Electronic Supplementary Information

Improved Methods for the

Halogenation of the [HCB₁₁H₁₁]⁻ Anion

Weixing Gu, Billy J. McCulloch, Joseph H. Reibenspies, and Oleg V.

Ozerov*

Department of Chemistry, Texas A&M University,

College Station, TX 77842, USA

ozerov@chem.tamu.edu

ESI Table of Contents

General considerations	S3
Synthesis of Me ₃ NH[HCB ₁₁ Cl ₁₁] with SbCl ₅ (1 g scale)	S5
Reaction of mixtures of partially chlorinated carborane anions with SbCl ₅	S 8
Reaction of $Cs[HCB_{11}H_{11}]$ with $SbCl_5$ (5 g scale)	S10
Reaction of a mixture of $Me_3NH[HCB_{11}Cl_{11}]$ and $Me_3NH[HCB_{11}Cl_{10}OH]$ with hexamethyldisilazane	S12
Reaction of $Cs[HCB_{11}H_{11}]$ with $SbCl_5$ with added H_2O	S14
Reaction of mixture of Me ₃ NH[HCB ₁₁ Cl ₁₁] and Me ₃ NH[HCB ₁₁ Cl ₁₀ OH] with SO ₂ Cl ₂	S16
Reaction of mixture of Me ₃ NH[HCB ₁₁ Cl ₁₁] and Me ₃ NH[HCB ₁₁ Cl ₁₀ OH] with SbCl ₅	S18
Reaction of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 at ambient temperature without Ar protection	S21
Reaction of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 at refluxing temperature without Ar protection	S29
Reactions of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 and $AlCl_3$ without Ar protection	S35
Reactions of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 and $TiCl_4$ without Ar protection	S37
Synthesis of Cs[HCB ₁₁ Cl ₁₁] with SO ₂ Cl ₂ under Ar (1 g scale)	S39
Synthesis of Cs[HCB ₁₁ Cl ₁₁] with SO ₂ Cl ₂ under Ar (100 mg scale)	S42
Synthesis of $Cs[HCB_{11}Cl_{11}]$ with SO_2Cl_2 under Ar (5 g scale)	S45
Reactions of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 with added H_2O vs a control w/o H_2O	S48
Synthesis of Me ₃ NH[HCB ₁₁ Br ₁₁]	S51
Reaction of Cs[HCB ₁₁ H ₁₁] with pre-mixed Br ₂ and SbCl ₅	S54
Reaction of partially brominated carborane with Br ₂ /SbCl ₅	S56
Reaction of partially brominated carborane with Br2 and SbCl5 at room temperature	S59
Reaction of Cs[HCB ₁₁ Br ₁₁] with Br ₂ and SbCl ₅ at 70°C	S61
Reaction of Cs[HCB ₁₁ H ₁₁] with neat Br ₂	S63
Synthesis of Ph ₃ C[HCB ₁₁ Br ₁₁]	S65
Crystallographic data for Ph ₃ C[HCB ₁₁ Br ₁₁]	S66

General considerations

Materials and methods. $Cs[HCB_{11}H_{11}]$ was purchased from Katchem spol. s r.o. and used as received. $SbCl_5$ was purchased from Aldrich and fractionally distilled before use. All other chemicals were purchased from either Aldrich, Alfa Aesar or Acros and used as received unless otherwise noted. NMR spectra were recorded on a Varian Inova 300 spectrometer (¹H NMR, 299.951 MHz), Varian Mercury 300 spectrometer (¹³C NMR, 75.426 MHz), or a Varian Inova 400 spectrometer (¹¹B NMR, 128.191 MHz) in noted solvents. Chemical shifts are given in δ (ppm). ¹¹B NMR spectra were referenced externally with BF₃ etherate at δ 0. ¹H and ¹³C NMR spectra were referenced using the solvent signals. MS characterization of carborane anions were performed by Texas A&M University Laboratory for Biological Mass Spectrometry (LBMS) and by the Brandeis University Mass-Spectrometry lab (BUMS). Elemental analyses were performed by Complete Analysis Laboratories Inc., Parsippany, NJ, USA.

All reactions were performed in Schlenk or simple round-bottom flasks with a reflux condenser attached where appropriate. These systems were either open to air in the fume hood (via a glass Pasteur pipette connected to a glass adapter via Tygon tubing to minimize evaporation) or connected to a Schlenk line through which a continuous slow flow of ~1 atm of argon was maintained (oil bubbler at the exit).

Safety notes. The procedures detailed in this paper utilize very aggressive reagents, such as Br₂, SO₂Cl₂, and SbCl₅. These must be handled with extreme care and only in a functioning fume hood. Note that all of three of these compounds generate vapors of high density that may escape from the fume hood if released close to the sash. It is strongly recommended that they be handled well inside the fume hood. The reactions ensuing upon addition of neat bromine,

 SO_2Cl_2 , or $SbCl_5$ to $Cs[HCB_{11}H_{11}]$ are quite violent, and proceed with rapid evolution of gaseous by-products. In our hands, these additions were performed safely and without incident, but we urge nonetheless urge caution. We suggest that they be practiced on a small scale first.

Notes on the labeling in the mass spectra. In all spectra, $[HCB_{11}Cl_{11}]^{-1}$ is labelled as Cl11; $[HCB_{11}HCl_{10}]^{-1}$ as Cl10; $[HCB_{11}H_2Cl_9]^{-1}$ as Cl9; $[HCB_{11}H_3Cl_8]^{-1}$ as Cl8; $[HCB_{11}H_4Cl_7]^{-1}$ as Cl7; $[HCB_{11}H_5Cl_6]^{-1}$ as Cl6; $[HCB_{11}H_6Cl_5]^{-1}$ as Cl5; $[HCB_{11}H_7Cl_4]^{-1}$ as Cl4; $[HCB_{11}H_8Cl_3]^{-1}$ as Cl3; $[HCB_{11}H_9Cl_2]^{-1}$ as Cl2; $[HCB_{11}Cl_{10}OH]^{-1}$ as Cl10OH; $[HCB_{11}Cl_{10}OSiMe_3]^{-1}$ as Cl10OSiMe₃; $[HCB_{11}H_8Br_3]^{-1}$ as Br3; $[HCB_{11}H_7Br_4]^{-1}$ as Br4; $[HCB_{11}H_6Br_5]^{-1}$ as Br5; $[HCB_{11}H_5Br_6]^{-1}$ as Br6; $[HCB_{11}H_4Br_7]^{-1}$ as Br7; $[HCB_{11}Br_{10}]^{-1}$ as Br10; $[HCB_{11}Br_{11}]^{-1}$ as Br11; $[HCB_{11}Br_{10}Cl_1]^{-1}$ as Br10Cl. Synthesis of Me₃NH[HCB₁₁Cl₁₁] with SbCl₅ (1 g scale). A solution of Cs[HCB₁₁H₁₁] (1.05 g, 3.8 mmol) in SbCl₅ (10 mL, 79 mmol) in a Schlenk flask was heated to reflux at 140 $^{\circ}$ C for 3 d. After removal of most of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 0.5 g of Me₃NHCl (5.2 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give Me₃NH[HCB₁₁Cl₁₁]. Yield: 1.8 g (81%). ¹¹B NMR (128 MHz, aceotne): δ -1.7 (s, 1B), -9.1 (s, 5B), -12.2 (s, 5B). ¹H NMR (300 MHz, acetonitrile-*d*₃): δ 2.71 (s, 9H, *Me*₃N), 4.07 (s, 1H, cage C-H). Me₃NH[HCB₁₁Cl₁₁] was recrystallized from acetone before it was sent for elemntal analyses. Less than 0.0167% of Sb was detected by elemental analysis. (Fig. S1 & S2)

Figure S1. MALDI MS spectrum for the reaction with SbCl₅ at 1 g scale.

