Rhodium-Catalyzed Tandem Nucleophilic Addition/Bicyclization of Diyne-enones with Alcohols: A Modular Entry to 2,3-Fused Bicyclic Furans.

Wanxiang Zhao and Junliang Zhang

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062 ,People's Republic of China Fax:(+86)-021-6223-5039; e-mail : jlzhang@chem.ecnu.edu.cn

General information

All reactions were carried out in oven-dried glassware under a positive pressure of nitrogen or a mixture of gas. Reactions were monitored using thin-layer chromatography (TLC) Visualization of the developed plates was performed under UV light (254 nm) or KMnO₄ stain. 1,4-Dioxane and toluene were distilled from sodium and benzophenone prior to use. 1.2-Dichloroethane was distilled from CaH₂ prior to use. [RhCl(CO)₂]₂ were purchased from Alfa Aesar. Purification of products was accomplished by flash chromatography on silica gel. NMR spectra were recorded on a NMR spectrometer operating at 300 MHz for ¹H and 75 MHz for ¹³C. Data for ¹³C-NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl₃: 77.0 ppm).

General procedure for the preparation of substrates.

Method A: A typical procedure for the preparation of **1a-i**: Under a N₂ atmosphere, to a stirred solution of the 2-bromo (iodo)-2-en-1-one and 1, 6-diynes (2.5 equiv) was added Pd(PPh₃)₄ (0.02 equiv), CuI (0.04 equiv) and diisopropylamine (3.0 equiv). The mixture was stirred until complete consumption of the starting material as determined by TLC. The crude reaction mixture was then diluted with ethyl acetate and successively washed with brine. The organic layer was dried over anhydrous MgSO₄. After filtration and concentration under reduced pressure, the product was isolated by flash column chromatography on silica gel.

1. Dimethyl 2-(4-benzoyl-5-phenylpent-4-en-2-ynyl)-2-(prop-2-ynyl) malonate (1a):.

1a

The reaction of 2-bromo-1,3-diphenylprop-2-en-1-one (5.0 mmol, 1.435 g) and dimethyl 2,2-di(prop-2-ynyl)malonate (12.5 mmol, 2.600 g) gave the product **1a** (1.449 g, 70%) after flash column chromatography (hexanes: ethyl acetate = 10:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.98 (d, *J* = 7.5 Hz, 2 H), 7.89 (d, *J* = 7.5 Hz, 2 H), 7.60-7.40 (m, 7 H), 3.70 (s, 6 H), 3.29 (s, 2 H), 2.94 (s, 2 H), 2.05 (s, 1 H); ¹³C NMR (75 MHz, CDCl₃): δ = 193.56, 168.94, 145.43, 137.02, 134.50, 132.36, 130.50, 130.09, 129.54, 128.55, 128.13, 120.73, 96.22, 80.79, 78.31, 71.85, 56.43, 53.09, 24.27, 22.96 ppm. MS (70 ev) *m*/*z* (%): 414 (M⁺, 0.41), 105 (100), HRMS calcd for C₂₆H₂₂O₅: 414.1467, found: 414.1464.

2. Dimethyl 2-(4-benzylidene-5-oxohex-2-ynyl)-2-(prop-2-ynyl)malonate (1b):

1b

The reaction of 3-bromo-4-phenylbut-3-en-2-one (5.0 mmol, 1.125 g) with dimethyl 2,2-di(prop-2-ynyl)malonate (12.5 mmol, 2.600 g) gave the product **1b** (1.092 g, 62%) after flash column chromatography (hexanes: ethyl acetate = 10:1). ¹H NMR (300 MHz, CDCl₃): δ = 8.00-7.90 (m, 2 H), 7.74 (s, 1 H), 7.45-7.38 (m, 2 H), 3.77 (s, 6 H), 3.38 (s, 2 H), 3.07 (d, *J* = 2.4 Hz, 2 H), 2.48 (s, 3 H), 2.10 (t, *J* = 2.4 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃): δ = 195.99, 168.89, 143.17, 134.06, 130.58, 130.37, 128.43, 119.48, 94.23, 80.84, 78.03, 72.02, 56.28, 53.08, 27.82, 24.11, 23.00 ppm. MS (70 ev) *m*/*z* (%): 352 (M⁺, 1.06), 43(100), HRMS calcd for C₂₁H₂₀O₅: 352.1311, found: 352.1312.

3. Dimethyl 2-(4-(4-chlorobenzoyl)-5-phenylpent-4-en-2-ynyl)-2-(prop-2-ynyl) malonate (1c):

The reaction of 1-(4-chlorophenyl)-2-iodo-3-phenylprop-2-en-1-one (5.0 mmol, 1.843 g) with 4-methyl-N,N-di(prop-2-ynyl)benzenesulfonamide (12.5 mmol, 3.091 g) gave the product **1c** (0.806 g, 36%) after flash column chromatography (hexanes: ethyl acetate = 5:1). ¹H NMR (300 MHz, CDCl₃): δ = 8.02-7.94 (m, 2 H), 7.85 (d, *J* = 8.1 Hz, 2 H), 7.52 (s, 1 H), 7.50-7.38 (m, 5 H), 3.71 (s, 6 H), 3.28 (s, 2 H), 2.93 (s, 2 H), 2.06 (s, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 192.21, 168.91, 145.67, 138.73, 135.32, 134.36, 130.98, 130.70, 130.18, 128.60, 128.45, 120.18, 96.63, 80.79, 78.19, 71.94, 56.34, 53.11, 24.26, 22.98 ppm. MS (70 ev) *m/z* (%): 470 (M⁺, 1.21), 139 (100),

HRMS calcd for C₂₁H₂₀O₅Cl: 448.1078, found: 448.1074.

