SUPPORTING INFORMATION

Metal ion driven formation of a light-harvesting antenna investigated by sensitized luminescence and fluorescence anisotropy

Barbara Branchi, Giacomo Bergamini, Luca Fiandro, Paola Ceroni,* Fritz Vögtle, Frank-Gerrit Klärner

Figure S1. Emission spectra of **D** (dashed line), \mathbf{C}^{2-} (dashed-dotted line), and an equimolar solution of the two species (solid line) in the presence of 80 equivalents of Zn(CF₃SO₃)₂ in CH₃CN/CH₂Cl₂ 1:1 (v/v) solution at 298 K. $\lambda_{ex} = 288$ nm. Concentration of **D** and \mathbf{C}^{2-} : 5.2 × 10⁻⁶ M.

Figure S2. (a) Absorption spectra of a 6.4×10^{-6} M solution of **D** in the presence of 1.1 eq. of $Zn(CF_3SO_3)_2$ before (solid line) and after (dashed line) addition of 0.2 eq. of \mathbb{C}^{2-} . (b) Emission spectra of a 6.4×10^{-6} M solution of **D** in the presence of 1.1 eq. of $Zn(CF_3SO_3)_2$ with 0.2 eq. of \mathbb{C}^{2-} upon excitation at 304 (dashed line) and 355 nm (dotted line). Solvent: CH_3CN/CH_2Cl_2 1:1 (v/v) mixture; T = 298 K.

The sensitization efficiency has been evaluated from the absorption and emission spectra reported in Figure S2 taking into consideration the following equation:

$$\eta = (I_{obs} - I_{0\%})/(I_{100\%} - I_{0\%})$$

where I_{obs} is the experimental emission intensity upon excitation at 304 nm, $I_{0\%}$ is the emission intensity expected in the case of no sensitization (emission is only due to the light directly absorbed by the clip at 304 nm), $I_{100\%}$ is the emission intensity expected in the case of unitary efficient sensitization (the light absorbed by both the clip and the dendrimer of the [**D**Zn**C**] complex brings about the clip emission). $I_{0\%}$ and $I_{100\%}$ are calculated on the basis of the emission observed upon excitation at 355 nm (where only the clip absorbs light).