Figure S2. ¹¹B NMR spectrum of the Me₃NH[HCB₁₁Cl₁₁] product from the reaction with SbCl₅ at 1 g scale.

Reaction of mixtures of partially chlorinated carborane anions with SbCl₅. A solution of CsHCB₁₁H_xCl_{11-x} (130 mg, 0.23 mmol, $x= 0\sim 6$, avg. ≈ 2.5 by MS; this material was obtained from a reaction of parent carborane with SO₂Cl₂ without Ar protection) in SbCl₅ (0.8 mL, 6.3 mmol) in a Schlenk flask was heated to reflux at 140 °C for 1 d. After removal of most of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 0.1 g of Me₃NHCl (1.1 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 125 mg (86%) of Me₃NH[HCB₁₁Cl₁₁]. (Fig. S3)

Figure S3. MALDI mass-spectrum for the reaction of mixtures of partially chlorinated carborane with SbCl₅.

Reaction of Cs[HCB₁₁H₁₁] with SbCl₅ (5 g scale). A solution of Cs[HCB₁₁H₁₁] (5.09 g, 18.4 mmol) in SbCl₅ (50 mL, 395 mmol) in a Schlenk flask was heated to reflux at 140 °C for 1 d. After removal of most of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 3 g of Me₃NHCl (31 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 8.9 g (82%) of Me₃NH[HCB₁₁Cl₁₁]. MALDI MS analysis showed two sets of carborane isotopic patterns. One set around 522 corresponds to the HCB₁₁Cl₁₁ anion (Cl10); another set around 503 corresponds to the HCB₁₁Cl₁₀OH anion (Cl10OH). (Fig. S4)

Figure S4. MALDI mass-spectrum for the reaction with SbCl₅ at 5 g scale.

Reaction of a mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] with hexamethyldisilazane. A CH₂Cl₂ solution of a mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] (110 mg, est. 0.22 mmol; obtained from a reaction of Cs[HCB₁₁H₁₁] with SbCl₅ as described above) was treated with hexamethyldisilazane (500 μ L, 2.4 mmol) and heated to reflux in a Schlenk flask for 24 h. Removal of the volatiles gave a white solid which was analyzed by MALDI MS. MS spectra showed three sets of signals with the carborane isotopic pattern. The set around 522 corresponds to the HCB₁₁Cl₁₁ anion (Cl11); the set around 487 corresponds to the HCB₁₁Cl₁₀OH anion (Cl10); and a new set around 575 corresponds to the HCB₁₁Cl₁₀OSiMe₃ anion (Cl10OSiMe₃). (Fig. S5)

Figure S5. MALDI mass-spectrum for the reaction mixture of $Me_3NH[HCB_{11}Cl_{11}]$ and $Me_3NH[HCB_{11}Cl_{10}OH]$ with hexamethyldisilazane.

S13

Reaction of Cs[HCB₁₁H₁₁] with SbCl₅ with added H₂O. A solution of Cs[HCB₁₁H₁₁] (100 g, 0.36 mmol) in SbCl₅ (1 mL, 8 mmol) with added H₂O (30 μ L, 1.7 mmol) in a Schlenk flask was heated to reflux at 140 °C for 1 d. After removal of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 0.1 g of Me₃NHCl (1.1 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 150 mg of a solid. MALDI MS analysis showed two sets of carborane isotopic patterns. One set around 522 corresponds to the HCB₁₁Cl₁₁ anion (Cl11); another set around 503 corresponds to the HCB₁₁Cl₁₀OH anion (Cl10OH). (Fig. S6)

Figure S6. MALDI mass-spectrum for the reaction with $SbCl_5$ and H_2O .

Reaction of mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] with SO₂Cl₂.

A solution of a mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] (220 mg, est. 0.44 mmol; obtained from a reaction of Cs[HCB₁₁H₁₁] with SbCl₅ as described above) in SO₂Cl₂ (1.0 mL, 12.4 mmol) was heated to reflux at 80 °C in a Schlenk flask for 24 h. Removal of the volatiles gave a white solid (220 mg) which was analyzed by MALDI MS. MS spectra showed only one set of signals with a carborane pattern around 522 which corresponds to the HCB₁₁Cl₁₁ anion (**Cl11**). (Fig. S7)

Figure S7. MALDI mass-spectrum for the reaction mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] with SO₂Cl₂.

Reaction of mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] with SbCl₅. A solution of a mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] (207 mg, est. 0.41 mmol; obtained from a reaction of Cs[HCB₁₁H₁₁] with SbCl₅ as described above) in SbCl₅ (0.5 mL, 4 mmol) was heated to reflux at 140 °C in a Schlenk flask for 24 h. After removal of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 0.1 g of Me₃NHCl (1.1 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 175 mg of a solid. MALDI MS analysis showed only one set of signals with a carborane pattern around 522 which corresponds to the HCB₁₁Cl₁₁ anion (Cl11). (Fig. S8)

Figure S8. MALDI mass-spectrum for the reaction mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] with SbCl₅.

Reaction of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 at ambient temperature without Ar protection. A solution of $Cs[HCB_{11}H_{11}]$ (120 mg, 0.43 mmol) in SO_2Cl_2 (8.0 mL, 100 mmol) in a Schlenk flask was stirred at room temperature for 24 h. Aliquot were taken after 1, 2, 3, 4, 5, 6, 8, and 24 h and analyzed by MALDI MS which indicated mixtures of partially chlorinated carboranes. (Fig. S9-S16))

Figure S9. MALDI mass-spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 1 h.

Voyager Spec #1[BP = 279.9, 19840]

Figure S10. MALDI mass-spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 2 h.

Voyager Spec #1[BP = 279.9, 9981]

Figure S11. MALDI mass-spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 3 h.

Voyager Spec #1[BP = 279.9, 9976]

Figure S12. MALDI mass-spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 4 h.

Voyager Spec #1[BP = 279.9, 12772]

Figure S13. MALDI mass-spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 5 h.

Figure S14. MALDI mass-spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 6 h.