4. Dimethyl 2-(4-benzoyl-5-(4-chlorophenyl)pent-4-en-2-ynyl)-2-(prop-2-ynyl)malonate (1d):

The reaction of 3-(4-chlorophenyl)-2-iodo-1-phenylprop-2-en-1-one (5.0 mmol, 1.843 g) with 4-methyl-*N*,*N*-di(prop-2-ynyl)benzenesulfonamide (12.5 mmol, 3.091 g) gave the product **1d** (0.941 g, 42%) after flash column chromatography (hexanes: ethyl acetate = 5:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.98-7.85 (m, 4 H), 7.60-7.52 (m, 1 H), 7.50-7.37 (m, 5 H), 3.71 (s, 6 H), 3.27 (s, 2 H), 2.92 (d, *J* = 2.4 Hz, 2 H), 2.06 (t, *J* = 2.4 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 193.24, 168.92, 143.75, 136.83, 136.27, 133.00, 132.51, 131.28, 129.56, 128.86, 128.19, 121.21, 97.08, 80.64, 78.22, 71.97, 56.34, 53.15, 24.31, 23.01 ppm. MS (70 ev) *m/z* (%): 448 (M⁺, 5.59), 105 (100), HRMS calcd for C₂₆H₂₁O₅Cl: 448.1078, found: 448.1075.

5. Dimethyl 2-(4-benzoyl-5-phenylpent-4-en-2-ynyl)-2-(hept-2-ynyl)malonate (1e):

The reaction of 2-bromo-1,3-diphenylprop-2-en-1-one (8.4mmol, 2.411g) with dimethyl 2-(hept-2-ynyl)-2-(prop-2-ynyl)malonate (5.6 mmol, 1.477 g) gave the product **1e** (1.105 g, 42%) after flash column chromatography (hexanes: ethyl acetate = 10:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.98 (d, *J* = 7.5 Hz, 2 H), 7.89 (d, *J* = 7.5

Hz, 2 H), 7.60-7.52 (m, 1 H), 7.50-7.38 (m, 6 H), 3.69 (s, 6 H), 3.25 (s, 2 H), 2.89 (s, 2 H), 2.12 (t, J = 6.6 Hz, 2 H), 1.47-1.30 (m, 4 H), 0.88 (t, J = 6.6 Hz, 3 H), ¹³C NMR (75 MHz, CDCl₃): $\delta = 193.65$, 169.34, 145.23, 137.07, 134.61, 132.37, 130.46, 130.15, 129.62, 128.55, 128.13, 120.91, 96.82, 84.09, 80.56, 73.76, 56.93, 52.95, 30.89, 24.34, 23.44, 21.78, 18.30, 13.53 ppm. MS (70 ev) m/z (%): 470 (M⁺, 1.48), 105 (100), HRMS calcd for C₃₀H₃₀O₅: 470.2093, found: 470.2094.

6. Dimethyl2-(4-benzoyl-5-phenylpent-4-en-2-ynyl)-2-(3-phenylprop-2-ynyl)mal onate (1f):

1f

The title compound was prepared according method from to А 2-bromo-1,3-diphenylprop-2-en-1-one (7.500 mmol, 2.152 g) and dimethyl 2-(3phenylprop-2-ynyl)-2-(prop-2-ynyl)malonate (5.000 mmol, 1.420 g) to yield the product 1f (1.152 g, 47%) after flash column chromatography (hexanes: ethyl acetate = 10:1). ¹H NMR (300 MHz, CDCl₃): δ = 8.00 (d, J = 7.5 Hz, 2 H), 7.90 (d, J = 7.8 Hz, 2 H), 7.53-7.51 (m, 2 H), 7.47-7.40 (m, 5 H), 7.35-7.34 (m, 2 H), 7.28-7.25 (m, 3 H), 3.72 (s, 2 H), 3.34 (s, 2 H), 3.15 (s, 2 H), 13 C NMR (75 MHz, CDCl₃): $\delta = 193.56$, 169.12, 145.37, 137.01, 134.53, 132.36, 131.63, 130.49, 130.10, 129.55, 128.55, 128.18, 128.11, 128.08, 122.94, 120.77, 96.48, 83.95, 83.67, 80.81, 56.81, 53.07, 24.48, 23.94 ppm. MS (70 ev) m/z (%): 490 (M⁺, 1.18), 105 (100), HRMS calcd for C₃₂H₂₆O₅: 490.1780, found: 490.1780.

