Supporting information for Chemical Communications

Colorimetric fluoride sensors based on deprotonation of pyrrole-hemiquinone compounds

Quanguo Wang, Yongshu Xie*, Yubin Ding, Xin Li, and Weihong Zhu*

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P. R. China

Scheme S1. Synthesis of sensors 1 and 2.

Table S1. Calculated TDDFT excitation energies (eV, nm), oscillator strengths (f), and composition in terms of molecular orbital contributions

- Table S2. Calculated energy differences between the tautomeric isomers in various solvents
- Fig. S1. The ¹H NMR spectrum of $\mathbf{1}$ in DMSO- d_6 .
- Fig. S2. The ¹³C NMR spectrum of $\mathbf{1}$ in DMSO- d_6 .
- Fig. S3. ESI HRMS of 1 in MeOH.
- Fig. S4. The ¹H NMR spectrum of **2** in DMSO- d_6 .
- Fig. S5. The ¹³C NMR spectrum of **2** in DMSO- d_6 .
- Fig. S6. ESI HRMS of 2 in MeOH.
- Fig. S7. ¹H NMR spectra of **1** (11.5 mM) with fluoride anion (TBA salt) in DMSO- d_6 (0-5 eq).
- Fig. S8. Color changes of 2 (15 µM) in DMSO upon addition of 40 eq. (Top) and 150 eq. of anions (Bottom).
- Fig. S9. Calculated HOMO and LUMO levels for 2b and 2c.
- Fig. S10. UV-vis spectral changes of 2 (10 μM in DMSO) observed upon addition of anions. a) CN⁻ b) CH₃COO⁻ c) H₂PO₄⁻ (TBA salt).
- Fig. S11 UV-vis spectral changes of 1 (10 µM in DMSO/H₂O (29:1, v/v)) observed upon addition of 0-1200 eq. of F (TBA salt).
- Fig. S12 UV-vis spectral changes of 2 (10 µM in DMSO/H₂O (29:1, v/v)) observed upon addition of 0-120 eq. of F⁻ (TBA salt).
- Fig. S13 UV-vis spectral changes of 2 (10 µM in DMSO/H₂O (9:1, v/v)) observed upon addition of 0-1200 eq. of F (TBA salt).
- Fig. S14 UV-vis spectral changes of 1 (10 µM in DMSO/H₂O (29:1, v/v)) observed upon addition of 500 eq. of various anions (TBA salt).
- Fig. S15 UV-vis spectral changes of 2 (10 µM in DMSO/H₂O (29:1, v/v)) observed upon addition of 100 eq. of various anions (TBA salt).
- Fig. S16. (a) ¹H NMR spectral changes of 1 (11.5 mM) in CDCl₃ upon addition of DMSO-*d*₆, (b) the corresponding percentages of tautomeric isomers 1 and 1a calculated from the ratio of related peak areas in the ¹H NMR spectra, and (c) UV-vis spectral changes of 1 (10 μM in CH₂Cl₂) upon addition of DMSO.
- Fig. S17. (a) ¹H NMR spectral changes of **2** (6.4 mM) in $CDCl_3$ (0.5 mL) upon addition of DMSO- d_6 , (b) the corresponding percentages of tautomeric isomers **2** and **2a** calculated from the ratio of related peak areas in the ¹H NMR spectra.
- Fig. S18. UV-vis spectral changes of 2 (10 μM) observed upon addition of a) 100 eq. of Cl⁻ (TBA salt) in DMSO; b) 0-84 eq. of Cl⁻ (TBA salt) in CH₂Cl₂.
- Fig. S19. ¹H NMR spectrum change of 2 (6.4 mM) upon addition of TBACl (1 eq) in DMSO- d_6 .