Figure S15. MALDI mass-spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 8 h.

Figure S16. MALDI mass-spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 24 h.

Reaction of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 at refluxing temperature without Ar protection. A solution of $Cs[HCB_{11}H_{11}]$ (1.03 g, 3.71 mmol) in SO_2Cl_2 (50 mL, 620 mmol) in a Schlenk flask was heated to reflux. After 1 h, formation of white precipitate was observed and an additional 50 mL (620 mmol) of SO_2Cl_2 was added. The mixture was allowed to stir at refluxing temperature for 5 d. An aliquot was taken every day and analyzed by MALDI MS. After 5 days, removal of the volatiles gave a white solid. MALDI MS analysis indicated that this solid is a mixture of octa-, nona-, deca-, and undecachlorocarborane anions. (Fig. S17-S21)

Figure S17. MALDI mass-spectrum for the reaction with SO₂Cl₂ at refluxing temperature without Ar protection for 1 d.

Figure S18. MALDI mass-spectrum for the reaction with SO₂Cl₂ at refluxing temperature without Ar protection for 2 d.

Figure S19. MALDI mass-spectrum for the reaction with SO₂Cl₂ at refluxing temperature without Ar protection for 3 d.

Figure S20. MALDI mass-spectrum for the reaction with SO₂Cl₂ at refluxing temperature without Ar protection for 4 d.

Reactions of Cs[HCB₁₁H₁₁] with SO₂Cl₂ and AlCl₃ without Ar protection. A solution of Cs[HCB₁₁H₁₁] (90 mg, 0.32 mmol) in SO₂Cl₂ (5.0 mL, 62 mmol) with added AlCl₃ (0.60 g, 4.5 mmol) in a Schlenk flask was heated to reflux for 3 d. Removal of the volatiles gave a white solid. MS spectra showed the product is a mixture of predominantly nona- and decachlorocarborane anions. (Fig. S22)

Figure S22. MALDI mass-spectrum for the reaction with SO₂Cl₂ and AlCl₃ without Ar protection.
Reactions of Cs[HCB₁₁H₁₁] with SO₂Cl₂ and TiCl₄ without Ar protection. A solution of Cs[HCB₁₁H₁₁] (100 mg, 0.36 mmol) in SO₂Cl₂ (5.0 mL, 62 mmol) with added TiCl₄ (3.0 mL, 27 mmol) in a Schlenk flask was heated to reflux for 3 d. Removal of the volatiles gave a white solid which was analyzed by MALDI MS. (Fig. S23)

Figure S23. MALDI mass-spectrum for the reaction with SO₂Cl₂ and TiCl₄ without Ar protection.

Synthesis of Cs[HCB₁₁Cl₁₁] with SO₂Cl₂ under Ar (1 g scale). A solution of Cs[HCB₁₁H₁₁] (1.03 g, 3.71 mmol) in SO₂Cl₂ (50 mL, 620 mmol) in a Schlenk flask was heated to reflux at 80 °C under Ar protection. After 1 h, formation of white precipitate was observed and an additional 50 mL (620 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at refluxing temperature for another 24 h. Removal of the volatiles gave a white solid which was recrystallized from water to give pure Cs[HCB₁₁Cl₁₁]. Yield: 2.05 g (85%). ¹¹B NMR (128 MHz, aceotne): δ -1.7 (s, 1B), -9.0 (s, 5B), -12.1 (s, 5B). ¹H NMR (300 MHz, acetonitrile-*d*₃): δ 4.07 (s). Elemental Analysis Calculated (Found) for CsHCB₁₁Cl₁₁ : H, 0.15% (0.30%); C, 1.83% (1.87%); B, 18.16% (17.97%); Cl, 59.55% (59.39%). Negative-ion MALDI MS, *m*/*z* (isotopic abundance): calculated for HCB₁₁Cl₁₁ 520 (84.7), 521 (96.7), 522 (100), 523 (93.8), 524 (80.3); found 519.7 (80.6), 520.7 (93.2), 521.7 (100), 522.7 (88.2), 523.7 (77.3). (Fig. S24 & S25)

Figure S24. MALDI mass-spectrum for the reaction with SO₂Cl₂ under Ar protection at 1 g scale.

Figure S25. ¹¹B NMR spectrum of the Cs[HCB₁₁Cl₁₁] product from the reaction with SO_2Cl_2 under Ar protection at 1 g scale.

Synthesis of Cs[HCB₁₁Cl₁₁] with SO₂Cl₂ under Ar (100 mg scale). A solution of Cs[HCB₁₁H₁₁] (110 mg, 0.40 mmol) in SO₂Cl₂ (5.0 mL, 62 mmol) in a Schlenk flask was heated to reflux under Ar protection. After 1 h, formation of white precipitate was observed and an additional 5.0 mL (62 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at refluxing temperature for another 24 h. Removal of the volatiles gave a white solid which was recrystallized from water to give pure Cs[HCB₁₁Cl₁₁]. Yield: 220 mg (84%). (Fig. S26 & S27)

Figure S26. MALDI mass-spectrum for the reaction with SO₂Cl₂ under Ar protection at 100 mg scale.

Figure S27. ¹¹B NMR spectrum of the Cs[HCB₁₁Cl₁₁] product from the reaction with SO₂Cl₂ under Ar protection at 100 mg scale.

Synthesis of $Cs[HCB_{11}Cl_{11}]$ with SO_2Cl_2 under Ar (5 g scale). A solution of $Cs[HCB_{11}H_{11}]$ (5.01 g, 18.02 mmol) in SO_2Cl_2 (250 mL, 3.09 mol) in a Schlenk flask was heated to reflux under Ar protection. After 1 h, formation of white precipitate was observed and an additional 250 mL (3.09 mol) of SO_2Cl_2 was added. The mixture was allowed to stir at refluxing temperature for another 24 h. Removal of the volatiles gave a white solid which was recrystallized from water to give pure $Cs[HCB_{11}Cl_{11}]$. Yield: 10.4 g (87%). (Fig. S28 & S29)

Figure S28. MALDI mass-spectrum for the reaction with SO₂Cl₂ under Ar protection at 5 g scale.

Figure S29. ¹¹B NMR spectrum of the Cs[HCB₁₁Cl₁₁] product from the reaction with SO_2Cl_2 under Ar protection at 5 g scale.

Reactions of Cs[HCB₁₁H₁₁] with SO₂Cl₂ with added H₂O versus a control without added H₂O. A pair of reactions were set up in the following way: RX1: 100 mg (0.36 mmol) of Cs[HCB₁₁H₁₁] was mixed with 22 μ L (1.22 mmol) of H₂O and 5.0 mL (62 mmol) of SO₂Cl₂ in a Schlenk flask and heated to reflux; RX2: 100 mg (0.36 mmol) of Cs[HCB₁₁H₁₁] was mixed with 5.0 mL (62 mmol) SO₂Cl₂ in a Schlenk flask and heated to reflux. After 1 h, an additional 5.0 mL (62 mmol) of SO₂Cl₂ was added to each reaction. The mixture was allowed to stir at refluxing temperature for 24 h. Removal of the volatiles gave in each case a white solid which were analyzed by MALDI MS (Fig. S30 & S31) which revealed a lower chlorination level in the reaction with added water.

