Easy Oxidatively Induced Silicon-Carbon Bond Activation in Organoplatinum Chemistry

Muhieddine Safa, Michael C. Jennings and Richard J. Puddephatt*

Electronic Supporting Information

Synthetic procedures

The complex $[Pt_2Me_4(\mu-SMe_2)_2]$, $[Pt_2(CD_3)_4(\mu-SMe_2)_2]$ and ligand $Me_2Si(2-C_5H_4N)_2$, bps, were prepared according to the literature.^{1,2}

[PtMe₂(bps)], 1. To a stirring solution of bps (0.75 g, 3.48 mmol) in ether (10 mL) was added [Pt₂Me₄(μ -SMe₂)₂] (1.0 g, 1.74 mmol). After 1h, the product precipitated from solution as a pale brown solid, which was separated, washed with ether (3 x 2 mL) and pentane (3 x 2 mL), and dried under vacuum. Yield: 88%. Anal. Calcd. for C₁₄H₂₀N₂PtSi: C, 38.26; H, 4.59; N, 6.37. Found: C, 38.53; H, 4.85; N, 6.33 %. NMR in CDCl₃: $\delta(^{1}H) = 0.71$ [s, 6H, $^{2}J_{PtH} = 80$ Hz, PtMe]; 0.77 [s, 3H, SiMe]; 1.11 [s, 3H, SiMe]; 7.21 [dd, 2H, $^{3}J_{HH} = 7$, 5 Hz, H⁵]; 7.55 [d, 2H, $^{3}J_{HH} = 7$ Hz, H³]; 7.67 [t, 2H, $^{3}J_{HH} = 7$ Hz, H⁴]; 8.97 [d, 2H, $^{3}J_{HH} = 5$ Hz, $^{3}J_{PtH} = 25$ Hz, H⁶]; $\delta(^{13}C) = -18.5$ [PtMe]; -3.9 [SiMe]; -1.7 [SiMe]; 125.4 [C5]; 130.4 [C3]; 133.7 [C4]; 152.4 [C6]; 163.1 [C2]. Complex 1-d₆ was prepared similarly from [Pt₂(CD₃)₄(μ -SMe₂)₂]. The ¹H NMR spectrum was the same except that the methylplatinum resonance at $\delta(^{1}H) = 0.71$ was absent.

[Me(bps)Pt-OSiMe(2-C₅H₄N)₂PtMe₃][B(OCH₂CF₃)(C₆F₅)₃],

2[B(OCH₂CF₃)(C₆F₅)₃]. To a solution of **1** (0.09 g, 0.45 mmol) in CF₃CH₂OH (5 mL) was added a solution of B(C₆F₅)₃ (0.11 g, 0.45 mmol) in CF₃CH₂OH (5 mL). The mixture was stirred for 2 d, then the volume of the solution was reduced to 2 mL, and the mixture was stored at 0 °C for 2 d., to give the product as colourless crystals, which were separated and dried under vacuum. Yield 37 %. Anal. Calcd. for C₄₇H₃₉BF₁₈N₄O₂Pt₂Si₂.2H₂O: C, 36.97; H, 2.84; N, 3.67. Found: C, 36.77; H, 2.32; N, 3.62 %. NMR in acetone-*d*₆: $\delta(^{1}\text{H}) = 0.15$ [s, 3H, ²*J*_{PtH} = 69 Hz, MePt^{IV} *trans* N]; 0.64 [s, 3H, ²*J*_{PtH} = 75 Hz, MePt^{II} *trans* N]; 0.95 [s, 3H, bps SiMe]; 1.17 [s, 3H, ²*J*_{PtH} = 68 Hz, MePt^{IV} *trans* N]; 1.22 [s, 3H, OSiMe]; 1.23 [s, 3H, ²*J*_{PtH} = 78 Hz, MePt^{IV} *trans* O]; 1.63 [s, 3H, bps SiMe]; 3.57 [q, 2H, ³*J*_{HF} = 12 Hz, CH₂]; 7.01 [m, 1H, H^{5d}]; 7.38 [m, 1H, H^{5a}]; 7.61 [m, 1H, H^{5c}]; 7.64 [m, 1H, H^{5b}]; 7.74 [m, 1H, H^{3a}]; 7.83 [m, 1H, H^{4d}]; 7.88 [m, 1H, H^{3d}]; 7.96 [m, 1H, H^{4a}]; 8.07 [m, 2H, H^{3b}, H^{4b}]; 8.11 [m, 1H, H^{4c}]; 8.72 [m, 1H, ³*J*_{PtH} = 21 Hz, H^{6b}]; 8.96 [m, 1H, ³*J*_{PtH} = 65 Hz, H^{6a}]. $\delta(^{19}\text{F}) = -75$ [br, 3F, CF₃]; -133 [br m, 6F, F², F⁶]; -164 [m, 3F, F⁴]; -168 [br, 6F, F³, F⁵].

[Me₃Pt(HOSiMe(2-C₅H₄N)₂][PhCO₂], 3c. To a solution of complex 1 (0.05 g, 0.12 mmol) in acetone (10 mL) was added dibenzoyl peroxide (0.03 g, 0.12 mmol). The mixture was stirred for 2 h., the volume was reduced to 1 mL, and pentane (5 mL) was added to precipitate the product as a white solid, which was separated, washed with ether (3 x 2 mL) and pentane (3 x 2 mL), and dried under vacuum. NMR in CD₂Cl₂: $\delta(^{1}H) =$

1.04 [s, 3H, Si-Me]; 1.05 [s, 6H, ${}^{2}J_{PtH}$ = 70 Hz, MePt *trans* N]; 1.14 [s, 3H, ${}^{2}J_{PtH}$ = 75 Hz, MePt *trans* O]; 2.12 [s, 1H, OH]; 7.37 [m, 4H, H⁵,H^m]; 7.46 [m, 1H, H^p]; 7.75 [m, 2H, H³]; 7.80 [m, 2H, H⁴]; 7.95 [m, 2H, H^o]; 8.58 [m, 2H, ${}^{3}J_{PtH}$ = 20 Hz, H⁶].

