Supporting Information

Improved dynamics and positional bias with a second generation palladium(II)-complexed molecular shuttle

David A. Leigh, * Paul J. Lusby, * Roy T. McBurney and Mark D. Symes

School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom.

E-mail: David.Leigh@ed.ac.uk, Paul.Lusby@ed.ac.uk

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Table of Contents	S2
General Experimental Section	S3
Synthesis and Experimental Section	S4
References	S17
Appendix A. ¹ H NMR Spectra of all compounds and complexes	S18

General Experimental Section

Unless stated otherwise, all reagents and solvents were purchased from Aldrich Chemicals and used without further purification, tetrahydrofuran, dichloromethane, acetonitrile and N,N-dimethylformamide were dried using a solvent purification system manufactured by Innovative Technology, Newburyport, MA, USA. L3Pd(MeCN), 1- $(S1)^2$ (bis(4-tert-butylphenyl)(4-(pent-4-ynyloxy)phenyl)methyl)-4-tert-butylbenzene 2,6-diiodo-(4-N,N-dimethylamino)pyridine³ and 4-[tris-(4-*tert*-butylphenyl)methyl]phenol (S7)⁴ were prepared according to literature procedures. Unless stated otherwise, all reactions were carried out under an atmosphere of nitrogen. Column chromatography was carried out using Silica 60A (particle size 35-70 µm, Fisher, UK) as the stationary phase, and TLC was performed on precoated silica gel plates (0.25 mm thick, 60 F₂₅₄, Merck, Germany) and observed under UV light. All ¹H and ¹³C NMR spectra were recorded on a Bruker AV 400 instrument, with the exception of the ¹³C NMR spectrum of compound S9 which was recorded on a Bruker AV 800 instrument at 298 K. Chemical shifts are reported in parts per million (ppm) from low to high frequency and referenced to residual solvent. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. Melting points (m.p.) were determined using a Sanyo Gallenkamp apparatus. Mass spectrometry data was obtained from the EPSRC National Mass Spectrometry Service Centre (Swansea, U.K.) and the services at The University of Edinburgh.

Synthesis and Experimental Section

Scheme S1: Synthesis of pre-thread **S6**. Reagents and conditions: (i) 2,6-dibromopyridine, Pd(PPh₃)₄, CuI, THF/Et₃N, 18 h, RT, 39%; (ii) 1,9-decadiyne, Pd(PPh₃)₄, CuI, THF/Et₃N, 18 h, RT, 87%; (iii) pent-4-yne-1-ol, Pd(PPh₃)₂Cl₂, CuI, THF/Et₃N, 18 h, RT, 65%; (iv) Pd(PPh₃)₂Cl₂, CuI, THF/Et₃N, 18 h, RT, 30%; (v) Pd(OH)₂/C, H₂, THF/EtOH, 18 h, RT, 71%.

To a solution of 2,6-dibromopyridine (1.78 g, 7.51 mmol, 1.0 equiv.) in THF (50 mL) and Et₃N (25mL) was added **S1** (4.29 g, 7.51 mmol, 1.0 equiv.), Pd(PPh₃)₄ (0.867g, 0.751 mmol, 0.1 equiv.) and CuI (0.293 g, 1.54 mmol, 0.2 equiv.). The resulting mixture was stirred at RT for 18 h. The solvent was then removed under reduced pressure and the residue redissolved in CH₂Cl₂ (100 mL) and washed with a saturated aqueous solution of NH₄Cl (3 x 50 mL) and brine (100 mL). The organic layer was dried (MgSO₄), concentrated under reduced pressure and the crude residue purified by column chromatography (1:7 Et₂O:hexane) and then recrystallised from a hot CH₂Cl₂/CH₃CN solution to yield the title compound as a tan solid (2.12 g, yield = 39%). m.p. = 193 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 300 K): $\delta = 1.30$ (s, 27H, H_k), 2.06-2.10 (m, 2H, H_e), 2.65 (t, J = 7.0, 2H, H_d), 4.07 (t, J = 5.9, 2H, H_f), 6.77 (d, J = 8.9, 2H, H_g), 7.06-7.09 (m, 8H, $H_{h,i}$), 7.23 (d, J = 8.5, 6H, H_i), 7.30 (d, J = 7.7, 1H, H_c), 7.38 (d, J = 7.7, 1H, H_a), 7.45 (t, J = 7.7, 1H, H_b); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 16.2$, 28.1, 31.4, 34.3, 63.0, 66.0, 79.7, 91.9, 113.0, 124.0, 125.7, 127.1, 130.7, 132.3 (x 2), 138.3, 139.7, 141.5, 144.1, 148.3, 156.6; LREI-MS (3-NOBA matrix): $m/z = 725 \text{ [M]}^+$; HREI-MS (reference compound: perfluorotributylamine): m/z = 725.3229 (calcd. for $C_{47}H_{52}^{79}$ BrNO 725.3227, $[M]^{+}$).