Experimental Section General

Commercial available solvents and reagents were used without further purification. Deuterated solvents for NMR measurements were obtained from Aldrich. UV/Vis absorption spectra were measured using a Varian Cary 100 spectrophotometer, with a quartz cell (path length = 1 cm). ¹H NMR spectra were obtained on a Bruker AVANCE spectrometer (400 or 500 MHz). Spectrophotometric titrations were performed on 1.0×10^{-5} M solutions of **1** and **2** in CH₂Cl₂ or DMSO (analytical grade). Typically, aliquots of a freshly prepared alkylammonium salt standard solution of the envisaged anion (CH₃COO⁻, F⁻, Cl⁻, Br⁻, or l⁻) were added, and the UV-vis spectra were recorded. ¹H NMR titrations were carried out in CDCl₃ or DMSO-*d*₆ solution.

Scheme S1 Synthesis of sensors 1 and 2.

Synthesis of i1

153 uL of TFA was added with syringe to the mixture of pyrrole (13.8 mL, 0.20 mol) and 3,5-Di-*tert*-butyl-4-hydroxybenzaldehyde (469 mg, 2.0 mmol). After stirred at room temperature for 30 min, saturated NaHCO₃ (30 mL) was added, and then the mixture was extracted with CH₂Cl₂ (30 mL × 2). The combined organic phase was washed with water, dried over Na₂SO₄, filtered and evaporated. Pyrrole was recycled by distillation under reduced pressure and the residue was purified by a silica gel column to afford the desired product dipyrromethane **i1** (479 mg, yield: 68%). ¹H NMR (CDCl₃, Bruker 500 MHz, 298K): δ 1.39 (s, 18H, -C(CH₃)₃), 5.13 (s, 1H, phenolic-OH), 5.36 (s, 1H, -CH), 5.92 (s, 2H, pyrrolic), 6.15 (d, *J* = 2.8 Hz, 2H, pyrrolic), 6.68 (s, 2H, pyrrolic), 7.00 (s, 2H, phenyl), 7.89 (br, 2H, -NH).

Synthesis of i2

TFA (2.2 mmol, 170 µL) was added to the mixture of 3, 5-Di-*tert*-butyl-4-hydroxy-benzaldehyde (22 mmol, 5.2 g) and pyrrole (100 mmol, 7.6 mL). After stirred at room temperature for 5 min under nitrogen, aqueous NaOH (0.1 M, 20 mL) was added. and then the mixture was extracted with CH₂Cl₂ (50 mL × 2). The combined organic phase was washed with water, dried over Na₂SO₄, filtered and evaporated. Pyrrole was recycled by distillation under reduced pressure. Chromatography of the resulting oil (silica gel, CH₂Cl₂/petroleum ether 1:4) afforded the product **i2** (1.23g, 18%). ¹H NMR (CDCl₃, 500 MHz, 298K): δ 1.37 (m, 36H, -C(CH₃)₃), 5.11 (s, 2H, phenolic-OH), 5.27 (s, 2H, -CH), 5.75-5.80 (m, 2H, pyrrolic), 5.85 (d, *J* = 2.1 Hz, 2H, pyrrolic), 6.07-6.12 (m, 2H, pyrrolic), 6.62-6.67 (m, 2H, pyrrolic), 6.97 (s, 4H, phenyl), 7.74 (br, 1H, central NH), 7.89 (br, 2H, peripheral NH).

Synthesis of 1

DDQ (111 mg, 0.49 mmol) was added to a solution of **i1** (114 mg, 0.33 mmol) in 50 mL of CH₂Cl₂. The mixture was stirred at room temperature for 30 min and then directly purified by silica gel column (Eluent: CH₂Cl₂ : MeOH) to afford the crude product **1** which was recrystallized from CH₂Cl₂ and *n*-hexane (71 mg, yield: 63%). mp. 235-236 °C. IR v_{max} (KBr)/cm⁻¹: 3432, 3392, 3270, 2962, 1610, 1572, 1535, 1471, 1446, 1401, 1384, 1358, 1335, 1128, 1115, 1041, 1021, 986, 630, 579, 532. ¹H NMR (DMSO-*d*₆, Bruker 500 MHz, 298K): δ 1.26 (s, 18H, -C(CH₃)₃), 6.33-6.42 (m, 2H, pyrrolic), 6.44-6.52 (m, 2H, pyrrolic), 7.18-7.27 (m, 2H, pyrrolic), 7.36 (s, 2H, hemiquinone), 11.47 (s, 2H, -NH). ¹³C NMR (DMSO-*d*₆, Bruker 75 MHz, 298K): δ 183.76, 143.59, 139.73, 132.34, 129.82, 125.29,