7. Dimethyl2-(4-benzoyl-5-phenylpent-4-en-2-ynyl)-2-(3-(4-methoxyphenyl)pro p-2-ynyl)malonate (1g):

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

The compound was prepared by Sonogashira coupling of **1a** (1 g, 2.42 mmol) with 1-iodo-4-methoxybenzene(1.13 g, 4.83 mmol) to yield the product **1g** (0.8 g, 1.54 mmol, 64%)after flash column chromatography (hexanes: ethyl acetate = 5:1), ¹H NMR (300 MHz, CDCl₃): δ = 8.05-7.95 (m, 2 H), 7.90 (d, *J* = 7.2 Hz, 2 H), 7.60-7.35 (m, 7 H), 7.29 (d, *J* = 8.7 Hz, 2 H), 6.81 (d, *J* = 8.7 Hz, 2 H), 3.80 (s, 3 H), 3.72 (s, 6 H), 3.33 (s, 2 H), 3.13 (s, 2 H), ¹³C NMR (75 MHz, CDCl₃): δ = 193.50, 169.05, 159.27, 145.33, 136.82, 134.35, 132.90, 132.20, 130.44, 130.01, 129.45, 128.46, 128.02, 120.57, 114.85, 113.66, 96.45, 83.66, 81.89, 80.64, 56.67, 55.07, 52.99, 24.32, 23.82, MS (70 ev) *m*/*z* (%): 520 (M⁺, 1.98), 105 (100), HRMS calcd for C₃₃H₂₈O₆: 520.1624, found: 520.1624.

8. dimethyl2-(4-benzoyl-5-phenylpent-4-en-2-ynyl)-2-(3-(4-nitrophenyl)prop-2-y nyl)malonate (1h):

The compound was prepared by Sonogashira coupling of **1a** (1 g, 2.42 mmol) with 1-iodo-4-nitrobenzene (1.20 g, 4.83 mmol) to yield the product **1h** (1.01 g, 1.89 mmol, 78%)after flash column chromatography (hexanes: ethyl acetate = 5:1), ¹H NMR (300 MHz, CDCl₃): δ = 8.05 (d, *J* = 8.4 Hz, 2 H), 7.96-7.87 (m, 2 H), 7.84 (d, *J* = 7.2 Hz, 2 H), 7.55-7.30 (m, 9 H), 3.70 (s, 6 H), 3.23 (s, 2 H), 3.20 (s, 2 H), ¹³C NMR (75 MHz,

CDCl₃): δ = 193.02, 168.55, 146.62, 145.17, 136.65, 134.15, 132.09, 130.27, 129.77, 129.38, 129.21, 128.25, 127.85, 123.11, 120.35, 95.76, 89.49, 82.02, 80.72, 56.29, 52.88, 24.29, 23.75, MS (70 ev) *m*/*z* (%): 535 (M⁺, 1.98), 105 (100), HRMS calcd for C₃₂H₂₅NO₇: 535.1624, found: 535.1624.

9. Dimethyl 2-(4-acetylnon-4-en-2-ynyl)-2-(prop-2-ynyl)malonate (1i):

The title compound was prepared according to method A from 3-iodooct-3-en-2-one (3.600 mmol, 0.9083 g) and dimethyl 2,2-di(prop-2-ynyl)malonate (10.8 mmol, 2.250 g) to yield the product **1i** (0.5135 g, 45%) after flash column chromatography (hexanes: ethyl acetate = 10:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.03 (t, *J* = 7.5 Hz, 1 H), 3.76 (s, 6 H), 3.23 (s, 2 H), 3.00 (d, *J* = 2.1 Hz, 2 H), 2.42-2.29 (m, 5 H), 2.04 (t, *J* = 2.1 Hz, 1 H), 1.50-1.25 (m, 4 H), 0.90 (t, *J* = 7.2 Hz, 3 H), ¹³C NMR (75 MHz, CDCl₃): δ = 195.48, 169.03, 151.40, 124.52, 91.56, 78.63, 78.18, 71.80, 56.53, 53.07, 30.43, 30.20, 27.77, 23.84, 22.90, 22.39, 13.78. MS (70 ev) *m/z* (%): 332 (M⁺, 1.98), 43 (100), HRMS calcd for C₁₉H₂₄O₅: 332.1624, found: 332.1624.

10. N-(4-benzoyl-5-phenylpent-4-en-2-ynyl)-4-methyl-N-(prop-2-ynyl)benzenesul fonamide (1j):

1j

The reaction of 2-bromo-1,3-diphenylprop-2-en-1-one(5.0 mmol, 1.430 g) with 4-methyl-*N*,*N*- di(prop-2-ynyl)benzenesulfonamide (12.5 mmol, 3.091 g) gave the product **1j** (0.930 g, 41%) after flash column chromatography (hexanes: ethyl acetate = 5:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.95-7.85 (m, 2 H), 7.77 (d, *J* = 7.5 Hz, 2 H),

7.61 (d, J = 8.1 Hz, 2 H), 7.53 (d, J = 7.5 Hz, 1H), 7.48-7.36 (m, 6 H), 7.13 (d, J = 8.1 Hz, 2 H), 4.43 (s, 2 H), 3.95 (s, 2 H), 2.28(s, 3H), 2.20 (s, 1 H), ¹³C NMR (75 MHz, CDCl₃): 192.90, 146.01, 143.90, 136.62, 134.67, 134.03, 132.47, 130.72, 129.91, 129.43, 129.29, 128.52, 128.10, 127.58, 119.88, 93.29, 82.81, 76.13, 74.17, 37.17, 36.33, 21.27. ppm. MS (70 ev) m/z (%): 453(M⁺, 1.33), 105 (100), HRMS calcd for C₂₈H₂₃NO₃S: 453.1399, found: 453.1402.

