Supporting Information Highly Sensitive and Selective Turn-on Fluorescent Chemosensor for Pb²⁺ and Hg²⁺ Based on Rhodamine-phenylurea conjugate

Zhi-Qiang Hu, *[†]Cun-sheng Lin, [†] Xiao-Ming Wang, [†] Lei Ding, [†] Cun-Li Cui, [†] Shu-Feng Liu*[†] and Hai-Yan Lu*[‡]

[†]College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

[‡] College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, China.

huzhiqiang@iccas.ac.cn; haiyanlu@gucas.ac.cn

Contents

1. Apparatus and reagents page S2
2. Synthesis and structural characterization of RPU and RPTU page S2
3. General procedure for Pb ²⁺ and Hg ²⁺ detectionpage S2
4. Figure S1page S4
5. Figure S2page S5
6. Figure S3page S5
7. Figure S4page S6
8. Figure S5page S6
9. Figure S6page S7

10 Figure S7	page S7
11. Figure S8	page S8
12. Figure S9	page S8
13. Figure S10	page S9
14. Figure S11	page S10
15. Figure S12	page S10
16. Figure S13	page S11
17. Figure S14	page S11
18. Figure S15	page S12
19. Figure S16	page S12
20. Figure S17	page S13
20. Figure S18	page S13
20. Figure S19	page S14

1. Apparatus and reagents

A Hitachi F-2500 spectrofluorimeter was used for fluorescence measurements. The absorption spectra were recorded with a Techcomp UV-8500 spectrophotometer (Shanghai, China). NMR spectra were measured on a Bruker DMX-500 spectrometer at 500 MHz in CD₃COCD₃. Elemental analyses were carried out with a Flash EA 1112 instrument. A Delta 320 pH-meter [Mettler-Toledo Instruments (Shanghai) Co., China] was used for pH measurements. All other chemicals used were local products of analytical grade. The solutions of metal ions were prepared from their perchlorate salts. All solvent used in spectrostropic test are spectrostropic grade. Distilled-deionized water

was used throughout the experiment.

2. Synthesis and structural characterization of RPU

Rhodamine B (0.88g, 2mmol) was refluxed in POCl₃(15mL) for 4h, and concentrated by evaporation. The obtained crude acid chloride was dissolved in ClCH₂CH₂Cl(20mL). NH₃ was pumped into the acid chloride solution until the reaction ended. Water was added to the resultant, and the aqueousphase was extracted with ClCH₂CH₂Cl. The organic layer was washed with water twice, dried over Na₂SO₄, and concentrated by evaporation. The residue was dissolved in dry toluene, PhNCO (2mL, 18.4mmoL) was added dropwise. At the end of the addition, the mixture was refluxed for 4 hrs. After the solent was removed by evaporation, the residue was purified by silica gel column chromatography with EtOAc/Cyclohexane (1/40, v/v) as eluent, affording **RPU** as a white solid 0.53g, yield 47%. m.p.: 198-200°C. ¹H NMR(CD₃COCD₃ 500MHz, TMS) : $\delta = 1.14(t, J = 7Hz, t)$ 12H); 3.38(q, J = 7Hz, 8H); 6.30(d, J = 7.5Hz, 2H); 6.40(s, 2H); 6.48(d, J = 7.5Hz, 2H); 7.00 (t, J = 7.5Hz, 1H); 7.13 (d, J = 7.5Hz, 1H); 7.24 (t, J = 7.5Hz, 2H); 7.46 (d, J = 8Hz, 2H); 7.64 (t, J = 8Hz, 1H); 7.72 (t, J = 7Hz, 1H); 8.02 (d, J = 8Hz, 1H); 10.92 (s, 1H). ¹³C NMR(CD₃COCD₃ 250MHz, TMS) : δ 169.9, 154.0, 153.4, 148.7, 148.4, 138.3, 135.3, 129.0, 128.9, 128.7, 127.4, 124.5, 123.7, 123.3, 119.1, 107.3, 107.1, 97.7, 65.9, 44.0, 12.0. ESI-MS 561.4 $[M + H]^+$; Anal. Cacld for C₃₅H₃₆N₄O₃: C, 74.98; H, 6.47; N, 9.99; Found: C, 74.47; H, 6.65; N, 9.82.