Figure S30. MALDI mass-spectrum for the reaction with SO₂Cl₂ with 2% H₂O.

Figure S31. MALDI mass-spectrum for the reaction with SO₂Cl₂ without H₂O.

Synthesis of Me₃NH[HCB₁₁Br₁₁]. A round bottom flask charged with Cs[HCB₁₁H₁₁] (101) mg, 0.365 mmol) was equipped with a stir bar and condenser. In this order, Br₂ (0.4 mL, 8 mmol) and SbCl₅ (1.0 mL, 8 mmol) were added through the condenser. The solution was blanketed with argon and stirred for 1 h in an oil bath which was brought to 150 °C. The flask was then removed from heat and cooled to room temperature; the volatiles were removed in vacuo as much as possible, first at room temperature, and then with the help of a warm water bath. Aqueous 10% NaOH was added to the residue until basic to litmus, forming a thick white, creamy precipitate. This was filtered through Celite over a medium fritted filter funnel, washing with 100 mL of 70 °C water. The filtrate was made acidic to litmus with aqueous 10% HCl, and an excess (87 mg, 0.91 mmol) of Me₃NHCl was added, immediately precipitating a white solid. The precipitate was allowed to settle for 1 h, and the suspension was filtered through Celite over a fine fritted filter funnel, washing with cool water. The receiving flask was changed, and the Me₃NH[HCB₁₁Br₁₁] product washed through with 15 mL of acetone. The volatiles were removed in vacuo, leaving Me₃NH[HCB₁₁Br₁₁] as a fine white powder. Yield: 302 mg (0.282) mmol, 77%). ¹H NMR (acetone- d_6 , 25°C): δ 4.67 (br s, 1H, $HN(CH_3)_3^+$), 3.20 (s, 9H, $HN(CH_3)_3^+$) ${}^{13}C\{{}^{1}H\}$ NMR (acetone- d_6 , 25°C): δ 54.3 (br s, 1C, $HCB_{11}Br_{11}^-$), 46.0 (s, 3C, $HN(CH_3)_3^+$) Unreferenced ¹¹B NMR (acetone- d_6 , 25°C): δ 24.0 (br s, 1B, HCB₁₁Br₁₁⁻), 17.2 (br s, 5B, HCB₁₁Br₁₁⁻), 13.4 (br s, 5B, HCB₁₁Br₁₁⁻). Negative-ion MALDI MS, m/z (isotopic abundance): Calculated for [HCB11Br11]- 1001.2 (2.5), 1002.2 (4.5), 1003.2 (10.2), 1004.2 (18.0), 1005.2 (29.5), 1006.2 (44.2), 1007.2 (60.4), 1008.2 (76.9), 1009.2 (90.5), 1010.2 (98.7),1011.2 (100.0), 1012.2 (93.8), 1013.2 (82.1), 1014.2 (67.2), 1015.2 (49.8), 1016.2 (35.3), 1017.2 (21.1), 1018.2 (12.6), 1019.2 (6.3), 1020.2 (3.2), 1021.2 (1.1); Found 1003.4 (3.8), 1004.4 (10.3), 1005.4 (20.7), 1006.3 (36.8), 1007.3 (54.6), 1008.3 (73.3), 1009.3 (89.9), 1010.3 (100.0), 1011.3

(98.1), 1012.3 (94.9), 1013.3 (82.2), 1014.3 (63.0), 1015.3 (40.6), 1016.3 (26.1), 1017.3 (12.1),

1018.3 (5.7), 1019.3 (1.6)

Figure S32. MALDI MS (top) and ¹¹B NMR (bottom) spectra (acetone-*d*₆) of isolated Me₃NH[HCB₁₁Br₁₁].

Reaction of Cs[HCB₁₁H₁₁] with pre-mixed Br₂ and SbCl₅. Cs[HCB₁₁H₁₁] (102 mg, 0.370 mmol) was added to a Schlenk flask equipped with a stirbar and condenser. An addition funnel was fitted above the condenser and the system was maintained under Ar. Br₂ (0.4 mL, 8 mmol) and SbCl₅ (1 mL, 8 mmol) were mixed in the addition funnel. The contents of the addition funnel were emptied into the flask through the condenser. The system was heated to 150°C for 1 day, and a sample for MALDI MS was taken, which indicated a mixture containing [HCB₁₁HBr₁₀]⁻ and predominantly [HCB₁₁Br₁₁]⁻ (Figure S33).

Figure S33. MALDI mass-spectrum for the reaction of Cs[HCB₁₁H₁₁] with pre-mixed Br₂ and SbCl₅ for 1 day at 150° C.

Reaction of partially brominated carborane with Br₂/SbCl₅. Cs[HCB₁₁H₁₁] (101 mg, 0.366 mmol) was added to a Schlenk flask equipped with a stirbar. CH₂Cl₂ (1 mL) was added to the flask, followed by Br₂ (239 mg, 1.50 mmol) dissolved in CH₂Cl₂ (4 mL). A condenser was attached, the system was blanketed with argon and stirred while being heated to reflux for 3.5 h, after which the solution appeared cloudy orange. A sample was collected for MALDI MS analysis, which indicated a mixture of $[HCB_{11}H_8Br_3]^-$ and $[HCB_{11}H_7Br_4]^-$ (Figure S34, top). A sample taken after refluxing for 1 day showed the formation of a small amount $[HCB_{11}H_6Br_5]^-$, but overall little change in the composition by MS (Figure S34, bottom).

All volatiles were removed *in vacuo*, and an addition funnel was equipped to the condenser. Br₂ (0.4 mL, 8 mmol) and SbCl₅ (1 mL, 8 mmol) were added to the addition funnel, which was then emptied through the condenser into the flask. The mixture was stirred and heated to 150° C for 1 day, after which a MALDI MS sample was obtained, which indicated complete conversion to [HCB₁₁Br₁₁]⁻ (Figure S35).

Figure S34. MALDI mass-spectra for the reaction of $Cs[HCB_{11}H_{11}]$ with 4.1 equiv. Br₂ in CH₂Cl₂ at reflux after 3.5 h (top) and after 23 h (bottom).

Figure S35. MALDI mass-spectrum for the reaction of partially brominated carborane (from Scheme S34) with pre-mixed Br_2 and $SbCl_5$ for 1 day at 150° C.

Reaction of partially brominated carborane with Br₂ and SbCl₅ at room temperature.

