7 (d, ²J_{PC} = 11.8 Hz, *o*^{-C}Tol), 133.71, 133.67 (*p*^{-B,C}Tol), 132.5 (d, ³J_{PC} = 10.7 Hz, *m*'^{-C}Tol), 132.8 (d, ³J_{PC} = 9.4 Hz, *m*'^{-B}Tol), 132.5 (d, ³J_{PC} = 12.4 Hz, *m*'^{-B}Tol), 126.9 (d, ³J_{PC} = 12.1 Hz, *m*^{-B}Tol), 126.8 (d, ³J_{PC} = 10.7 Hz, *m*^{-C}Tol), 126.9 (d, ³J_{PC} = 20.2 Hz, *i*-C₆F₅), 122.7 (br, *i*-BC₆F₅), 118.5 (d, ¹J_{PC} = 82.0 Hz, *i*-^BTol), 116.1 (d, ¹J_{PC} = 84.1 Hz, *i*-^ATol), 115.5 (d,

¹*J*_{PC} = 79.2 Hz, *i*-^CTol), 114.9 (d, ¹*J*_{PC} = 60.1 Hz, 7-C), 27.6 (br d, ²*J*_{PC} = 14.9 Hz, 6-CH₂), 26.9 (4-CH₂), 24.8 (5-CH₂), 22.34 (d, ³*J*_{PC} = 4.3 Hz, ^CTol^{CH3}), 22.28 (d, ³*J*_{PC} = 3.7 Hz, ^BTol^{CH3}), 20.7 (d, ³*J*_{PC} = 2.8 Hz, ^ATol^{CH3}). ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 193K): δ -13.6 ($v_{1/2} \sim 210$ Hz). ¹⁹F NMR (470 MHz, CD₂Cl₂, 193K): δ -129.7, -134.2 (*o*), -162.1 (*p*), -165.0, -167.3 (*m*) (each br, each 1F, BC₆F₅^A), -130.8, -134.7 (*o*), -160.6 (*p*), -164.4, -166.1 (*m*) (each br, each 1F, BC₆F₅^B), -140.0, -145.2 (*o*), -161.8 (*p*), -164.6, -166.0 (*m*) (each br, each 1F, C₆F₅). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 213K): δ 28.5 ($v_{1/2} \sim 30$ Hz). Element analysis: calcd. for C₄₆H₂₉BF₁₅P+Na⁺: 931.1758. Found: 931.1753.

X-ray crystal structure analysis of **4**: formula C₄₆H₂₉BF₁₅P × C₆H₆, M = 986.58, colorless crystal 0.30 x 0.15 x 0.10 mm, a = 10.6583(3), b = 12.9039(5), c = 17.8377(10) Å, a = 106.182(2), $\beta = 103.094(4)$, $\gamma = 98.528(4)^{\circ}$, V = 2235.44(16) Å³, $\rho_{calc} = 1.466$ g cm⁻³, $\mu = 1.439$ mm⁻¹, empirical absorption correction (0.672 $\leq T \leq 0.869$), Z = 2, triclinic, space group *P*1bar (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 29409 reflections collected ($\pm h, \pm k, \pm l$), [(sin θ)/ λ] = 0.59 Å⁻¹, 7651 independent ($R_{int} = 0.052$) and 6557 observed reflections [$I \geq 2 \sigma(I)$], 625 refined parameters, R = 0.043, $wR^2 = 0.113$, max. (min.) residual electron density 0.25 (-0.33) e Å⁻³, hydrogen atoms calculated and refined as riding atoms. (CCDC 759356).

50% probability level