2. Synthesis and structural characterization of RPTU

Through the similar way, RPTU can be synthesized as a yellow solid in 54% yield. m.p.: 194-195°C. ¹H NMR(CD₃COCD₃, 500MHz, TMS) : $\delta = 1.14(t, J = 7.0$ Hz, 12H); 3.37(q, J = 7.0Hz, 8H); 6.29(d, J = 9.0Hz, 2H); 6.35 (s, 2H); 6.49(d, J = 8.0Hz, 2H); 7.03 (d, J = 8.0Hz, 1H); 7.16(t, J = 7.5Hz, 1H); 7.31 (t, J = 7.5Hz, 2H); 7.63-7.59 (m, 3H); 7.69 (t, J = 7.5Hz, 1H); 8.02 (d, J = 7.5Hz, 1H); 13.05 (s, 1H). ¹³C NMR(CD₃COCD₃, 250MHz, TMS) : δ 176.7, 170.8, 155.1, 153.1, 148.7, 138.7, 135.4, 128.8, 128.5, 127.1, 127.0, 125.7, 124.6, 124.0, 123.9, 107.6, 107.3, 97.4, 69.6, 44.0, 12.1. ESI-MS 577.4 [M + H]⁺; Anal. Cacld for C₃₅H₃₆N₄O₂S: C, 72.89; H, 6.29; N, 9.71; Found: C, 72.67; H, 6.43; N, 9.56.

3. General procedure for Pb²⁺ detection

A 1.0×10^{-3} M stock solution of compound **RPU** was prepared in CH₃CN. To 10-mL glass tubes containing different amounts of metal ions, proper amounts of the solution of **RPU** was added directly with a micropipette. The solutions were diluted with CH₃CN to 10 mL and mixed, then the absorption and fluorescence sensing of metal ions were run immediately.

4. General procedure for Hg²⁺ detection

A 1.0×10^{-3} M stock solution of compound **RPU** was prepared in CH₃CN. To 10-mL glass tubes containing different amounts of metal ions, proper amounts of the solution of **RPU** was added directly with a micropipette. The solutions were diluted with CH₃CN and H₂O to 10 mL and mixed, then the absorption and fluorescence sensing of metal ions were run immediately.

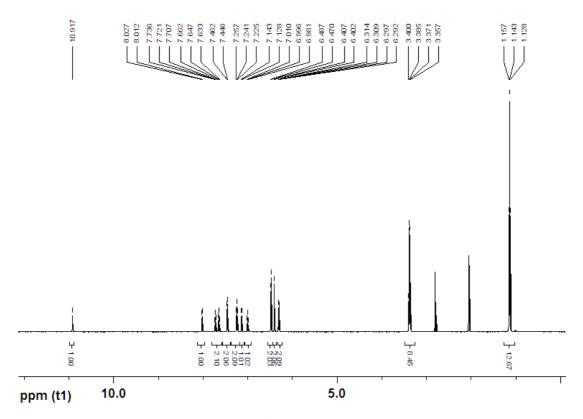
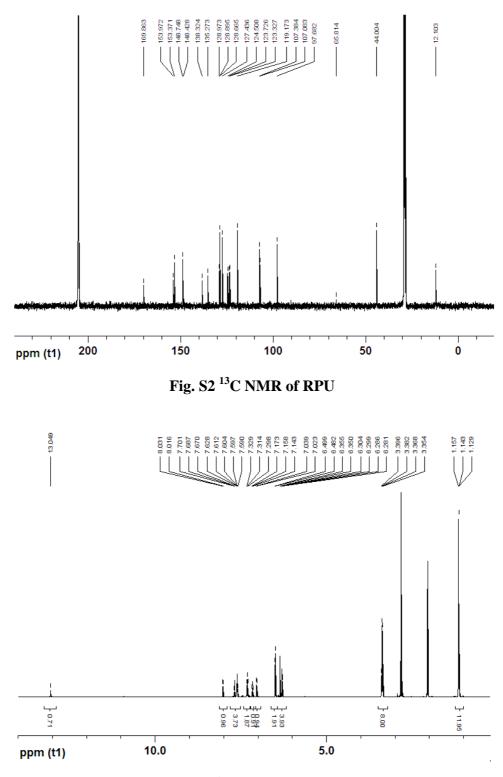