11. *N*-(4-Benzoyl-5-phenylpent-4-en-2-ynyl)-4-methyl-N-(3-phenylprop-2-ynyl)be nzenesulfonamide (1k):

1k

The title prepared according compound was to method А from 2-bromo-1,3-diphenylprop-2-en-1-one (20.00 mmol, 5.74 g) and 4-methyl-N-(3-phenylprop-2-ynyl)-N-(prop-2-ynyl)benzenesulfonamide (22.00 mmol, 5.214 g) to yield the product 1k (4.761 g, 45%) after flash column chromatography (hexanes: ethyl acetate = 5:1), ¹H NMR (300 MHz, CDCl₃): δ = 8.05-7.92 (m, 2 H), 7.85 (d, J = 7.2 Hz, 2 H), 7.71 (d, J = 8.1 Hz, 2 H), 7.65-7.38 (m, 7 H), 7.35-7.12 (m, 7 H), 4.50 (s, 2 H), 4.23 (s, 2 H), 2.29 (s, 3 H), ¹³C NMR (75 MHz, CDCl₃): δ = 193.01, 146.11, 143.88, 136.68, 134.71, 134.08, 132.49, 131.49, 130.75, 129.96, 129.48, 129.33, 128.55, 128.46, 128.11, 128.08, 127.68, 121.91, 119.94, 93.56, 85.90, 82.81, 81.17, 37.48, 37.24, 21.26. MS (70 ev) m/z (%): 529 (M⁺, 3.94), 105 (100), HRMS calcd for C₃₄H₂₇NO₃S: 529.1712, found: 529.1710.

12. 3-benzylidene-6-(prop-2-ynyloxy)hex-4-yn-2-one (11)

<mark>11</mark>

title The compound was prepared according to method A from 3-bromo-4-phenylbut-3-en-2-one (6.35 g, 28.00 mmol) and 3-(prop-2-ynyloxy) prop-1-yne (5.30 g, 56.00 mmol) to yield the product **11** (3.33 g, 45%) after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): $\delta = 8.10-7.94$ (m, 2 H), 7.79 (s, 1 H), 7.48-7.32 (m, 3 H), 4.59 (s, 2 H), 4.34 (d, J =2.1 Hz, 2 H), 2.53 (d, J = 2.1 Hz, 1 H), 2.51 (s, 1 H), ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 195.66, 144.10, 133.88, 130.75, 130.39, 128.43, 119.20, 94.29, 83.78, 78.53, 75.30, 57.04, 56.44, 27.70. MS (70 ev) m/z (%): 238 (M⁺, 3.94), 105 (100), HRMS calcd for C₁₆H₁₄O₂: 238.0975, found: 238.0978.

13. Synthesis of 2aa.

[RhCl(cod)]₂ (7.4 mg, 0.015 mmol) was charged in a base-washed, oven-dried Schlenk flask under an atmosphere of the mixed CO (0.2 atm CO + 0.8 atm N₂), and then a solution of **1a** (124.2 mg, 0.3 mmol) in degassed TCE (3 mL) and methanol (0.3 mL) was added. The reaction mixture was stirred at 60 °C under the mixed CO atmosphere until TLC indicated the completion of the reaction. After being cooled to room temperature, the mixture was directly purified by flash column chromatography with silica gel (hexanes/ethyl acetate = 10:1) to afford **2aa** in 83% yield.

¹H NMR (300 MHz, CDCl₃): δ = 7.47 (d, *J* = 7.2 Hz, 2 H), 7.41-7.19 (m, 8 H), 5.69 (s, 1 H), 5.22 (s, 1 H), 4.81 (s, 1 H), 3.72 (s, 3 H), 3.71 (s, 3 H), 3.43 (d, *J* = 16.8 Hz, 1 H), 3.32 (d, *J* = 16.8 Hz, 1 H), 2.97 (d, *J* = 14.7 Hz, 1 H), 2.91 (d, *J* = 14.7 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.71, 170.61, 152.81, 150.57, 140.56, 131.54, 130.44, 128.42, 128.17, 128.12, 127.60, 127.35, 126.92, 119.37, 116.82, 113.77, 76.23, 56.41, 54.74, 52.86, 39.03, 29.96, MS (70 ev) *m/z* (%): 446 (M⁺, 71.72), 105 (100), HRMS calcd for C₂₇H₂₆O₆: 446.1729, found: 446.1730.

14. 2ab.

The title compound was prepared from **1a**(0.2 mmol, 82.8 mg) and i-PrOH under the optimized conditions to afford **2ab** (75.3 mg) in 79% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.52-7.18 (m, 10 H), 5.86 (s, 1 H), 5.30 (s, 1 H), 4.81 (s, 1 H), 3.73 (s, 3 H), 3.70 (s, 3 H), 3.45-3.60 (m, 1 H), 3.45 (d, *J* = 16.5 Hz, 1 H), 3.29 (d, *J* = 16.5 Hz, 1 H), 2.96 (d, *J* = 14.4 Hz, 1 H), 2.90 (d, *J* = 14.4 Hz, 1 H), 1.03 (d, *J* = 5.7 Hz, 3 H), 0.97 (d, *J* = 5.7 Hz, 3 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.85, 170.62, 152.33, 150.45, 141.22, 131.35, 130.56, 128.43, 128.13, 128.04, 127.48, 127.15, 127.04, 119.65, 117.96, 114.33, 72.00, 68.93, 54.82, 52.90, 52.82, 39.09, 30.05, 22.94, 21.10. MS (70 ev) *m/z* (%): 474 (M⁺, 37.69), 105 (100), HRMS calcd for C₂₉H₃₀O₆: 474.2042, found: 474.2043

15. 2ac.