To a solution of **S2** (2.06 g, 2.83 mmol, 1.0 equiv.) in THF (20 mL) and Et₃N (10 mL) was added 1,9-decadiyne (3.80 g, 28.3 mmol, 10.0 equiv.), Pd(PPh₃)₄ (0.323 g, 0.280 mmol, 0.1 equiv.) and CuI (0.106 g, 0.560 mmol, 0.2 equiv.). The resulting mixture was stirred at RT for 18 h. The solvent was then removed under reduced pressure and the residue was redissolved in CH₂Cl₂ (50 mL) and washed with a saturated aqueous solution of NH₄Cl (3 x 25 mL) and brine (50 mL). The organic layer was dried (MgSO₄), concentrated under reduced pressure and the crude residue purified by column chromatography (1:4 Et₂O:hexane) to give the title compound as tan solid (1.92 g, yield = 87 %). m.p. = 148-149 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.30 (s, 27H, H_r), 1.42-1.46 (m, 4H, H_{ed}), 1.51-1.55 (m, 2H, H_{c}), 1.62-1.65 (m, 2H, H_{f}), 1.93 (t, J = 2.6, 1H, H_a), 2.06-2.10 (m, 2H, H_l), 2.17-2.21 (m, 2H, H_b), 2.42 (t, J = 7.1, 2H, H_g), 2.64 (t, J = 7.1, 2H, H_g), 2.65 (t, J = 7.1, 2H, H_g), 2.64 (t, J = 7.1, 2H, H_g), 2.65 (t, J = 7.1, 2H, H_g), 2.66 (t, J = 7.1, 2H, H_g), 2.67 (t, J = 7.1, 2H, H_g), 2.68 (t, J = 7.1, 2H, H_g), 2.88 (t, J = 7.1, 2H, H_g), 2.88 (t, J = 7.1, 2H, H_g), 2.88 (t, J = 7.1, 2H, H_g), $= 7.0, 2H, H_k$, 4.07 (t, $J = 6.0, 2H, H_m$), 6.77 (d, $J = 8.9, 2H, H_n$), 7.07-7.10 (m, 8H, $H_{o,p}$), 7.22-7.24 (m, 8H, $H_{h,i,q}$), 7.51 (t, J = 7.8, 1H, H_i); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 16.2$, 18.4, 19.1, 19.2, 27.9, 28.2 (x 2), 28.3, 31.4, 34.3, 63.1, 66.2, 68.2, 80.2, 80.6, 84.5, 90.1, 91.2, 113.0, 124.0, 125.4 (x 2), 130.7, 132.2, 136.2, 139.6, 143.8, 144.0, 144.2, 148.3, 156.7; LREI-MS: $m/z = 780 \text{ [M]}^+$; HREI-MS (reference compound: perfluorotributylamine): m/z = 779.5061 (calcd. for $C_{57}H_{65}ON$, 779.5061, [M]⁺).