Fig. S1¹H NMR of RPU

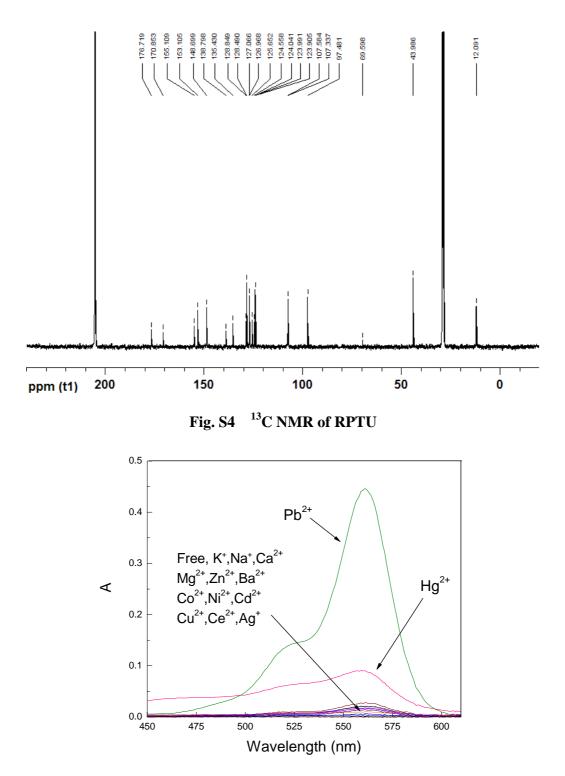


Fig. S5 Absorption spectra of **RPU** (10 μ M) upon addition of respective metal ions (as perchlorate salt, 50 equiv.) inCH₃CN.

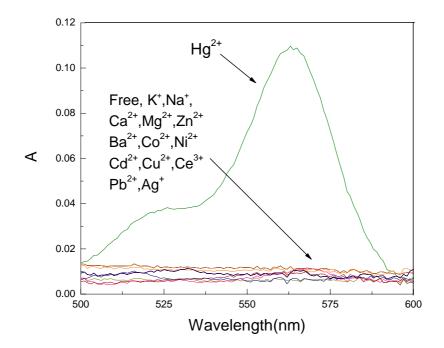


Fig. S6 Absorption spectra of **RPU** (10 μM) upon addition of respective metal ions (as perchlorate salt, 50 equiv.) inCH₃CN/H₂O (3/7, v/v).

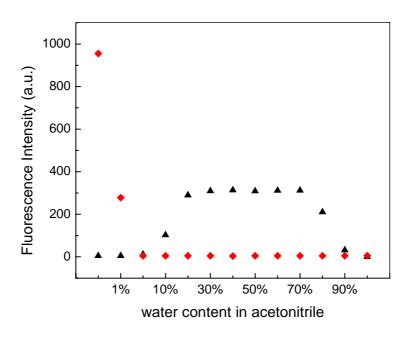


Fig. S7 Fluorescence responses of **RPU**(1 μ M) toward 100 μ M Pb²⁺ (\blacklozenge) and 130 μ M Hg²⁺(\blacktriangle) as the function of water content in acetonitrile.

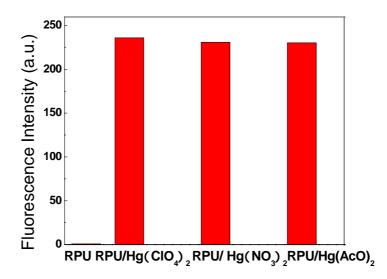


Fig. S8 Fluorescece intensity of **RPU** (1μM) in CH₃CN/H₂O upon the addition of 100 equiv Hg(ClO₄)₂, Hg(NO₃)₂ and Hg(AcO)₂, respectively.