A round bottom flask charged with Cs[HCB₁₁H₁₁] (100 mg, 0.362 mmol) was equipped with a stir bar. Br₂ (177 mg, 1.11 mmol) dissolved in CH₂Cl₂ (4 mL) was added. A condenser was then affixed to the flask, stirring initiated under Ar, and the system was heated to reflux for 2 h. All volatiles were then removed *in vacuo*. Br₂ (0.4 mL, 8 mmol) followed by SbCl₅ (1 mL, 8 mmol) were added through the condenser, and the system placed under Ar. Stirring was again initiated and the system maintained at room temperature. After 75 minutes, a sample was taken for MALDI MS analysis, which indicated a mixture containing [HCB₁₁HBr₁₀]⁻ and predominantly [HCB₁₁Br₁₁]⁻ (Figure S36, top). A second sample was obtained after 4 days, showing the same mixture, but with a higher proportion of undecabrominated product (Figure S36, bottom).

Figure S36. MALDI mass-spectra for the reaction in which $Cs[HCB_{11}H_{11}]$ was first treated with Br_2 in CH_2Cl_2 and then with $Br_2/SbCl_5$ for 75 min (top) and 4 d (bottom) at room temperature.

Reaction of Cs[HCB₁₁Br₁₁] with Br₂ and SbCl₅ at 70°C. A round bottom flask charged with Cs[HCB₁₁H₁₁] (100 mg, 0.362 mmol) was equipped with a stir bar and condenser. Br₂ (0.4 mL, 8 mmol) followed by SbCl₅ (1 mL, 8 mmol) were added through the condenser, and the system placed under Ar. Stirring was initiated and the system maintained at 70°C for 2 d. A sample was taken for MALDI MS analysis, which indicated a mixture containing [HCB₁₁HBr₁₀]⁻ and predominantly [HCB₁₁Br₁₁]⁻ (Figure S37).

Figure S37. MALDI mass-spectrum for reaction of Cs[HCB₁₁H₁₁] with Br₂ and SbCl₅ for 2 days at 70° C.

Reaction of Cs[HCB₁₁H₁₁] with neat Br₂. A Schlenk flask charged with Cs[HCB₁₁H₁₁] (100 mg, 0.362 mmol) was equipped with a stir bar and condenser. Br₂ was added through the condenser (1 mL, 20 mmol), and the system maintained under Ar. The system was then heated to reflux, and maintained for 2 d. MALDI MS samples were taken after 30 min at room temperature (Figure S38, top) and after 48 h (Figure S38, bottom) at reflux. The final product was predominantly [HCB₁₁H₅Br₆]⁻, with some penta- and hepta-brominated product observed.

Figure S38. MALDI mass-spectrum for the reaction of $Cs[HCB_{11}H_{11}]$ with Br_2 for 30 min at room temperature (top) and 48 hours at reflux (bottom).

Ph₃C[HCB₁₁Br₁₁] was synthesized from HNMe₃[HCB₁₁Br₁₁] analogously to literature procedures¹ for synthesis of trityl salts of halogenated carboranes (via the Ag salt). Recrystallization from toluene at -35 °C yielded a small quantity of X-ray quality single crystals, one of which was used for the X-ray diffraction study.

(a) C.-W. Tsang, Q. Yang, E. T.-P. Sze, T. C. W. Mak, D. T. W. Chan, and Z. Xie, *Inorg. Chem.* 2000, **39**, 5851.
(b) Z. Xie, T. Jelinek, R. Bau, and C. A. Reed, *J. Am. Chem. Soc.* 1994, **116**, 1907.

Figure S39. ORTEP view of the full asymmetric unit (including the toluene solvent molecule, top right) of the solid-state structure of $Ph_3C[HCB_{11}Br_{11}]$.

Table S1. Crystal data and structure refinement for $Ph_3C[HCB_{11}Br_{11}]$.

Empirical formula	C27 H24 B11 Br11	C27 H24 B11 Br11	
Formula weight	1346.38	1346.38	
Temperature	70(2) K	70(2) K	
Wavelength	0.71069 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 13.968(5) Å	$\alpha = 90.000(5)^{\circ}.$	
	b = 21.852(5) Å	β=96.936(5)°.	
	c = 13.127(5) Å	$\gamma = 90.000(5)^{\circ}.$	
Volume	3977(2) Å ³		
Z	4		
Density (calculated)	2.248 Mg/m ³	2.248 Mg/m ³	
Absorption coefficient	11.103 mm ⁻¹	11.103 mm ⁻¹	
F(000)	2504	2504	
Crystal size	0.30 x 0.10 x 0.10 mm ³	0.30 x 0.10 x 0.10 mm ³	
Theta range for data collection	2.74 to 25.00°.	2.74 to 25.00°.	
Index ranges	-6<=h<=16, -25<=k<=1	-6<=h<=16, -25<=k<=15, -14<=l<=13	
Reflections collected	23031	23031	
Independent reflections	6468 [R(int) = 0.0457]	6468 [R(int) = 0.0457]	
Completeness to theta = 25.00°	92.3 %	92.3 %	
Absorption correction	Semi-empirical from eq	Semi-empirical from equivalents	
Max. and min. transmission	0.4031 and 0.1355	0.4031 and 0.1355	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	6468 / 447 / 442	6468 / 447 / 442	
Goodness-of-fit on F ²	1.015	1.015	
Final R indices [I>2sigma(I)]	R1 = 0.0350, wR2 = 0.0	R1 = 0.0350, wR2 = 0.0767	
R indices (all data)	R1 = 0.0544, WR2 = 0.0	R1 = 0.0544, wR2 = 0.0859	
Largest diff. peak and hole	0.995 and -0.834 e.Å ⁻³	0.995 and -0.834 e.Å ⁻³	

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Ph₃C[HCB₁₁Br₁₁]. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
Br(1)	8643(1)	470(1)	6183(1)	21(1)
Br(2)	8499(1)	-591(1)	3991(1)	20(1)
Br(3)	6136(1)	221(1)	4538(1)	21(1)
Br(4)	6838(1)	1832(1)	5438(1)	19(1)
Br(5)	6678(1)	45(1)	1785(1)	17(1)
Br(6)	9603(1)	1971(1)	5433(1)	19(1)
Br(7)	9480(1)	216(1)	1833(1)	16(1)
Br(8)	5731(1)	1594(1)	2652(1)	19(1)
Br(9)	10184(1)	1796(1)	2728(1)	18(1)
Br(10)	7840(1)	2675(1)	3216(1)	17(1)
Br(11)	7821(1)	1573(1)	955(1)	16(1)
C(1B)	9153(4)	800(2)	3979(5)	14(1)
B(1)	8303(4)	785(3)	4831(6)	14(1)
B(2)	8240(4)	261(3)	3734(6)	14(1)
B(3)	7187(4)	653(3)	4011(6)	14(1)
B(4)	7518(4)	1408(3)	4460(5)	13(1)
B(5)	7451(4)	576(3)	2739(6)	13(1)
B(6)	8788(4)	1493(3)	4438(6)	14(1)
B(7)	8719(4)	652(3)	2727(5)	13(1)
B(8)	7011(4)	1286(3)	3158(5)	12(1)
B(9)	9054(4)	1411(3)	3153(5)	14(1)
B(10)	7998(4)	1809(3)	3433(5)	13(1)
B(11)	7946(4)	1283(3)	2350(5)	12(1)
C(1)	7033(4)	-922(2)	-248(5)	15(1)
C(2)	6989(4)	-417(3)	-973(5)	17(1)
C(3)	7695(4)	55(3)	-827(5)	18(1)
C(4)	7616(4)	553(3)	-1470(5)	22(1)