To a solution of 2,6-diiodoDMAP (4.01 g, 10.7 mmol, 1.0 equiv.) in THF (60 mL) and Et₃N (30 mL) was added pent-4-yne-1-ol (0.902 g, 1.00 mL, 10.7 mmol, 1.0 equiv.), Pd(PPh₃)₂Cl₂ (0.751 g, 1.07 mmol, 0.1 equiv.) and CuI (0.407 g, 2.14 mmol, 0.2 equiv.). The resulting mixture was stirred at RT for 18 h. The solvent was removed under reduced pressure and the residue was redissolved in EtOAc (50 mL) and washed with a saturated aqueous solution of NH₄Cl (3 x 25 mL) and brine (50 mL). The organic layer was dried (MgSO₄), concentrated under reduced pressure and the crude residue purified by column chromatography (1:9 Me₂CO:CH₂Cl₂) to give the title compound as a yellow oil (2.30 g, yield = 65 %). ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.83-1.87 (m, 2H, H_c), 2.17 (s, 1H, H_a), 2.52 (t, J = 7.0, 2H, H_d), 2.96 (s, 6H, H_f), 3.80-3.83 (m, 2H, H_b), 6.57 (d, J = 2.4, 1H, H_e), 6.82 (d, J = 2.4, 1H, H_g); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 15.9, 30.9, 39.2, 61.6, 80.5, 89.6, 109.7, 115.8, 118.3, 143.2, 154.5; LREI-MS: m/z = 330 [M]⁺; HREI-MS (ref. comp.: perfluorotributylamine): m/z = 330.0225 (calcd. for C₁₂H₁₅ON₂I, 330.0224, [M]⁺).

To a solution of **S3** (2.98 g, 3.82 mmol, 1.0 equiv.) and **S4** (1.89 g, 5.72 mmol, 1.5 equiv.) in THF (30 mL) and Et₃N (15 mL) was added Pd(PPh₃)₂Cl₂ (0.267 g, 0.382 mmol, 0.1 equiv.) and CuI (0.145 g, 0.764 mmol, 0.2 equiv.). The resulting mixture was stirred at RT for 18 h. The solvent was removed under reduced pressure and the residue was redissolved in EtOAc (40 mL) and washed with a saturated aqueous solution of NH₄Cl (3 x 20 mL) and brine (40 mL). The organic layer was dried (MgSO₄), concentrated under reduced pressure and the crude residue purified by column chromatography (1:19 Me₂CO:CH₂Cl₂) and then recrystallized from hot MeCN to yield the title compound as an off-white solid (1.12 g, yield = 30%). m.p. = 144 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.29 (s, 27H, H_x), 1.44-1.48 (m, 4H, H_{i,k}), 1.59-1.63 $(m, 4H, H_t), 1.83-1.87 (m, 2H, H_c), 2.05-2.09 (m, 2H, H_r), 2.25 (br, 1H, H_a), 2.39-2.42$ (m, 4H, H_{hm}), 2.52 (t, J = 7.0, 2H, H_d), 2.63 (t, J = 7.0, 2H, H_a), 2.97 (s, 6H, H_f), 3.80 (t, $J = 6.1, 2H, H_b$, 4.06 (t, $J = 6.0, 2H, H_s$), 6.52-6.53 (m, 2H, $H_{e,g}$), 6.76 (d, J = 8.9, 2H, H_t), 7.06-7.10 (m, 8H, $H_{u,v}$), 7.20-7.24 (m, 8H, $H_{n,p,w}$), 7.51 (t, J = 7.8, 1H, H_o); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 13.9, 14.3, 17.2, 17.4 (x 2), 26.2, 26.3 (x 2), 26.6, 29.1, 29.5, 32.4, 37.3, 59.7, 61.1, 64.2, 78.2, 78.6, 79.0, 79.5, 86.2, 87.2, 88.1, 89.4, 106.7, 106.8, 111.1, 122.1, 123.5, 123.7, 128.8, 130.3, 134.3, 137.7, 141.5, 141.8, 142.0, 142.1, 142.2, 146.3, 152.4, 154.7; LRES-MS: $m/z = 983 \text{ [M+H]}^+$; HRES-MS (reference

compound: caffeine): $m/z = 982.6252 \text{ [M+H]}^+ \text{ (calcd. for } C_{69}H_{80}O_2N_3, 982.6245, [M+H]^+).}$