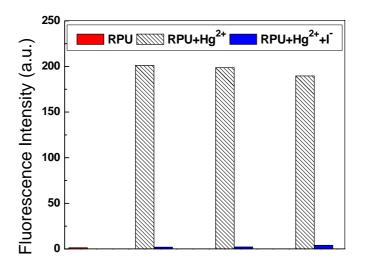


Fig.S9 The reversibility of the interaction between **RPU** in CH₃CN/H₂O (3/7, v/v) and Hg²⁺ by the introduction of I⁻ to the system. The red column represents the fluorescence intensity of **RPU**(1µM); the miter columns represent the fluorescence intensity of system after addition of 70µM Hg²⁺; the blue columns represents the fluorescence intensity of system after introduction of I⁻ (2 equiv to Hg²⁺) into the system. The experiments were repeated three times.

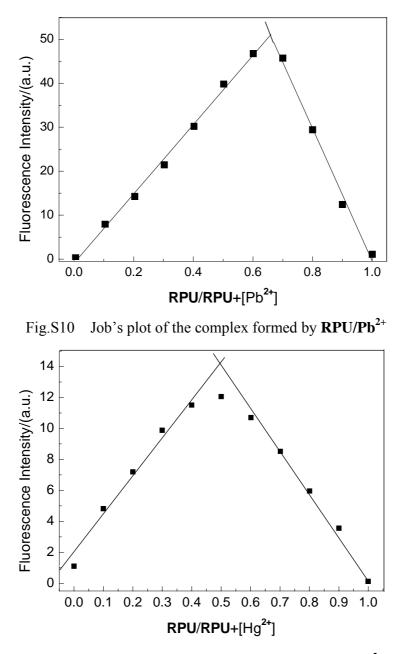


Fig. S11 Job's plot of the complex formed by $\mathbf{RPU/Hg}^{2+}$

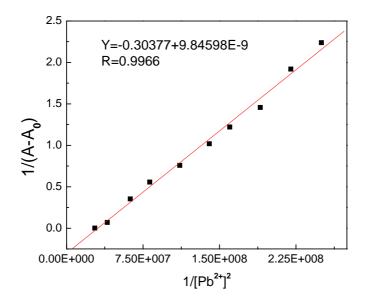


Fig. S12 Benesi-Hildebrand plot of $\mathbf{RPU}(1\mu M \text{ in CH}_3\text{CN}, 560\text{nm})$ assuming 2:1 stoichiometry between \mathbf{RPU} and Pb^{2+}

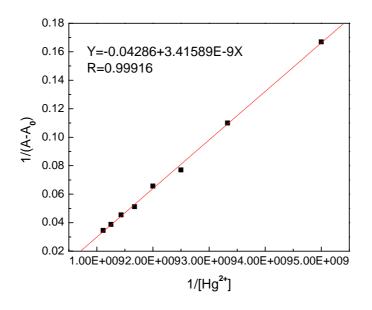


Fig. S13 Benesi-Hildebrand plot of **RPU**(1 μ M in CH₃CN/H₂O = 3/7 v/v, 558nm) assuming 1:1 stoichiometry between **RPU** and Hg²⁺

