Supplementary Information

Non-Hydrogen-Bonding-Based, Solvent-Dependent Helix Inversion Between Pure P-Helix and Pure M-Helix in Poly(quinoxaline-2,3-diyl)s Bearing Chiral Side Chains

Tetsuya Yamada,^a Yuuya Nagata,^a and Michinori Suginome *^{ab}

^aDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan ^bJST, CREST (Creation of Next-Generation Nanosystems through Process Integration), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan

<u>Contents</u>

1. General

2. Experimental Procedures
3. Analytical and NMR Data for New Compounds
4. Determination of the Screw-Sense Excess
5. CD and UV Spectra of the Polymers

1. General

All reactions were carried out under an atmosphere of nitrogen with magnetic stirring. ¹H and ¹³C NMR spectra were recorded on a Varian Mercury vx400 or a JEOL JNM-A500 spectrometer at ambient temperature. ¹H NMR data are reported as follows: chemical shift in ppm downfield from tetramethylsilane (δ scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sex = sextet, m = multiplet, and br = broad), coupling constant (Hz), and integration. ¹³C NMR chemical shifts are reported in ppm downfield from tetramethylsilane (δ scale). All ¹³C NMR spectra were obtained with complete proton decoupling. CD spectra were recorded on a JASCO J-750 spectrometer. UV spectra were recorded on a JASCO V-500 spectrometer. The GPC analysis was carried out with TSKgel G4000H_{HR} (CHCl₃, polystyrene standard). Preparative GPC was performed on JAI LC-908 equipped with JAIGEL-1H and -2H columns in a series (CHCl₃).

THF was dried and deoxygenized using an alumina/catalyst column system (GlassContour Co.). Trimethylphenylphosphine (Aldrich) and sodium borohydride (Aldrich) were used as received from the commercial sources. Achiral monomer 1 and chiral monomers (R)- and (S)-2 and achiral nickel initiator were prepared according to the reported procedures.

2. Experimental Procedures

Synthesis of Monomer (R)-2

To a CH₂Cl₂ (25 mL) solution of 1,2-amino-3,6-dimethyl-4,5-bis((R)-2-butoxymethyl)benzene ((R)-**S1**, 1.64 g, 5.32 mmol) was added acetylformate (1.5 mL, 21 mmol) at 0°C. The mixture was stirred for 15 h with gradual warming up to rt. The mixture containing 1,2-diformamido-3,6-dimethyl-4,5-bis((R)-2-butoxymethyl)benzene was subjected to evaporation of volatile materials in vacuo and used for the next step without further purification. To a CH₂Cl₂ (50 mL) suspension of the diformamide and Et₃N (7.8 mL, 55 mmol) cooled to 0°C, POCl₃ (1.6 mL, 17 mmol) was added. After stirring for 1 h at 0°C, saturated NaHCO₃ aq. was added to the reaction mixture. Extraction with CH₂Cl₂ followed by column chromatography on silica gel (hexane:ether = 5:1) gave (R)-2 as white solid (1.00 g, 57% yield).

Typical Procedures for the Synthesis of Poly(quinoxaline-2,3-diyl)s

Synthesis of copolymer poly-1/(*R*)-2(20/20): A THF solution of *o*-TolNiCl(PMe₃)₂ (0.050 M, 50 μ L, 2.5 μ mol) was diluted with THF (3.85 mL). To the solution was added a solution of PMe₃ in THF (1.0 M, 2.5 μ L, 2.5 μ mol). After stirring for 15 minutes, a solution of monomer 1 (15.0 mg, 50 μ mol) and (*R*)-2 (16.4 mg, 50 μ mol) in THF (1.25 mL) was added at room temperature. After 3 h, a THF solution of *o*-TolMgBr (1.0M, 50 μ L, 50 μ mol) was added to the reaction mixture at room temperature. After stirring for 15 min. at room temperature, water was added. Extraction with CHCl₃ followed by preparative GPC gave poly-1/(*R*)-2(20/20) as orange solid (29 mg, 92% yield).