C(5)	6882(4)	595(3)	-2260(5)	25(1)
C(6)	6195(4)	134(3)	-2431(5)	26(1)
C(7)	6254(4)	-365(3)	-1774(5)	21(1)
C(8)	6153(4)	-1201(3)	-11(5)	18(1)
C(9)	5311(4)	-849(3)	-8(5)	18(1)
C(10)	4501(4)	-1102(3)	306(5)	20(1)
C(11)	4473(4)	-1710(3)	578(5)	21(1)
C(12)	5289(4)	-2068(3)	577(5)	23(1)
C(13)	6130(4)	-1817(3)	305(5)	21(1)
C(14)	7948(4)	-1144(2)	232(5)	17(1)
C(15)	8769(4)	-1145(3)	-310(5)	21(1)
C(16)	9636(4)	-1364(3)	165(6)	28(1)
C(17)	9706(4)	-1571(3)	1150(6)	28(1)
C(18)	8930(4)	-1563(3)	1716(5)	24(1)
C(19)	8044(4)	-1359(3)	1241(5)	19(1)
C(1T)	6935(5)	-3364(3)	51(6)	32(1)
C(2T)	7709(5)	-3021(3)	-195(6)	34(1)
C(3T)	7665(5)	-2710(3)	-1128(6)	39(1)
C(4T)	6844(6)	-2745(3)	-1806(7)	46(2)
C(5T)	6070(6)	-3086(3)	-1575(7)	46(2)
C(6T)	6107(5)	-3389(3)	-661(6)	39(1)
C(7T)	6969(5)	-3705(3)	1048(6)	45(2)

Table S3.	Bond lengths [Å	Å] and angles [°] for Ph ₃	$C[HCB_{11}Br_{11}].$
-----------	-----------------	------------------	-----------------------	-----------------------

Br(1)-B(1)	1.910(7)
Br(2)-B(2)	1.920(6)
Br(3)-B(3)	1.941(6)
Br(4)-B(4)	1.925(7)
Br(5)-B(5)	1.938(6)
Br(6)-B(6)	1.933(7)
Br(7)-B(7)	1.928(7)
Br(8)-B(8)	1.950(6)
Br(9)-B(9)	1.930(6)
Br(10)-B(10)	1.922(6)
Br(11)-B(11)	1.926(7)
C(1B)-B(7)	1.712(9)
C(1B)-B(9)	1.714(9)
C(1B)-B(1)	1.727(8)
C(1B)-B(6)	1.729(8)
C(1B)-B(2)	1.738(8)
B(1)-B(4)	1.778(9)
B(1)-B(6)	1.788(9)
B(1)-B(3)	1.807(9)
B(1)-B(2)	1.834(10)
B(2)-B(5)	1.745(9)
B(2)-B(7)	1.771(9)
B(2)-B(3)	1.777(8)
B(3)-B(5)	1.761(10)
B(3)-B(8)	1.778(9)
B(3)-B(4)	1.794(9)
B(4)-B(6)	1.786(8)
B(4)-B(8)	1.789(10)
B(4)-B(10)	1.804(9)
B(5)-B(7)	1.780(8)
B(5)-B(8)	1.781(8)
B(5)-B(11)	1.792(9)
B(6)-B(10)	1.756(9)

B(6)-B(9)	1.780(10)
B(7)-B(11)	1.784(9)
B(7)-B(9)	1.794(9)
B(8)-B(11)	1.780(9)
B(8)-B(10)	1.794(8)
B(9)-B(11)	1.786(9)
B(9)-B(10)	1.788(9)
B(10)-B(11)	1.823(9)
C(1)-C(14)	1.438(8)
C(1)-C(8)	1.439(7)
C(1)-C(2)	1.455(8)
C(2)-C(7)	1.383(8)
C(2)-C(3)	1.423(8)
C(3)-C(4)	1.374(8)
C(4)-C(5)	1.370(9)
C(5)-C(6)	1.390(8)
C(6)-C(7)	1.387(9)
C(8)-C(9)	1.404(7)
C(8)-C(13)	1.412(8)
C(9)-C(10)	1.367(8)
C(10)-C(11)	1.377(8)
C(11)-C(12)	1.383(8)
C(12)-C(13)	1.382(8)
C(14)-C(19)	1.395(9)
C(14)-C(15)	1.421(8)
C(15)-C(16)	1.379(8)
C(16)-C(17)	1.362(10)
C(17)-C(18)	1.385(8)
C(18)-C(19)	1.390(8)
C(1T)-C(2T)	1.385(9)
C(1T)-C(6T)	1.397(10)
C(1T)-C(7T)	1.501(10)
C(2T)-C(3T)	1.395(10)
C(3T)-C(4T)	1.367(10)
C(4T)-C(5T)	1.377(10)
C(5T)-C(6T)	1.366(11)

63.2(4)
115.2(4)
114.5(4)
114.5(4)
62.3(4)
62.3(3)
61.8(4)
114.2(4)
63.9(4)
114.6(4)
105.0(4)
58.9(3)
60.1(3)
103.2(5)
60.0(3)
107.2(4)
58.3(3)
107.1(5)
107.4(5)
58.4(3)
119.7(4)
127.3(4)
121.3(4)
126.5(4)
119.1(4)
104.7(4)
58.4(3)
60.8(4)
104.0(4)
60.0(4)
108.5(4)
57.8(3)
107.9(4)
107.3(4)
60.1(4)
C(1B)-B(2)-Br(2)

B(5)-B(2)-Br(2)
B(7)-B(2)-Br(2)
B(3)-B(2)-Br(2)
B(1)-B(2)-Br(2)
B(5)-B(3)-B(2)
B(5)-B(3)-B(8)
B(2)-B(3)-B(8)
B(5)-B(3)-B(4)
B(2)-B(3)-B(4)
B(8)-B(3)-B(4)
B(5)-B(3)-B(1)
B(2)-B(3)-B(1)
B(8)-B(3)-B(1)
B(4)-B(3)-B(1)
B(5)-B(3)-Br(3)
B(2)-B(3)-Br(3)
B(8)-B(3)-Br(3)
B(4)-B(3)-Br(3)
B(1)-B(3)-Br(3)
B(1)-B(4)-B(6)
B(1)-B(4)-B(8)
B(6)-B(4)-B(8)
B(1)-B(4)-B(3)
B(6)-B(4)-B(3)
B(8)-B(4)-B(3)
B(1)-B(4)-B(10)
B(6)-B(4)-B(10)
B(8)-B(4)-B(10)
B(3)-B(4)-B(10)
B(1)-B(4)-Br(4)
B(6)-B(4)-Br(4)
B(8)-B(4)-Br(4)
B(3)-B(4)-Br(4)
B(10)-B(4)-Br(4)
B(2)-B(5)-B(3)