The title compound was prepared from **1a** (0.2 mmol, 82.8 mg) and BnOH under the optimized conditions to afford **2ac** (66.6 mg) in 51% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.50-7.11 (m, 15 H), 5.83 (s, 1 H), 5.27 (s, 1 H), 4.81 (s, 1 H), 4.51 (d, *J* = 11.7 Hz, 1 H), 4.23 (d, *J* = 11.7 Hz, 1 H), 3.72 (s, 3 H), 3.70 (s, 3 H), 3.45 (d, *J* = 16.5 Hz, 1 H), 3.33 (d, *J* = 16.5 Hz, 1 H), 2.97 (d, *J* = 14.7 Hz, 1 H), 2.91 (d, *J* = 14.7 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.75, 170.64, 152.99, 150.70, 140.60, 138.07, 131.34,

130.38, 128.43, 128.14, 128.05, 127.51, 127.31, 126.95, 119.42, 116.78, 114.17, 73.68, 70.37, 54.75, 52.90, 39.01, 30.02. MS (70 ev) m/z (%): 522 (M⁺, 3.80), 105 (100), HRMS calcd for C₃₃H₃₀O₆: 522.2042, found: 522.2041.

16. 2ad.

The title compound was prepared from **1a**(0.2 mmol, 82.8 mg) and H₂O under the optimized conditions to afford **2ad**(49.0 mg) in 45% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.60-7.20 (m, 10 H), 6.19 (s, 1 H), 4.97 (s, 1 H), 4.81 (s, 1 H), 3.76 (brs, 4 H), 3.73 (s, 3 H), 3.43 (d, *J* = 16.8 Hz, 1 H), 3.35 (d, *J* = 16.8 Hz, 1 H), 2.94 (s, 2 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.65, 170.51, 151.76, 150.85, 141.95, 132.52, 130.26, 128.54, 128.29, 127.46, 127.22, 126.34, 119.30, 118.69, 113.02, 67.86, 54.65, 53.02, 52.94, 38.89, 29.73, MS (70 ev) *m/z* (%): 432 (M⁺, 10.09), 57 (100), HRMS calcd for C₂₆H₂₄O₆: 432.1573, found: 432.1570.

17. 2ae.

The title compound was prepared from 1a(0.2 mmol, 82.8 mg) and cyclopropylmethanol under the optimized conditions to afford 2ae(73.0 mg) in 60% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.51-7.21 (m, 10 H), 5.85 (s, 1 H), 5.37 (s, 1 H), 4.86 (s, 1 H), 3.75 (s, 3 H), 3.74 (s, 3 H), 3.46 (d, *J* = 16.8 Hz, 1 H), 3.32 (d, *J* = 16.8 Hz, 1 H), 3.20-3.28 (m, 1 H), 3.05-3.15 (m, 1 H), 2.99 (d, *J* = 14.4 Hz, 1 H), 2.92 (d, *J* = 14.4 Hz, 1 H),

1.08-0.85 (m, 1 H), 0.39 (d, J = 7.8 Hz, 1 H), 0.04 (d, J = 4.8 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): $\delta = 170.78$, 170.57, 152.37, 150.42, 140.75, 131.36, 130.46, 128.37, 128.15, 128.03, 127.49, 127.26, 127.09, 119.48, 117.31, 114.12, 74.46, 73.08, 54.72, 52.88, 52.82, 39.02, 29.95, 10.43, 3.01, MS (70 ev) m/z (%): 486 (M⁺, 13.57), 57 (100), HRMS calcd for C₃₀H₃₀O₆: 486.2042, found: 486.2043.

18. 2af.

The title compound was prepared from **1a** (0.2 mmol, 82.8 mg) and cyclohexanol under the optimized conditions to afford **2ae** (80.5 mg) in 63% yield after flash column chromatography (hexanes: ethyl acetate = 10:1),¹H NMR (300 MHz, CDCl₃): $\delta = 7.48$ (d, J = 7.5 Hz, 1 H), 7.42-7.20 (m, 8 H), 5.76 (s, 1 H), 5.28 (s, 1 H), 4.80 (s, 1 H), 3.71 (s, 6 H), 3.50-3.20 (m, 3 H), 2.95 (d, J = 14.7 Hz, 1 H), 2.89 (d, J = 14.7 Hz, 1 H), 1.51-1.38 (m, 2 H), 1.31-1.11 (m, 6 H), 0.91-0.80 (m, 2 H), ¹³C NMR (75 MHz, CDCl₃): $\delta = 170.77$, 170.61, 152.42, 150.38, 140.94, 131.35, 130.53, 128.37, 128.08, 128.01, 127.55, 127.16, 126.89, 119.46, 117.54, 113.95, 77.00, 74.85, 68.83, 54.74, 52.87, 52.82, 39.02, 31.57, 29.96, 29.64, 25.94, 22.51, 13.98. MS (70 ev) *m*/*z* (%): 514 (M⁺, 7.80), 105 (100), HRMS calcd for C₃₂H₃₄O₆: 514.2378, found: 514.2378.

19. 2ba.