Synthesis of homopolymer poly-(*R*)-2: A THF solution of *o*-TolNiCl(PMe₃)₂ (0.050 M, 50 μ L, 2.5 μ mol) was diluted with THF (3.85 mL). To the solution was added a solution of

PMe₃ in THF (1.0 M, 2.5 μ L, 2.5 μ mol). After stirring for 15 minutes, a solution of (*R*)-2 (32.8 mg, 100 μ mol) in THF (1.25 mL) was added at room temperature. After 3 h, a THF solution of *o*-TolMgBr (1.0M, 50 μ L, 50 μ mol) was added to the reaction mixture at room temperature. After stirring for 15 min. at room temperature, water was added. Extraction with CHCl₃ followed by preparative GPC gave **poly-(***R***)-2** as orange solid (31 mg, 95% yield).

Synthesis of homopolymer poly-(*R*)-2(100): A THF solution of *o*-TolNiCl(PMe₃)₂ (0.050 M, 20 μ L, 1.0 μ mol) was diluted with THF (3.85 mL). To the solution was added a solution of PMe₃ in THF (1.0 M, 2.5 μ L, 2.5 μ mol). After stirring for 15 minutes, a solution of (*R*)-2 (32.8 mg, 100 μ mol) in THF (1.25 mL) was added at room temperature. After 3 h, a THF solution of *o*-TolMgBr (1.0M, 50 μ L, 50 μ mol) was added to the reaction mixture at room temperature. After stirring for 15 minutes at room temperature, water was added. Extraction with CHCl₃ followed by preparative GPC gave poly-(*R*)-2(100) as orange solid (29 mg, 95% yield).

Synthesis of homopolymer poly-(*R*)-2(200): A THF solution of *o*-TolNiCl(PMe₃)₂ (0.050 M, 10 μ L, 0.50 μ mol) was diluted with THF (3.85 mL). To the solution was added a solution of PMe₃ in THF (1.0 M, 2.5 μ L, 2.5 μ mol). After stirring for 15 min., a solution of (*R*)-2 (32.8 mg, 100 μ mol) in THF (1.25 mL) was added at room temperature. After 3 h, a THF solution of *o*-TolMgBr (1.0 M, 50 μ L, 50 μ mol) was added to the reaction mixture at room temperature. After stirring for 15 min. at room temperature, water was added. Extraction with CHCl₃ followed by preparative GPC gave **poly-(***R***)-2** as orange solid (27 mg, 95% yield).

Procedure for the CD measurements in 1,1,2-TCE/CHCl₃ Solution (Figure 2)

Mixed solvents for the CD measurements were prepared by mixing CHCl₃ and 1,1,2-TCE by volume. The volume was measured with measuring cylinder.

poly-(R)-2 (1.98 mg) was dissolved in CHCl₃ in 10 mL measuring flask. A 1 mL portion of

the solution was transferred into other 10 mL measuring flasks by use of measuring pipette (1 mL). Chloroform in these flasks were evaporated in vacuo 3 h at room temperature. Each flask containing dried **poly-(R)-2** (0.198 mg) was filled with the mixed solvent. After leaving the solution at room temperature for 3 h, the solutions were subjected to CD and UV/Vis measurements.

3. Analytical and NMR Data for New Compounds

Monomer (R)- and (S)-2

(*R*)-2: ¹H NMR (400 MHz, CDCl₃) δ 0.93 (t, 7.6Hz, 6H), 1.24 (d, 6.4Hz, 6H), 1.45-1.65 (m, 4H), 2.49 (s, 6H), 3.49 (sex, 6.0 Hz, 2H), 4.44 (d, 10.4 Hz, 2H), 4.59 (d, 10.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 9.9, 15.5, 19.1, 29.2, 64.0, 77.7, 123.9, 134.1, 138.3, 172.8; IR (KBr) 2122 cm⁻¹; Anal. Calcd. for C₂₀H₂₈N₂O₂: C, 73.14; H, 8.59: N, 8.53. Found: C, 73.29; H, 8.75; N, 8.57; [α]_D-29.6 (CHCl₃, c = 0.49).