Monitoring of reactions by ¹H NMR and ESI-MS.

In a typical reaction, complex **1** (1 mg) was dissolved in CD₃OD (1 mL), and then excess hydrogen peroxide (0.01 mL) was added to the solution to give [Me₃Pt(HOSiMe(2-C₅H₄N)₂][OH], **3b**. The ¹H NMR spectrum was recorded immediately and then at intervals for several days. NMR in CD₃OD after 4 min.: $\delta(^{1}H) = 0.94$ [s, 3H, SiMe]; 0.98 [s, 6H, ²*J*_{PtH} = 69 Hz, MePt *trans* N]; 1.15 [s, 3H, ²*J*_{PtH} = 75 Hz, MePt *trans* O]; 7.43 [m, 2H, H⁵]; 7.80 [m, 2H, H³]; 7.86 [m, 2H, H⁴]; 8.62 [m, 2H, ³*J*_{PtH} = 20 Hz, H⁶]; $\delta(^{13}C) = -$ 10.7 [PtMe]; -10.4 [PtMe]; -4.6 [SiMe]; 123.4 [C5]; 129.1 [C3]; 136.5 [C4]; 146.5 [C6]; 165.8 [C2]. The similar reaction with **1**-*d*₆ to give **3b*** gave identical ¹H NMR data except that the resonance at $\delta(^{1}H) = 0.98$ was absent. The complexes decomposed slowly over several days.

Similar reactions in MeOH were monitored by ESI-MS: Complexes **3b** and **3b*** gave an envelope of peaks at m/z = 456 and 462 respectively, as expected for $[Me_3Pt(HOSiMe(2-C_5H_4N)_2]^+$ and $[Me_3Pt(HOSiMe(2-C_5H_4N)_2]^+$ - d_6 , and also at 911 and 923 respectively, as expected for $[H\{Me_3Pt(OSiMe(2-C_5H_4N)_2\}_2]^+$ and $[H\{Me_3Pt(OSiMe(2-C_5H_4N)_2\}_2]^+$ - d_{12} . **[PtI_2Me_2(bps)], 4**. To a stirred solution of **1** (0.02 g, 0.455 mmol) in CH₂Cl₂ (5 mL) was added excess iodine (0.012 g). The mixture was stirred for 2 h., the solvent was removed under vacuum, and the red product was washed with pentane (3 x 3 mL) and ether (3 x 3 mL) and dried under vacuum. Yield 84%. NMR in CD₂Cl₂: $\delta(^{1}H) = 0.81$ [s, 6H, Si-Me]; 2.39 [s, 6H, $^{2}J_{PtH} = 71$ Hz, PtMe]; 7.42 [m, 2H, H⁵]; 7.78 [m, 2H, H³]; 7.86 [m, 2H, H⁴]; 9.36 [m, 2H, $^{3}J_{PtH} = 25$ Hz, H⁶].

Structure Determinations: Data were collected at low temperature (150 K) using a Nonius Kappa-CCD area detector diffractometer. Details are in the cif files. Figures are shown with 25% thermal ellipsoids.

Crystal data:

1: $C_{14}H_{20}N_2PtSi$, fw = 439.50, monoclinic, C2/c, a = 15.2967(7), b = 12.8601(6), c = 15.8369(8) Å, β = 102.191(3)°, V = 3045.1(3) Å³, Z = 8, d(calc) = 1.917 Mg m⁻³, R1 = 0.0469, wR2 = 0.1124 [I > 2s(I)].

2: $C_{47}H_{39}BF_{18}N_4O_2Pt_2Si_2$, fw = 1490.99, triclinic, P-1, a = 11.812(2), b = 13.535(3), c = 16.700(3) Å, $\alpha = 79.94(3)$, $\beta = 80.78(3)$, $\gamma = 79.76(3)$ °, V = 2564.0(9) Å³, Z = 2, d(calc.) = 1.931 Mg m⁻³, R1 = 0.0437, wR2 = 0.0972 [I > 2s(I)].

3c: $C_{21}H_{26}N_2O_3PtSi$, fw = 577.62, monoclinic, $P2_1/n$, a = 14.305(3), b = 10.130(2), c = 14.985(3) Å, β = 99.04(3) °, V = 2144.6(7) Å³, Z = 4, d(calc) = 1.789 Mg m⁻³, R1 = 0.0298, wR2 = 0.0732 [I > 2s(I)].

4: $C_{14}H_{20}I_2N_2PtSi$, fw = 693.30, monoclinic, $P2_1/n$, a = 9.3692(3), b = 13.7960(5), c = 14.4724(5) Å, $\beta = 100.964(2)^\circ$, V = 1836.52(11) Å³, Z = 4, d(calc) = 2.507 Mg m⁻³, R1 = 0.0507, wR2 = 0.1369 [I > 2s(I)].

References

- 1 M.E. Wright, Tet. Lett., 1987, 28, 3233.
- 2 J.D. Scott and R.J. Puddephatt, Organometallics, 1983, 2, 1643.