The title compound was prepared from **1b** (0.3 mmol, 105.6 mg) and methanol under the optimized conditions to afford **2ba** (71.0 mg) in 62% yield after flash column

chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.36-7.18 (m, 5 H), 5.41 (s, 1 H), 5.11 (s, 1 H), 4.78 (s, 1 H), 3.71 (s, 3 H), 3.69 (s, 3 H), 3.35 (s, 3 H), 3.29 (d, *J* = 16.5 Hz, 1 H), 3.23 (d, *J* = 16.5 Hz, 1 H), 2.88 (s, 2 H), 2.21 (s, 3 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.81, 170.62, 150.36, 148.56, 140.75, 132.62, 128.05, 127.21, 126.76, 118.21, 115.85, 111.54, 77.23, 56.48, 54.83, 52.86, 52.83, 38.89, 29.66, 12.33. MS (70 ev) *m/z* (%): 384 (M⁺, 59.50), 293 (100), HRMS calcd for C₂₂H₂₄O₆: 384.1573, found: 384.1572.

20. 2ca.

The title compound was prepared from **1c** (0.25 mmol, 112 mg) and methanol under the optimized conditions to afford **2ca** (87.8 mg) in 73% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.45- 7.20 (m, 9 H), 5.64 (s, 1 H), 5.19 (s, 1 H), 4.83 (s, 1 H), 3.72 (s, 6 H), 3.42 (d, *J* = 16.8 Hz, 1 H), 3.31 (d, *J* = 16.8 Hz, 1 H), 3.23 (s, 3 H), 2.97 (d, *J* = 14.4 Hz, 1 H), 2.91 (d, *J* = 14.4 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.68, 170.55, 151.42, 150.74, 140.20, 134.01, 131.53, 128.90, 128.73, 128.62, 128.27, 127.52, 126.94, 119.56, 117.42, 113.78, 76.80, 56.53, 54.70, 52.92, 39.02, 29.92. MS (70 ev) *m/z* (%): 480 (M⁺, 87.89), 139 (100), HRMS calcd for C₂₇H₂₅O₆Cl: 480.1340, found: 480.1341.

21. 2da.

The title compound was prepared from **1d** (0.25 mmol, 112 mg) and methanol under the optimized conditions to afford **2da** (84.2 mg) in 70% yield after flash column

chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.44 (d, *J* = 7.5 Hz, 2 H), 7.41-7.20 (m, 7 H), 5.63 (s, 1 H), 5.18 (s, 1 H), 4.81 (s, 1 H), 3.72 (s, 6 H), 3.42 (d, *J* = 16.8 Hz, 1 H), 3.32 (d, *J* = 16.8 Hz, 1 H), 3.23 (s, 3 H), 2.97 (d, *J* = 14.4 Hz, 1 H), 2.90 (d, *J* = 14.4 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.65, 170.55, 152.97, 150.73, 139.13, 133.13, 131.50, 130.23, 128.48, 128.30, 127.57, 119.16, 116.31, 113.74, 76.04, 56.37, 54.67, 52.91, 38.94, 29.91. MS (70 ev) *m/z* (%): 480 (M⁺, 57.82), 105 (100), HRMS calcd for C₂₇H₂₅O₆Cl: 480.1362, found: 480.1343.

22. 2ea.

The title compound was prepared from **1e** (0.25 mmol, 117.5 mg) and methanol under the optimized conditions to afford **2ea** (78 mg) in 62% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.48 (d, *J* = 7.2 Hz, 2 H), 7.41-7.18 (m, 8 H), 5.77 (t, *J* = 7.5 Hz, 1 H), 5.69 (s, 1 H), 3.71 (s, 6 H), 3.41 (d, *J* = 16.5 Hz, 1 H), 3.30 (d, *J* = 16.5 Hz, 1 H), 3.23 (s, 3 H), 2.99 (d, *J* = 14.7 Hz, 1 H), 2.82 (d, *J* = 14.7 Hz, 1 H), 2.10-1.90 (m, 2 H), 1.12-0.91 (m, 4 H), 0.76 (t, *J* = 6.9 Hz, 3 H), ¹³C NMR (75 MHz, CDCl₃): δ = 171.02, 170.86, 152.81, 148.70, 140.76, 130.69, 129.86, 128.36, 128.01, 127.74, 127.09, 126.79, 122.57, 120.37, 116.50, 76.63, 56.29, 54.58, 52.78, 31.92, 31.45, 30.13, 27.31, 21.92, 13.96. MS (70 ev) *m*/*z* (%): 502 (M⁺, 39.20), 105 (100), HRMS calcd for C₃₁H₃₄O₆: 502.2355, found: 502.2356.

23. 2fa.

The title compound was prepared from **1f** (0.25 mmol, 122 mg) and methanol under the optimized conditions to afford **2fa** (96.9 mg) in 81% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.56 (d, *J* = 6.6 Hz, 2 H), 7.51-7.10 (m, 10 H), 7.17 (t, *J* = 7.2 Hz, 1 H), 6.99 (d, *J* = 7.8 Hz, 2 H), 6.90 (s,1 H), 5.80 (s, 1 H), 3.70 (s, 3 H), 3.67 (s, 3 H), 3.51 (d, *J* = 16.5 Hz, 1 H), 3.41 (d, *J* = 16.5 Hz, 1 H), 3.34 (s, 3 H), 3.28 (d, *J* = 14.7 Hz, 1 H), 3.09 (d, *J* = 14.7 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.73, 170.68, 153.20, 150.27, 140.68, 137.87, 130.45, 128.67, 128.44, 128.20, 128.12, 127.87, 127.80, 127.27, 126.77, 125.98, 125.05, 120.33, 116.64, 77.00, 56.44, 54.80, 52.77, 32.57, 30.29. MS (70 ev) *m*/*z* (%): 522 (M⁺, 9.39), 105 (100), HRMS calcd for C₃₃H₃₀O₆: 522.2042 found: 522.2040.