(S)-2; $[\alpha]_D$ +29.0 (CHCl₃, c = 0.49).

Monomer (S)-3

(*S*)-**3**: ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, 7.2Hz, 6H), 0.99 (d, 6.4Hz, 6H), 1.18-1.50 (m, 10H), 2.39 (s, 6H), 2.55 (dt, 4.8Hz, 12.8Hz, 2H), 2.65 (dt, 4.8Hz, 12.8Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 11.4, 15.7, 19.0, 27.9, 29.2, 35.3, 36.6, 122.0, 131.6, 142.0, 171.4; IR (neat) 2116 cm⁻¹; HRMS Calcd. For C₂₂H₃₂N₂: 324.2565. Found 324.2566.; [α]_D+11.6 (CHCl₃, *c* = 0.50).

¹H NMR of (S)-3

¹³C NMR of (S)-3

Properties of Homopolymers (poly-1, poly-(R)-2 and poly-(S)-2) and Random Copolymers (poly-1/(R)-2 and poly-1/(S)-2)

polymer	yield(%)	<i>M</i> n/10 ⁴	$M_{\rm w}/M_{\rm n}$	g _{abs} ³⁶⁶ /10 ⁻³ (CHCl ₃)	g _{abs} ³⁶⁶ /10 ⁻³ (1,1,2-TCE)
poly- 1	86	6.8	1.08	-	-
poly- 1/2 (95/5)	88	7.5	1.07	0.56	-0.39
poly- 1/2 (90/10)	91	7.7	1.07	1.07	-0.67
poly- 1/2 (80/20)	87	7.7	1.08	1.76	-1.49
poly- 1/2 (70/30)	93	8.2	1.08	2.13	-1.81
poly- 1/2 (50/50)	92	7.9	1.08	2.38	-2.49
poly- 1/2 (30/70)	88	7.9	1.09	2.34	-2.78
poly- 2	95	7.9	1.07	2.36	-2.81
poly- 2 (100)	87	28	1.06	2.47	_a
poly- 2 (200)	83	58	1.04	2.51	_a

Table S1. Properties of Homopolymers (poly-1 and poly-(R)-2) and Random Copolymers poly-1/(R)-2

a) not determined due to the poor solubility.

Table S2. Properties of Homopolymer poly-(S)-2 and Random Copolymers poly-1/(S)-2

polymer	yield(%)	<i>M</i> n/10 ⁴	$M_{\rm w}/M_{\rm n}$	g _{abs} ³⁶⁶ /10 ⁻³ (CHCl3)	g _{abs} ³⁶⁶ /10 ⁻³ (1,1,2-TCE)
poly-1/2(90/10)	94	6.8	1.08	-1.03	0.71
poly- 1/2 (80/20)	91	7.5	1.07	-1.82	1.59
poly- 1/2 (70/30)	89	7.7	1.07	-2.14	2.13
poly- 1/2 (50/50)	86	7.7	1.08	-2.34	2.50
poly- 2	91	8.2	1.08	-2.45	2.83

Table S3. Properties of Homopolymer poly-(S)-3

polymer	yield(%)	<i>M</i> n/10 ⁴	$M_{\rm w}/M_{\rm n}$	g _{abs} ³⁶⁶ /10 ⁻³ (CHCl3)	g _{abs} ³⁶⁶ /10 ⁻³ (1,1,2-TCE)
poly-(S)- 3	88	5.6	1.17	-0.32	1.06

Homopolymer **poly-1**: ¹H NMR (400MHz, CDCl₃) δ 0.88 (brs, 6*n*H), 1.59 (brs, 4*n*H), 2.34 (brs, 6*n*H), 3.46 (brs, 4*n*H), 4.58 (brs, 2*n*H), 4.63 (brs, 2*n*H), 7.1-7.4 (brm, 6H), 7.85 (brs, 2H).

