A Selective and Ratiometric Cu²⁺ Fluorescent Probe Based on Naphthalimide Excimer-Monomer Switching

Zhaochao Xu,^{a,c} Juyoung Yoon^{*b} and David R. Spring^{*a}

^a Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK. E-mail: spring@ch.cam.ac.uk

^b Department of Chemistry and Nano Science and Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea, Fax: (+)82-2-3277-3419, E-mail: jyoon@ewha.ac.kr

^c State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China

General methods

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Flash chromatography was carried out on silica gel 60 (230-400 mesh ASTM; Merck). Thin layer chromatography (TLC) was carried out using Merck 60 F_{254} plates with a thickness of 0.25 mm. Preparative TLC was performed using Merck 60 F_{254} plates with the thickness of 1 mm.

Melting points were measured using a Büchi 530 melting point apparatus. ¹H NMR and ¹³C NMR spectra were recorded using Bruker 250 MHz or Varian 500 MHz. Chemical shifts were given in ppm and coupling constants (*J*) in Hz. UV absorption spectra were obtained on UVIKON 933 Double Beam UV/VIS Spectrometer. Fluorescence emission spectra were obtained using RF-5301/PC Spectrofluorophotometer (Shimadzu).

Synthesis

2,2'-(piperazine-1,4-diyl)bis(N-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)acetamide) (1)

4-(2-chloroacetayl)amino-*N*-n-butyl-1,8-naphthalimide (100 mg, 0.29 mmol), piperazine (12 mg, 0.145 mmol), *N*,*N*-diisopropylethylamine (DIPEA) (0.5 mL) and potassium iodide (30 mg) were added to acetonitrile (30 mL). After stirred and refluxed for 10 h under nitrogen atmosphere, the mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (CH₂Cl₂:MeOH = 100:1) to afford 1. Yield: 78 mg (77%). Mp: 171-173 °C. ¹H-NMR (DMSO, 400 MHz) δ 0.97 (t, *J* = 7.2 Hz, 6H), 1.41 (m, *J* = 7.2 Hz, 4H), 1.67 (m, *J* = 7.2 Hz, 4H), 2.86 (s, 8H), 3.48 (s, 4H), 4.09 (t, *J* = 7.2 Hz, 4H), 7.98 (t, *J* = 6.2 Hz, 2H), 8.43 (d, *J* = 6.2 Hz, 2H), 8.52-8.60 (m, 6H), 10.58 (s, 2H). ¹³C-NMR (DMSO, 100 MHz) δ 13.82, 19.89, 22.18, 29.38, 28.40, 29.76, 31.37, 122.51, 124.56, 126.89, 128.40, 129.19, 129.74, 131.13, 131.56, 131.57, 132.65, 162.99, 163.52, 169.22. HRMS (ESI) calcd for C₄₀H₄₃N₆O₆ [MH⁺] 703.3244, found 703.3249.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Figure S1. UV-Vis absorption spectra of 1 in CH₂Cl₂ and CH₃CN.

Figure S2. Fluorescence excitation spectra of 1 and $1/Cu^{2+}$ complex in CH₃CN.

Figure S3. Job's plot of **1** in aqueous solutions (CH₃CN:HEPES = 50:50; HEPES, 0.5 M, pH 7.4) showing the 2:1 stoichiometry of the complex between Cu²⁺ ion and 1. The total concentration of sensor and Cu²⁺ is 10 μ M. Fluorescence is recorded at 461 nm.

Figure S4. ¹H-NMR spectra of 1 in the prescence of a different amount of Zn^{2+} in CD₃CN.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Figure S5. ¹H-NMR spectra of compound **1** in DMSO.

Figure S6. ¹³C-NMR spectra of compound **1** in DMSO.