B(2)-B(5)-B(7)	60.3(4)
B(3)-B(5)-B(7)	108.8(5)
B(2)-B(5)-B(8)	108.8(5)
B(3)-B(5)-B(8)	60.2(4)
B(7)-B(5)-B(8)	107.6(4)
B(2)-B(5)-B(11)	108.8(4)
B(3)-B(5)-B(11)	108.7(4)
B(7)-B(5)-B(11)	59.9(3)
B(8)-B(5)-B(11)	59.7(3)
B(2)-B(5)-Br(5)	120.0(4)
B(3)-B(5)-Br(5)	120.4(4)
B(7)-B(5)-Br(5)	121.8(4)
B(8)-B(5)-Br(5)	122.3(4)
B(11)-B(5)-Br(5)	122.4(4)
C(1B)-B(6)-B(10)	105.5(5)
C(1B)-B(6)-B(9)	58.5(4)
B(10)-B(6)-B(9)	60.8(4)
C(1B)-B(6)-B(4)	104.5(4)
B(10)-B(6)-B(4)	61.2(4)
B(9)-B(6)-B(4)	109.0(5)
C(1B)-B(6)-B(1)	58.8(3)
B(10)-B(6)-B(1)	109.4(4)
B(9)-B(6)-B(1)	108.4(5)
B(4)-B(6)-B(1)	59.7(3)
C(1B)-B(6)-Br(6)	122.3(4)
B(10)-B(6)-Br(6)	124.1(4)
B(9)-B(6)-Br(6)	121.4(4)
B(4)-B(6)-Br(6)	123.4(4)
B(1)-B(6)-Br(6)	119.1(4)
C(1B)-B(7)-B(2)	59.8(4)
C(1B)-B(7)-B(5)	104.3(5)
B(2)-B(7)-B(5)	58.8(3)
C(1B)-B(7)-B(11)	104.6(4)
B(2)-B(7)-B(11)	108.0(4)
B(5)-B(7)-B(11)	60.4(3)
C(1B)-B(7)-B(9)	58.5(4)

B(2)-B(7)-B(9)	108.7(5)
B(5)-B(7)-B(9)	107.8(4)
B(11)-B(7)-B(9)	59.9(3)
C(1B)-B(7)-Br(7)	121.3(4)
B(2)-B(7)-Br(7)	120.1(4)
B(5)-B(7)-Br(7)	125.5(4)
B(11)-B(7)-Br(7)	125.0(4)
B(9)-B(7)-Br(7)	120.3(4)
B(3)-B(8)-B(11)	108.5(4)
B(3)-B(8)-B(5)	59.3(4)
B(11)-B(8)-B(5)	60.4(3)
B(3)-B(8)-B(4)	60.4(4)
B(11)-B(8)-B(4)	109.6(4)
B(5)-B(8)-B(4)	108.3(4)
B(3)-B(8)-B(10)	108.9(4)
B(11)-B(8)-B(10)	61.3(4)
B(5)-B(8)-B(10)	109.4(4)
B(4)-B(8)-B(10)	60.4(4)
B(3)-B(8)-Br(8)	122.4(4)
B(11)-B(8)-Br(8)	120.4(4)
B(5)-B(8)-Br(8)	122.2(4)
B(4)-B(8)-Br(8)	121.0(4)
B(10)-B(8)-Br(8)	119.9(4)
C(1B)-B(9)-B(6)	59.3(4)
C(1B)-B(9)-B(11)	104.5(4)
B(6)-B(9)-B(11)	108.1(4)
C(1B)-B(9)-B(10)	104.8(4)
B(6)-B(9)-B(10)	59.0(4)
B(11)-B(9)-B(10)	61.3(3)
C(1B)-B(9)-B(7)	58.4(4)
B(6)-B(9)-B(7)	108.2(4)
B(11)-B(9)-B(7)	59.8(3)
B(10)-B(9)-B(7)	108.9(4)
C(1B)-B(9)-Br(9)	121.0(4)
B(6)-B(9)-Br(9)	120.1(4)
B(11)-B(9)-Br(9)	125.3(4)

B(10)-B(9)-Br(9)	124.8(4)
B(7)-B(9)-Br(9)	120.3(4)
B(6)-B(10)-B(9)	60.3(4)
B(6)-B(10)-B(8)	107.3(4)
B(9)-B(10)-B(8)	106.3(4)
B(6)-B(10)-B(4)	60.2(4)
B(9)-B(10)-B(4)	107.9(4)
B(8)-B(10)-B(4)	59.6(4)
B(6)-B(10)-B(11)	107.4(4)
B(9)-B(10)-B(11)	59.3(3)
B(8)-B(10)-B(11)	58.9(3)
B(4)-B(10)-B(11)	107.0(4)
B(6)-B(10)-Br(10)	123.3(4)
B(9)-B(10)-Br(10)	122.1(4)
B(8)-B(10)-Br(10)	121.7(4)
B(4)-B(10)-Br(10)	122.8(4)
B(11)-B(10)-Br(10)	120.8(4)
B(8)-B(11)-B(7)	107.5(4)
B(8)-B(11)-B(9)	107.1(5)
B(7)-B(11)-B(9)	60.3(3)
B(8)-B(11)-B(5)	59.8(3)
B(7)-B(11)-B(5)	59.7(3)
B(9)-B(11)-B(5)	107.6(4)
B(8)-B(11)-B(10)	59.7(3)
B(7)-B(11)-B(10)	107.8(5)
B(9)-B(11)-B(10)	59.4(3)
B(5)-B(11)-B(10)	107.6(5)
B(8)-B(11)-Br(11)	125.2(4)
B(7)-B(11)-Br(11)	120.0(4)
B(9)-B(11)-Br(11)	118.8(4)
B(5)-B(11)-Br(11)	124.1(4)
B(10)-B(11)-Br(11)	121.6(4)
C(14)-C(1)-C(8)	120.0(5)
C(14)-C(1)-C(2)	120.6(5)
C(8)-C(1)-C(2)	119.4(5)
C(7)-C(2)-C(3)	118.8(6)