Homopolymer **poly-2**: ¹H NMR (400MHz, CDCl₃) δ 0.88 (brs, 6*n*H), 1.21 (brs, 6*n*H), 1.44

(brs, 2*n*H), 1.53 (brs, 2*n*H), 1.59 (brs, 4*n*H), 2.31 (brs, 6*n*H), 3.40 (brs, 2*n*H), 4.53 (brs, 2*n*H), 4.62 (brs, 2*n*H), 7.1-7.4 (brm, 6H), 7.85 (brs, 2H).

Random Copolymers poly-1/(*R*)-2(x/y) and poly-1/(*S*)-2(x/y) (x + y = 40): ¹H NMR (400MHz, CDCl₃) δ 0.88 (brs, (6x+6y)H), 1.21 (brs, 6yH), 1.44 (brs, 2yH), 1.53 (brs, (4x+2y)H), 2.30 (brs, (6x+6y)H), 3.41 (brs, (4x+2y)H), 4.54 (brs, (2x+2y)H), 4.62 (brs, (2x+2y)H), 7.1-7.4 (brm, 6H), 7.85 (brs, 2H).

Homopolymer **poly-3**: ¹H NMR (400MHz, CDCl₃) δ 0.86 (brs, 12*n*H), 1.18 (brs, 4*n*H), 1.26 (brs, 6*n*H), 1.36 (brs, 6*n*H), 2.22 (brs, 2*n*H), 2.61 (brs, 2*n*H).

Molar ratios of the achiral and chiral monomer units (x:y) can be estimated from the integral ratio of the signals at $\delta 2.30$ (= 240H) and $\delta 1.21$ as shown below. The integral ratio of the two signals ($\delta 1.21$ and $\delta 2.30$) directly reflects the ratio of the two monomers.

The following graphs demonstrate a linear relationship of the feeding ratio and the NMR integral ratio for poly-1/(R)-2(x/y) (top) and poly-1/(S)-2(x/y) (bottom).

Table S3. Ratio of the integral value of δ 2.30 and δ 1.21 in random copolymers using (*R*)-2

content of (R)-2	ratio of integral value (H ^c /H ^a +H ^b)
0	0
0.05	0.09
0.1	0.16
0.2	0.25
0.3	0.34
0.5	0.57
0.7	0.72
1	1.08

Table S4. Ratio of the integral value of δ 2.30 and δ 1.21 in random copolymers using (S)-2

content of (S)-2	ratio of integral value (H ^c /H ^a +H ^b)
0.1	0.15
0.2	0.30
0.3	0.37
0.5	0.55
1	1.02

Figure S2. Relationship of the content of (S)-2 and the ratio of the integral value

4. Determination of the screw-sense excess

The screw-sense excesses of the polymers were determined by CD spectra and UV/vis absorption spectra. Here we used the dissymmetry factor $g_{abs} (\Delta \varepsilon / \varepsilon)^1$ to avoid the effects of the concentration errors of the polymer solutions. Firstly, the percent screw-sense excess *se* was defined as

$$se = ([P]-[M]) / ([P]+[M]) \times 100$$
(1)

where [P] and [M] are molar concentrations of P and M helical polymers. In other words, positive se means a P-enriched state and negative se represents M-enriched state for practical convenience. The screw-sense excess is directly proportional to g_{abs} : the screw-sense excess could therefore be obtained as a product of g_{abs} and the proportionality factor F.

$$se = F \times g_{abs} \tag{2}$$

On the other hand, the ratio of the molar concentrations of purely M and P helical polymers is given by the Boltzmann distrirution using the energy difference per monomer unit E_h between the *P*- and *M*-helices, the number of chiral unit *N* (40 to -40, positive number means the number of (*R*) monomer units and negative number represents the number of (*S*) monomer units), the gas constant *R* (8.31447 J·K⁻¹·mol⁻¹), and temperature *T* (298 K) as previously reported.²

$$[P]/[M] = \exp(E_h N/RT)$$
(3)

Therefore, the screw-sense excess is expressed as follows.

$$se = \tanh(E_h N/2RT) \tag{4}$$

Nonlinear least-squares fitting of the screw-sense excess *se* against the number of the chiral unit N was performed by using the Solver Function in Microsoft Office Excel 2007. Sums of the squares of the deviation were minimized by varying the proportionality factor F and the energy difference per monomer unit E_h . These parameters were successfully converged

¹ Fujiki, M. Macromol. Rapid. Commun. 2001, 22, 539.