121.87, 119.11, 110.77, 34.78, 29.27.HRMS (ESI): calcd for $C_{23}H_{29}N_2O$ [M]⁺, 349.2280; found, 349.2273.

Synthesis of 2

DDQ (108 mg, 0.48 mmol) was added to a solution of **i2** (100 mg, 0.16 mmol) in 50 mL of CH₂Cl₂. The mixture was stirred at room temperature for 30 min and then directly purified by silica gel column (Eluent: PE : CH₂Cl₂). The crude product was further purified by another silica gel column (Eluent: PE : CH₂Cl₂ = 1 : 1, 1% Et₃N), and then recrystallized from methanol and water to afford the desired product **2** (61 mg, yield: 62%). mp. > 280 °C. IR v_{max} (KBr)/cm⁻¹: 3424, 2954, 1610, 1572, 1539, 1484, 1447, 1397, 1386, 1359, 1334, 1295, 1255, 1232, 1203, 1146, 1091, 1045, 1024, 987, 931, 881, 836, 739, 638, 534. ¹H NMR (DMSO-*d*₆, Bruker 500 MHz, 298K): δ 1.26 (s, 18H, -C(CH₃)₃), 1.28 (s, 18H, -C(CH₃)₃), 6.40-6.43 (m, 2H, pyrrolic), 6.66 (m, 2H, pyrrolic), 6.75 (d, *J* = 2.0 Hz, 2H, pyrrolic), 7.29 (m, 2H, pyrrolic), 7.39 (d, *J* = 2.3 Hz, 2H, hemiquinone), 7.52 (d, *J* = 2.2 Hz, 2H, hemiquinone), 11.45 (s, 2H, peripheral NH), 11.81 (s, 1H, central NH). ¹³C NMR (DMSO-*d*₆, Bruker 75 MHz, 298K): δ 184.71, 145.14, 144.43, 138.35, 135.71, 133.02, 132.20, 130.36, 125.83, 124.77, 120.33, 119.57, 111.62, 35.40, 35.32, 29.79, 29.65. HRMS (ESI): calcd for C₄₂H₅₂N₃O₂ [M]⁺, 630.4060; found, 630.4066.

DFT calculations

Density functional theory (DFT) calculations were carried out by the Gaussian03 program,^[1] using the hybrid B3LYP functional and 6-31G(d) basis set. The geometries of mono- and di-deprotonated species, **2b** and **2c** (Fig. S9), were optimized in vacuum, and subsequent single point calculations as well as time-dependent density functional theory (TDDFT) calculations were performed with the polarizable continuum model (PCM)^[2] to take into account the solvent effect of DMSO. The results are presented in Table S1 and Fig. S9.

To gain insights of the isomerization behaviors of compound 1 and 2, density functional theory (DFT) calculations are also carried out by the Gaussian03 program, using the hybrid B3LYP functional and 6-31G(d) basis set. The geometries of compound 1 and 2 are optimized in vacuum, and subsequent single point calculations are performed with solvent effects taken into account by the polarizable continuum model (PCM), using CHCl₃ and DMSO as solvents, respectively. The energies are compared between isomers, and the energy differences are listed in Table S2.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03, Revision D.01*; Gaussian, Inc., Wallingford CT, 2004.
- 2 (a) M. T. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, **107**, 3032; (b) M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002, **117**, 43.