C(7)-C(2)-C(1)	121.9(5)
C(3)-C(2)-C(1)	119.2(5)
C(4)-C(3)-C(2)	119.2(6)
C(5)-C(4)-C(3)	121.0(6)
C(4)-C(5)-C(6)	120.8(6)
C(7)-C(6)-C(5)	118.8(6)
C(2)-C(7)-C(6)	121.3(6)
C(9)-C(8)-C(13)	118.2(5)
C(9)-C(8)-C(1)	120.5(5)
C(13)-C(8)-C(1)	121.1(5)
C(10)-C(9)-C(8)	120.2(6)
C(9)-C(10)-C(11)	121.3(5)
C(10)-C(11)-C(12)	119.8(5)
C(13)-C(12)-C(11)	120.1(6)
C(12)-C(13)-C(8)	120.3(5)
C(19)-C(14)-C(15)	118.9(5)
C(19)-C(14)-C(1)	120.5(5)
C(15)-C(14)-C(1)	120.6(6)
C(16)-C(15)-C(14)	119.4(6)
C(17)-C(16)-C(15)	120.2(6)
C(16)-C(17)-C(18)	122.2(6)
C(17)-C(18)-C(19)	118.4(6)
C(18)-C(19)-C(14)	120.8(5)
C(2T)-C(1T)-C(6T)	118.2(7)
C(2T)-C(1T)-C(7T)	121.8(7)
C(6T)-C(1T)-C(7T)	120.0(7)
C(1T)-C(2T)-C(3T)	121.0(7)
C(4T)-C(3T)-C(2T)	119.3(7)
C(3T)-C(4T)-C(5T)	120.4(8)
C(6T)-C(5T)-C(4T)	120.5(8)
C(5T)-C(6T)-C(1T)	120.6(7)

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for $Ph_3C[HCB_{11}Br_{11}]$. The anisotropic displacement factor exponent takes the form:

 $-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	27(1)	28(1)	9(1)	5(1)	2(1)	2(1)
Br(2)	28(1)	12(1)	19(1)	4(1)	4(1)	2(1)
Br(3)	20(1)	23(1)	20(1)	2(1)	8(1)	-7(1)
Br(4)	23(1)	20(1)	14(1)	-4(1)	7(1)	1(1)
Br(5)	21(1)	15(1)	15(1)	-6(1)	-1(1)	-3(1)
Br(6)	21(1)	22(1)	14(1)	-5(1)	-4(1)	-5(1)
Br(7)	20(1)	18(1)	12(1)	-1(1)	5(1)	4(1)
Br(8)	14(1)	21(1)	21(1)	-3(1)	-1(1)	2(1)
Br(9)	16(1)	22(1)	17(1)	1(1)	4(1)	-6(1)
Br(10)	20(1)	10(1)	20(1)	0(1)	2(1)	0(1)
Br(11)	20(1)	19(1)	8(1)	4(1)	0(1)	1(1)
C(1B)	15(2)	16(2)	10(2)	1(2)	2(2)	-1(2)
B(1)	13(2)	16(2)	12(2)	1(2)	2(2)	-2(2)
B(2)	16(2)	13(2)	13(2)	2(2)	0(2)	-2(2)
B(3)	16(2)	13(2)	13(2)	-2(2)	2(2)	-3(2)
B(4)	15(2)	15(2)	9(2)	-2(2)	0(2)	-3(2)
B(5)	14(2)	9(2)	15(2)	-3(2)	2(2)	0(2)
B(6)	15(2)	14(2)	12(2)	0(2)	-1(2)	-2(2)
B(7)	15(2)	13(2)	12(2)	0(2)	1(2)	0(2)
B(8)	15(2)	14(2)	9(2)	-5(2)	2(2)	-1(2)
B(9)	15(2)	14(2)	12(2)	1(2)	0(2)	-3(2)
B(10)	18(2)	11(2)	9(2)	0(2)	0(2)	-3(2)
B(11)	16(2)	12(2)	9(2)	0(2)	2(2)	0(2)
C(1)	19(2)	13(2)	13(2)	-7(2)	6(2)	1(2)
C(2)	19(2)	19(2)	14(2)	-4(2)	5(2)	3(2)
C(3)	21(2)	19(2)	16(3)	-1(2)	7(2)	0(2)
C(4)	25(2)	24(2)	20(3)	1(2)	9(2)	-4(2)

C(5)	30(2)	30(3)	16(3)	6(2)	8(2)	3(2)
C(6)	30(2)	35(3)	14(3)	2(2)	0(2)	1(2)
C(7)	23(2)	26(2)	15(3)	-2(2)	3(2)	-2(2)
C(8)	19(2)	18(2)	15(3)	-5(2)	2(2)	-2(2)
C(9)	19(2)	19(2)	15(3)	-3(2)	1(2)	-1(2)
C(10)	16(2)	27(2)	16(3)	-4(2)	2(2)	0(2)
C(11)	16(2)	30(2)	18(3)	1(2)	6(2)	-2(2)
C(12)	25(2)	24(2)	22(3)	1(2)	6(2)	-2(2)
C(13)	19(2)	20(2)	23(3)	0(2)	6(2)	-1(2)
C(14)	20(2)	13(2)	20(2)	-5(2)	6(2)	3(2)
C(15)	20(2)	18(2)	28(3)	1(2)	8(2)	1(2)
C(16)	22(2)	25(3)	37(3)	5(2)	10(2)	5(2)
C(17)	22(2)	23(3)	39(3)	7(2)	5(2)	10(2)
C(18)	24(2)	22(3)	27(3)	4(2)	4(2)	6(2)
C(19)	19(2)	16(2)	22(3)	-2(2)	4(2)	4(2)
C(1T)	39(2)	20(3)	40(3)	-8(2)	11(2)	12(2)
C(2T)	38(2)	23(3)	43(3)	-9(2)	10(2)	12(2)
C(3T)	48(3)	30(3)	43(3)	-8(3)	18(3)	3(2)
C(4T)	60(3)	39(3)	39(3)	-4(3)	9(3)	4(3)
C(5T)	55(3)	42(3)	41(3)	-7(3)	1(3)	3(3)
C(6T)	43(3)	33(3)	42(3)	-11(3)	9(2)	3(2)
C(7T)	56(4)	34(4)	48(4)	0(3)	14(3)	13(3)

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Ph₃C[HCB₁₁Br₁₁].

	Х	У	Z	U(eq)
H(1)	9871	659	4339	20
H(3A)	8214	25	-291	22
H(4A)	8077	873	-1366	27
H(5A)	6842	943	-2697	30
H(6A)	5695	161	-2987	31
H(7A)	5780	-678	-1877	26
H(9A)	5305	-434	-224	21
H(10A)	3947	-854	337	24
H(11A)	3895	-1883	765	25
H(12A)	5271	-2488	764	28
H(13A)	6695	-2061	331	25
H(15A)	8721	-996	-994	26
H(16A)	10186	-1371	-196	33
H(17A)	10307	-1726	1460	33
H(18A)	9001	-1695	2411	29
H(19A)	7498	-1365	1607	23
H(2TA)	8278	-2998	279	41
H(3TA)	8200	-2477	-1290	47
H(4TA)	6806	-2533	-2440	55
H(5TA)	5505	-3111	-2055	56
H(6TA)	5565	-3619	-507	47
H(7TA)	7596	-3638	1455	68
H(7TB)	6879	-4143	909	68
H(7TC)	6455	-3556	1430	68