² Lifson, S.; Andreola, C.; Peterson, N. C.; Green, M. M. J. Am. Chem. Soc. 1989, 111, 8850.

and the final values were as follows.

$$F = 4.1785 \times 10^4$$
, $E_h - 0.5909 \text{ kJ} \cdot \text{mol}^{-1}$ (5)

To evaluate the validity of the obtained value of F, the difference of the energy between P and M helices ΔG , which was obtained from F and g_{abs} , were plotted against the number of chiral unit N. Ideally, ΔG is proportional to the number of chiral unit N, and the gradient represents the energy difference per monomer unit E_h .

$$\Delta G = G^{P} - G^{M} = E_{h}N = \operatorname{arctanh}(F \times g_{abs})/2RT \qquad (6)$$

The relationships between ΔG and $N(12 \sim -12)$ with varied $F(4.1785 \times 10^4 \sim 4.1785 \times 10^4 \times 0.80)$ are shown in Figure S3. Only the region where N is between 12 and -12 is shown, because the values of g_{abs} for |N| > 12 are too large to evaluate ΔG accurately. In this region, the effect of the measurement error is not negligible due to the nature of arc hyperbolic tangent function. Goodness of fit, as measured by Pearson R², is greater than 0.999 when F is 4.1785×10^4 . Smaller F makes the line sigmoidal, and the linearity was not obtained.

Figure S3. The relationships between ΔG and N with varied F.

5. CD and UV Spectra of the Polymers

Figure S4. UV/vis absorption spectrum and CD spectrum of poly-1 in CHCl₃ (1.82×10^{-2} g/L).

Figure S5. UV/vis absorption spectrum and CD spectrum of poly-1/(*R*)-2(38/2) in CHCl₃ (2.46 × 10^{-2} g/L).

Figure S6. UV/vis absorption spectrum and CD spectrum of poly-1/(*R*)-2(36/4) in CHCl₃ (1.53 × 10^{-2} g/L).

Figure S7. UV/vis absorption spectrum and CD spectrum of poly-1/(*R*)-2(32/8) in CHCl₃ (1.79×10^{-2} g/L).

Figure S9. UV/vis absorption spectrum and CD spectrum of poly-1/(*R*)-2(20/20) in CHCl₃ (2.31 × 10^{-2} g/L).

Figure S11. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in CHCl₃ (2.39 × 10^{-2} g/L).

Figure S12. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(36/4) in CHCl₃ (2.19 × 10^{-2} g/L).

Figure S13. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(32/8) in CHCl₃ (1.85 × 10^{-2} g/L).

Figure S14. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(28/12) in CHCl₃ (2.72×10^{-2} g/L).

Figure S15. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(20/20) in CHCl₃ (2.91 × 10^{-2} g/L).

Figure S17. UV/vis absorption spectrum and CD spectrum of poly-(R)-2(100) in CHCl₃ (1.60 × 10⁻² g/L).

Figure S18. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2(200) in CHCl₃ (2.32×10^{-2} g/L).

Figure S19. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (20:80, v/v, 2.00 × 10⁻² g/L).

Figure S20. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,2-Trichloroethane/CHCl₃ (30:70, v/v, 1.98×10^{-2} g/L).

Figure S21. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,2-Trichloroethane/CHCl₃ (40:60, v/v, 1.98×10^{-2} g/L).

Figure S22. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,2-Trichloroethane/CHCl₃ (50:50, v/v, 1.45×10^{-2} g/L).

Figure S23. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,2-Trichloroethane/CHCl₃ (55:45, v/v, 1.45×10^{-2} g/L).