To a solution of **S5** (0.670 g, 0.682 mmol) in THF (5 mL) and EtOH (5 mL) was added 10% w/w Pd(OH)₂/C (0.268 g, 40% b/w). The suspension was repeatedly degassed and purged with N₂ before being repeatedly degassed and purged with H₂ and then stirred for 18 h at RT under an atmosphere of H₂. The reaction mixture was then purified by column chromatography (1:4 MeOH:Me₂CO) to yield the title compound as a white solid (0.486 g, yield = 71%). m.p. = 186-188 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.20-1.27 (m, 8H, H_{m,n,o,p}), 1.29 (s, 27H, H_{ff}), 1.34-1.38 (m, 4H, H_{Lq}), 1.50.1.54 (m, 4H, H_{d,y}), 1.61-1.90 (m, 13H, H_{d,c,e,k,r,x,z}), 2.73-2.77 (m, 4H, H_{s,w}), 3.00-3.04 (m, 4H, H_{f,j}), 3.16 (s, 6H, H_h), 3.67 (t, J = 6.2, 2H, H_b), 3.92 (t, J = 6.5, 2H, H_{aa}), 6.27-6.29 (m, 2H, H_{g,i}), 6.74 (d, J = 8.8, 2H, H_{bb}), 6.92-6.95 (m, 2H, H_{L,v}), 7.06 (d, J = 8.8, 2H, H_{cc}), 7.07 (d, J = 8.6, 6H, H_{dd}), 7.22 (d, J = 8.6, 6H, H_{ee}), 7.48 (t, J = 7.6, 1H, H_u); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 25.0, 26.0, 29.0, 29.2, 29.3 (x 2), 29.4, 29.5 (x 2), 29.7 (x 2), 30.0, 30.2, 31.4, 31.6, 33.1, 34.3, 38.5, 38.6 (x 2), 40.0, 62.1, 63.0, 67.6, 103.4, 103.5, 112.9, 119.6, 119.7, 124.0, 130.7, 132.2, 136.5, 139.3, 144.1, 144.2, 148.2, 148.3, 156.8, 160.0, 161.1, 162.3;

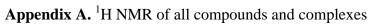
LRES-MS: $m/z = 999 \text{ [M+H]}^+$; HRES-MS (reference compound: caffeine): $m/z = 998.7509 \text{ [M+H]}^+$ (calcd. for $C_{69}H_{96}O_2N_3$, 998.7497, $[M+H]^+$).

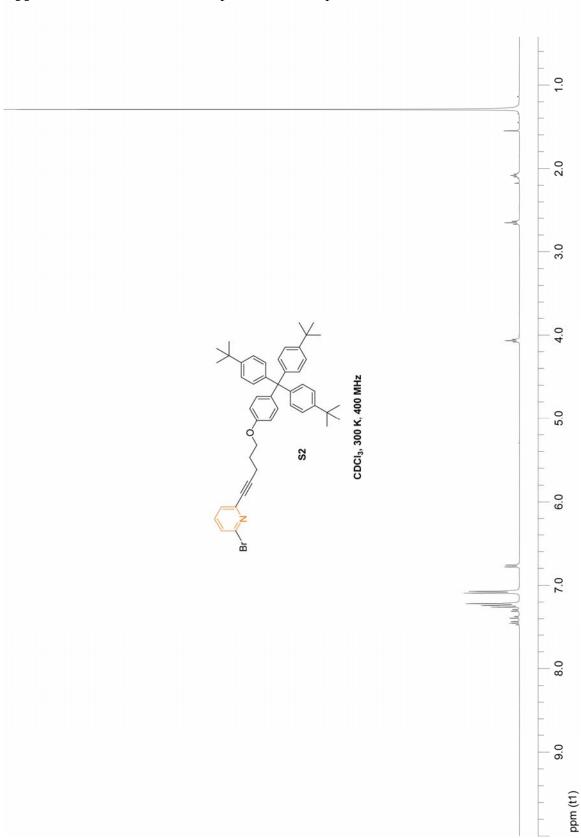
Scheme S2: Synthesis of molecular shuttle *DMAP*-**L2**Pd. Reagents and conditions: (i) CH₂Cl₂, 30 mins, RT; (ii) PPh₃, DIAD, toluene, 24 h, RT, 15%.