24. 2ga

The title compound was prepared from **1g** (0.2 mmol, 104 mg) and methanol under the optimized conditions to afford **2ga** (108 mg) in 98% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.57 (d, *J* = 6.6 Hz, 2 H), 7.51-7.25 (m, 8 H), 6.95 (d, *J* = 8.7 Hz, 2 H), 6.90-6.78 (m, 3 H), 5.81 (s, 1 H), 3.83 (s, 3 H), 3.72 (s, 3 H), 3.68 (s, 3 H), 3.61-3.38 (m, 2 H), 3.35 (s, 3 H), 3.29 (d, *J* = 14.7 Hz, 1 H), 3.11 (d, *J* = 14.7 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.73, 170.68, 157.75, 153.08, 149.87, 140.70, 130.44, 130.35, 129.82, 128.40, 128.13, 128.07, 127.73, 127.22, 126.74, 123.83, 120.41, 116.53, 113.29, 76.58, 56.41, 55.07, 54.73, 52.75, 32.54, 30.23, MS (70 ev) *m*/*z* (%): 552 (M⁺, 33.77), 105 (100), HRMS calcd for C₃₄H₃₂O₇: 552.1974, found: 552.1974. 25. 2ha

The title compound was prepared from **1h** (0.2 mmol, 107 mg) and methanol under the optimized conditions to afford **2ha** (77.8 mg) in 69% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 8.12 (d, *J* = 8.7 Hz, 2 H), 7.61-7.25 (m, 10 H), 7.09 (d, *J* = 8.7 Hz, 2 H), 6.91 (s, 1 H), 5.80 (s, 1 H), 3.73 (s, 3 H), 3.68 (s, 3 H), 3.53 (d, *J* = 16.8 Hz, 1 H), 3.45 (d, *J* = 16.8 Hz, 1 H), 3.34 (s, 3 H), 3.23 (d, *J* = 14.7 Hz, 1 H), 3.06 (d, *J* = 14.4 Hz, 1 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.28, 153.80, 151.49, 145.61, 144.82, 140.45, 129.99, 129.21, 128.54, 128.47, 128.19, 127.76, 127.43, 126.56, 126.46, 123.30, 119.80, 116.33, 76.34, 56.50, 54.75, 52.97, 52.94, 32.54, 30.16, MS (70 ev) *m/z* (%): 567 (M⁺, 33.77), 105 (100), HRMS calcd for C₃₃H₂₉NO₈: 567.1974, found: 567.1974.

26. 2ia.

The title compound was prepared from **1i** (0.25 mmol, 83 mg) and methanol under the optimized conditions to afford **2ia** (55 mg) in 60% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 5.46 (s, 1 H), 4.93 (s, 1 H), 4.19 (t, *J* = 6.9 Hz, 1 H), 3.72 (s, 3 H), 3.68 (s, 3 H), 3.30 (d, *J* = 16.5 Hz, 1 H), 3.15 (s, 3 H), 3.01 (d, *J* = 16.5 Hz, 1 H), 2.95 (d, *J* = 14.4 Hz, 1 H), 2.88 (d, *J* = 14.4 Hz, 1 H), 2.23 (s, 3 H), 1.85-1.60 (m, 2 H), 1.38-1.09 (m, 4 H), 1.23 (d, *J* = 6.3 Hz, 3 H), ¹³C NMR (75 MHz, CDCl₃): δ = 170.98, 170.52, 149.13, 148.34, 133.27, 117.97, 116.84, 111.53, 76.54, 55.86, 54.83, 52.86, 52.80, 39.04, 34.67, 29.58,

28.25, 22.50, 13.99, 12.16. MS (70 ev) m/z (%): 364 (M⁺, 43.50), 307 (100), HRMS calcd for C₂₀H₂₈O₆: 364.1886, found: 364.1886.

27. 2ja.

The title compound was prepared from **1j**(0.25 mmol, 113 mg) and methanol under the optimized conditions to afford **2ja** (74.2 mg) in 61% yield after flash column chromatography (hexanes: ethyl acetate = 6:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.69 (d, *J* = 8.1 Hz, 2 H), 7.45-7.20 (m, 12 H), 5.60 (s, 1 H), 5.20 (s, 1 H), 4.85 (s, 1 H), 4.55 (d, *J* = 16.2 Hz, 1 H), 4.43 (d, *J* = 16.2 Hz, 1 H), 4.03 (d, *J* = 14.1 Hz, 1 H), 3.83 (d, *J* = 14.1 Hz, 1 H), 3.14 (s, 3 H), 2.39 (s, 3 H), ¹³C NMR (75 MHz, CDCl₃): δ = 153.05, 147.68, 143.60, 140.16, 133.98, 130.31, 129.90, 129.56, 128.56, 128.49, 128.23, 127.68, 127.51, 126.72, 118.66, 116.92, 113.30, 76.57, 56.46, 50.96, 43.84, 21.48. MS (70 ev) *m*/*z* (%): 485 (M⁺, 13.57), 57 (100), HRMS calcd for C₂₉H₂₇NO₄S: 485.1661, found: 485.1660.