Figure S24. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,2-Trichloroethane/CHCl₃ (60:40, v/v, 1.45×10^{-2} g/L).

Figure S25. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,2-Trichloroethane/CHCl₃ (70:30, v/v, 1.98×10^{-2} g/L).

Figure S26. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,2-Trichloroethane/CHCl₃ (80:20, v/v, 1.98×10^{-2} g/L).

Figure S27. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,2-Trichloroethane/CHCl₃ (90:10, v/v, 1.98×10^{-2} g/L).

Figure S28. UV/vis absorption spectrum and CD spectrum of **poly-(***R***)-2** in 1,1,2-Trichloroethane $(2.01 \times 10^{-2} \text{ g/L})$.

Figure S29. UV/vis absorption spectrum and CD spectrum of poly-1/(*R*)-2(12/28) in 1,1,2-Trichloroethane $(1.47 \times 10^{-2} \text{ g/L})$.

Figure S30. UV/vis absorption spectrum and CD spectrum of poly-1/(*R*)-2(20/20) in 1,1,2-Trichloroethane $(2.32 \times 10^{-2} \text{ g/L})$.

Figure S31. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(28/12) in 1,1,2-Trichloroethane (1.84 × 10⁻² g/L).

Figure S32. UV/vis absorption spectrum and CD spectrum of poly-1/(*R*)-2(32/8) in 1,1,2-Trichloroethane (2.17×10^{-2} g/L).

Figure S33. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(36/4) in 1,1,2-Trichloroethane (1.60 × 10⁻² g/L).

Figure S34. UV/vis absorption spectrum and CD spectrum of poly-1/(*R*)-2(38/2) in 1,1,2-Trichloroethane $(1.31 \times 10^{-2} \text{ g/L})$.

Figure S35. UV/vis absorption spectrum and CD spectrum of **poly-1** in 1,1,2-Trichloroethane $(1.82 \times 10^{-2} \text{ g/L})$.

Figure S36. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(36/4) in 1,1,2-Trichloroethane (1.86×10^{-2} g/L).

Figure S37. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(32/8) in 1,1,2-Trichloroethane (2.10×10^{-2} g/L).

Figure S38. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(28/12) in 1,1,2-Trichloroethane $(2.36 \times 10^{-2} \text{ g/L})$.

Figure S39. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(20/20) in 1,1,2-Trichloroethane $(1.34 \times 10^{-2} \text{ g/L})$.

Figure S40. UV/vis absorption spectrum and CD spectrum of poly-(S)-2 in 1,1,2-Trichloroethane $(1.86 \times 10^{-2} \text{ g/L})$.

Figure S41. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in dichloromethane $(1.95 \times 10^{-2} \text{ g/L})$.

Figure S42 UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in tetrahydrofuran $(2.41 \times 10^{-2} \text{ g/L})$.

Figure S43. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1-butanol $(1.66 \times 10^{-2} \text{ g/L})$.

Figure S44. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,1,1-trichloroethane $(1.40 \times 10^{-2} \text{ g/L})$.

Figure S45. UV/vis absorption spectrum and CD spectrum of **poly-(***R***)-2** in 1-chlorobutane $(1.73 \times 10^{-2} \text{ g/L})$.

Figure S46. UV/vis absorption spectrum and CD spectrum of poly-(R)-2(100) in 1-chlorobutane (1.73 × 10⁻² g/L).

Figure S47. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2(200) in 1-chlorobutane (0.99×10^{-2} g/L).

Figure S48. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1-bromobutane $(1.77 \times 10^{-2} \text{ g/L})$.

Figure S49. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in valeronitrile $(2.10 \times 10^{-2} \text{ g/L})$.

Figure S50. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,2-dichloroetane $(2.33 \times 10^{-2} \text{ g/L})$.

Figure S51. UV/vis absorption spectrum and CD spectrum of poly-(*R*)-2 in 1,3-dichloropropane $(1.81 \times 10^{-2} \text{ g/L})$.