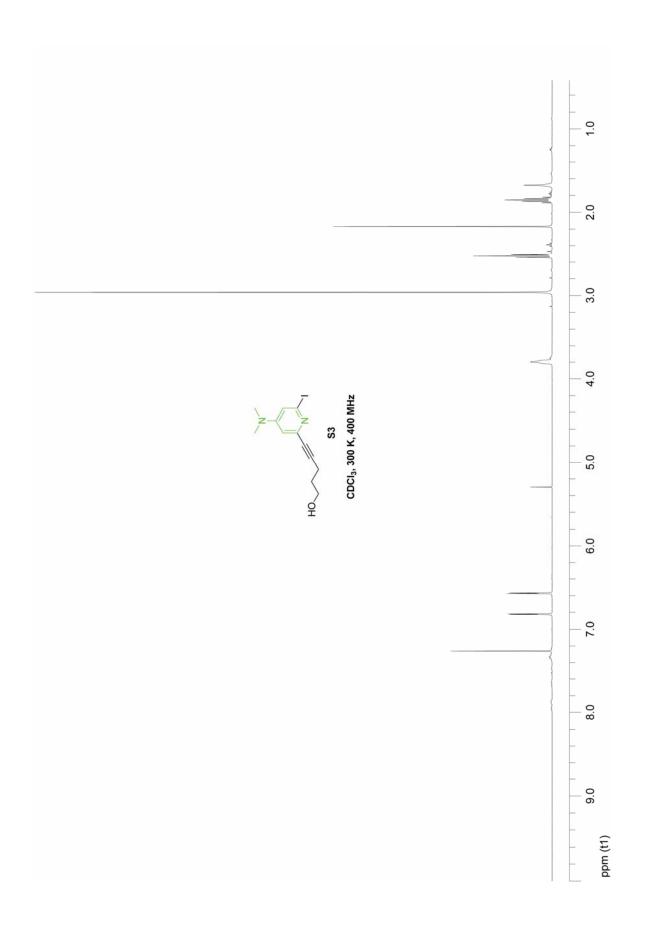
To a solution of S6 (0.050 g, 50 µmol, 1.0 equiv.) in CH₂Cl₂ (5 mL) was added L3Pd(MeCN) (0.038 g, 50 µmol, 1.0 equiv.) and the yellow solution stirred at RT for 30 minutes. After this time, TLC analysis (2% MeOH in CH₂Cl₂) showed that no free **S6** remained in solution. The solvent was then removed under reduced pressure and the yellow residue redissolved in toluene (10 mL) and cooled to 0 °C. To this cooled solution were added sequentially PPh₃ (0.066 g, 0.25 mmol, 5.0 equiv.), S7 (0.13 g, 0.25 mmol, 5.0 equiv.) and finally DIAD (0.051 g, 0.049 mL, 0.25 mmol, 5.0 equiv.) and the mixture stirred at RT for 24 h. After this time, the reaction was concentrated under reduced pressure and the orange residue subjected to column chromatography on silica (2% MeOH in CH₂Cl₂) to give a yellow solid, which was precipitated from CH₂Cl₂ by addition of MeOH to give the title compound as a yellow powder (0.017 g, yield = 15%). m.p. = 148-149 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.18-1.41 (m, 66H, $H_{a,p,q,r,s,t,u,jj}$), 1.43-1.58 (m, 12H, $H_{h,i,o,cc,J}$), 1.64-1.85 (m, 12H, $H_{g,v,bb,dd,I}$), 2.66 (s, 6H, H_l), 2.71-2.80 (m, 4H, $H_{w,aa}$), 3.06-3.21 (m, 4H, $H_{i,n}$), 3.64 (s, 4H, H_E), 3.79-3.88 (m, 6H, $H_{f,H}$), 3.92 (t, J = 6.5, 2H, H_{ee}), 5.59 (d, J = 2.3, 1H, $H_{(m \text{ or } k)}$), 5.67 (d, J = 2.3, 1H, $H_{(m \text{ or } k)}$) $(m, 4H, H_{e,ff}), 6.65-6.77 (m, 16H, H_{d,gg,D,F,(C \text{ or } G)}), 6.92-6.97 (m, 2H, H_{x,z}),$ 7.05-7.11 (m, 16H, $H_{c,hh,(C \text{ or } G)}$), 7.20-7.25 (m, 12H, $H_{b,ii}$), 7.48 (t, J = 7.6, 1H, H_{ν}), 7.89 (d, J = 7.8, 2H, H_B), 8.00-8.04 (m, 1H, H_A); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta =$