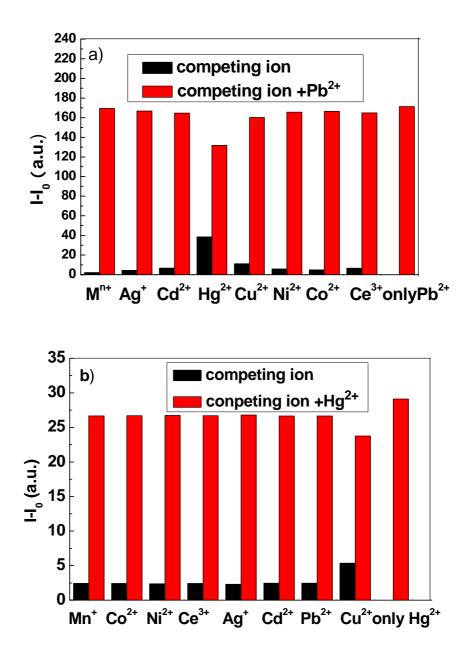


Fig.S14 Fluorescene intensity of **RPU** (1 μ M) (a) upon the addition of 10 μ M Pb²⁺ in the presence of 200 μ M background metal ions in CH₃CN; (b) upon the addition of 30 μ M Hg²⁺ in the presence of 200 μ M background metal ions (Mⁿ⁺ denotes Na⁺, K⁺, Mg²⁺, Ca²⁺, Zn²⁺, Ba²⁺) in CH₃CN/H₂O (3/7, v/v). λ ex = 530 nm.

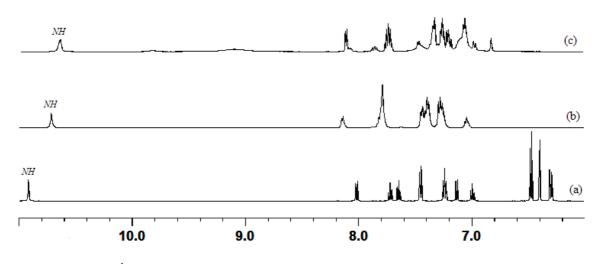


Fig. S15 Partial ¹H NMR spectra of (a) **RPU** in CD₃COCD₃; (b) **RPU** in CD₃COCD₃ in the presence of excess Hg²⁺; (c) **RPU** in CD₃COCD₃ in the presence of excess Pb²⁺ ion.

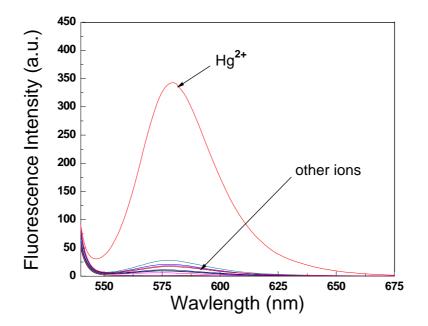


Fig. S16 Fluorescence intensity of **RPTU** (0.1 μ M) in CH₃CN upon the addition of 20 equiv Hg²⁺ and 100 equiv other metal ions ((Pb²⁺, Mg²⁺, Ce³⁺, Cd²⁺, Na⁺, Cu²⁺, K⁺, Ag⁺, Co²⁺, Zn²⁺, Ni²⁺, Ba²⁺ and Ca²⁺)

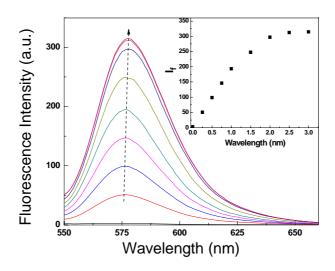


Fig. S17 Fluorescence ($\lambda ex = 530 \text{ nm}$) titration spectra of **RPTU** (0.1 μ M) with Hg²⁺ (0-3 μ M) in CH₃CN

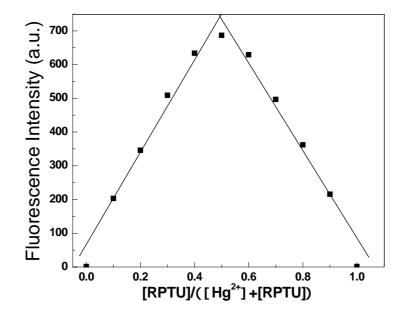


Fig. S18 Job's plot of the complex formed by $\mathbf{RPTU/Hg}^{2+}$

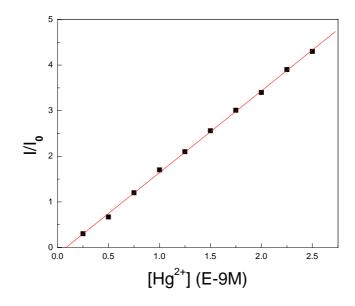


Fig.S19 An assay of **RPTU**(0.01 μ M) for Hg²⁺in CH₃CN ; λ ex = 530 nm.