Tables and figures

Table S1.	Calculated	TDDFT	excitation	energies	(eV,	nm),	oscillator	strengths	(f),	and	composition	in	terms	of
molecular o	orbital contr	ibutions												

Compound	State	Composition ^{<i>a</i>}	E(eV, nm)	f		
26	S_1	H→L(83%)	1.72, 720.4	0.2539		
20	S ₂	H1→L(70%)	2.25, 552.2	0.9865		
20	S ₁	H→L(82%)	1.83, 675.9	0.4371		
20	S ₂	H1→L(80%)	1.94, 638.3	0.2695		
a H = HOMO, L = LUMO, H1 = HOMO-1.						

Table S2. Calculated energy differences between the tautomeric isomers in various solvents (in kJ/mol)

Solvent	$E_{1a}-E_1$	$E_{2a}-E_2\\$
Vacuum	4.75	-9.50
CHCl ₃	25.15	10.29
DMSO	34.49	20.59

Fig. S3. ESI HRMS of 1 in MeOH.

m/z

Fig. S4. The ¹H NMR spectrum of **2** in DMSO- d_6 (Asterisks represent the peaks of methanol).

Fig. S6. ESI-HRMS of 2 in MeOH.

Fig. S7. ¹H NMR spectra of **1** (11.5 mM) with fluoride anion (TBA salt) in DMSO- d_6 (0-5 eq).

Fig. S8. Color changes of 2 (15 µM) in DMSO upon addition of 40 eq. (Top) and 150 eq. of anions (Bottom).

Fig. S9. Calculated HOMO and LUMO levels for mono- and di-deprotonated species of 2.

Fig. S10. UV-vis spectral changes of **2** (10 μ M in DMSO) observed upon the addition of anions. a) CN⁻, b) CH₃COO⁻, and c) H₂PO₄⁻ (TBA salt).

Fig. S11 UV-vis spectral changes of **1** (10 μ M in DMSO/H₂O (29:1, v/v)) observed upon addition of 0-1200 *eq.* of F⁻ (TBA salt).

Fig. S12 UV-vis spectral changes of **2** (10 μ M in DMSO/H₂O (29:1, v/v)) observed upon addition of 0-120 *eq.* of F⁻ (TBA salt).

Fig. S13 UV-vis spectral changes of **2** (10 μ M in DMSO/H₂O (9:1, v/v)) observed upon addition of 0-1200 *eq.* of F⁻ (TBA salt).

Fig. S14 UV-vis spectral changes of 1 (10 μ M in DMSO/H₂O (29:1, v/v)) observed upon addition of 500 *eq.* of various anions (TBA salt).

Fig. S15 UV-vis spectral changes of 2 (10 μ M in DMSO/H₂O (29:1, v/v)) observed upon addition of 100 *eq.* of various anions (TBA salt).

Fig. S16. (a) ¹H NMR spectral changes of **1** (11.5 mM) in CDCl₃ upon addition of DMSO- d_6 , (b) the corresponding percentages of tautomeric isomers **1** and **1a** calculated from the ratio of related peak areas in the ¹H NMR spectra, and (c) UV-vis spectral changes of **1** (10 μ M in CH₂Cl₂) upon addition of DMSO.

Fig. S17. (a) ¹H NMR spectral changes of **2** (6.4 mM) in CDCl₃ (0.5 mL) upon addition of DMSO- d_6 , (b) the corresponding percentages of tautomeric isomers **2** and **2a** calculated from the ratio of related peak areas in the ¹H NMR spectra.

Fig. S18. UV-vis spectral changes of **2** (10 μ M) observed upon addition of a) 100 *eq*. of Cl⁻ (TBA salt) in DMSO; b) 0-84 *eq*. of Cl⁻ (TBA salt) in CH₂Cl₂.

Fig. S19. ¹H NMR spectrum change of 2 (6.4 mM) upon addition of TBACl (1 eq) in DMSO- d_6 .