28. 2ka.

The title compound was prepared from **1k** (0.3 mmol, 158 mg) and methanol under the optimized conditions to afford **2ka** (126.2 mg) in 75% yield after flash column chromatography (hexanes: ethyl acetate = 10:1), ¹H NMR (300 MHz, CDCl₃): δ = 7.62 (d, *J* = 8.4 Hz, 2 H), 7.58-7.18 (m, 15 H), 6.99 (d, *J* = 7.5 Hz, 2 H), 6.80 (s, 1 H), 5.73 (s, 1 H), 4.71 (d, *J* = 16.8 Hz, 1 H), 4.55 (d, *J* = 16.8 Hz, 1 H), 4.51 (d, *J* = 14.4 Hz, 1 H), 4.11 (d, *J* = 14.4 Hz, 1 H), 3.24 (s, 3 H), 2.43 (s, 3 H), ¹³C NMR (75 MHz, CDCl₃): δ = 153.32, 147.32, 143.43, 140.27, 136.65, 134.22, 129.90, 129.43, 128.62, 128.54, 128.17, 127.62, 127.48, 127.39, 126.65, 126.55, 123.63, 119.58, 116.62, 76.37, 56.38, 45.43, 43.88, 21.45 ppm. MS (70 ev) m/z (%): 561 (M⁺, 33.77), 121 (100), HRMS calcd for C₃₅H₃₁NO₄S: 561.1974, found: 561.1974.

29. Synthesis of methyl 3-(methoxy(phenyl)methyl)-4-methylene-2-phenyl-4,5,6,7- tetrahydrobenzofuran-6-carboxylate 3

LiCl (0.4 mmol, 17.0 mg) was charged in a base-washed, oven-dried Schlenk flask, and then a solution of 2aa (89.2 mg, 0.2 mmol) in DMSO (1.0 mL) and water (0.1 mL) was added. The reaction mixture was stirred at 180 °C under the nitrogen atmosphere for 30 mins. After being cooled to room temperature, the mixture was extracted with EtOAc and dried with MgSO4. After filtration and concentration under reduced pressure, the residue was purified by flash column chromatography with silica gel (hexanes/ethyl acetate = 20:1) to afford **3** as a 46/54 mixture of diastereoisomers in 65% yield. ¹H NMR (300 MHz, CDCl₃): δ = 7.57 (m, 10 H), 5.75 (s, 1 H), [5.31 (s, 0.46 H), 5.09 (s, 0.54 H)], 4.82 (s, 1 H), 3.78 (s, 3 H), [3.34 (s, 1.38 H), 3.31 (s, 1.62 H)], 3.15-2.87 (m, 3 H), 2.75-2.45 (m, 2 H), 13 C NMR (75 MHz, CDCl₃): $\delta = 174.49$, 152.51, 152.42, 151.95, 151.88, 140.82, 140.46, 134.04, 133.75, 130.56, 130.47, 128.43, 128.40, 128.27, 128.13, 128.08, 128.05, 127.66, 127.50, 127.37, 127.28, 126.89, 126.84, 119.72, 119.43, 117.03, 116.86, 112.26, 112.19, 76.91, 76.81, 56.64, 56.59, 51.96, 40.18, 39.88, 36.17, 36.06, 31.54, 26.33, 26.24, ppm. MS (70 ev) m/z (%): 388 (M⁺, 57.38), 105 (100), HRMS calcd for C₂₅H₂₄O₄: 388.1675, found: 388.1675.

zwx-285

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	
yal Society o	f Chemistr	y 2010	\sim	4
	\leftarrow		\sim	9
	L_	\sim	0	$^{\circ}$
	•	•	•	•
	\sim	\sim	\sim	\sim

zwx-0722-1

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2010

	,	U U
∞	С	∞
9	\sim	00
•	•	•
\sim	\sim	\sim

zwx-0615

zwx-3-77-1

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 $_{cr}$

3.34 3.15 3

3.71

zwx-3-77-1

zwx-5-13

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010, $_{\odot}$

lrr28502H

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Boyal Society of Chemistry 2010

zwx-0717

LUUQ400LU00L4000LU40000

ι

U

Т

Supplementary Material (ESI) for Chemical Communications

0 m

5 0

•

Ţ

•

4

9

 ∞

 \sim

 \sim

•

Supplementary Material (ESI) for Chemical Communications

Supplementary Material (ESI) for Chemical Communications

0074700400

8.5

8.0

7.5

2.04 8.25

7.0

6.5

6.0

5.5

1.00

5.0

0.99

0.99

4.0

4.5

3.5

2.10 3.03

6.09

3.0

2.02

2.5

2.0

1.5

1.0

0.5 ppm

Veri

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

1000

zwx-4-31

zwx-5-18

zwx-5-18

zwx-5-17

zwx-5-17

Supplementary Material (ESI) for Chemical Communications

zwx-4-55

zwx-4-52

Ph

OMe

Ph

Ph.

TsŇ

zwx-4-98

zwx-5-52

L n.

Supplementary Material (ESI) for Chemical Communications