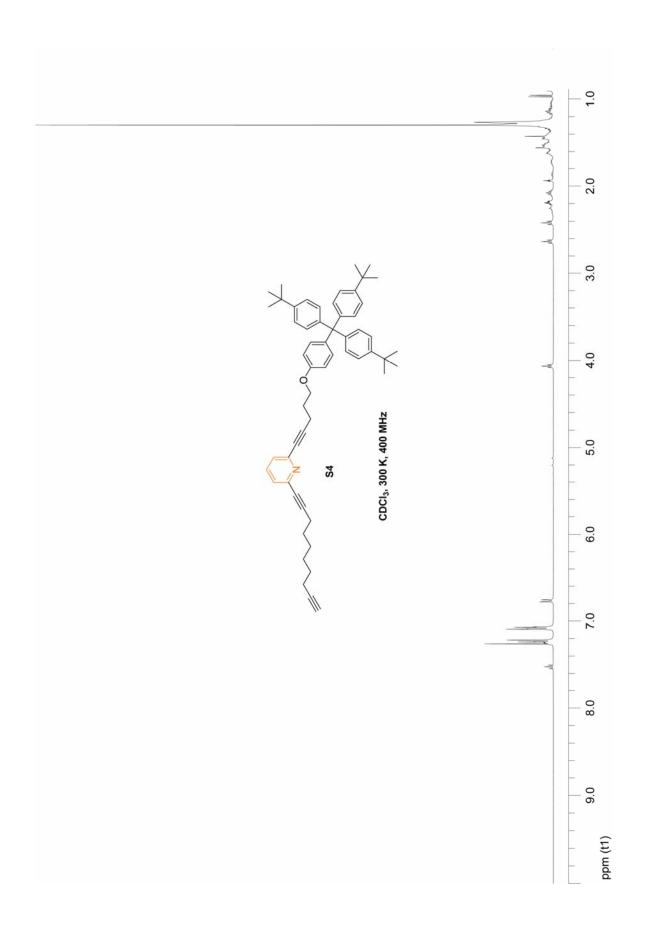
25.8, 25.9, 26.0, 27.8, 27.9, 28.3, 29.0, 29.1, 29.2, 29.5 (x 3), 29.6 (x 2), 29.7, 29.9, 30.2, 31.3 (x 2), 34.2, 38.4, 38.6, 38.7, 38.9, 39.1, 40.3, 63.0 (x 2), 67.3, 67.4, 67.6, 103.3, 103.5, 112.8 (x 2), 113.7, 119.6 (x 2), 123.9, 124.0, 125.4, 125.6, 128.6, 129.3, 130.6 (x 3), 132.1, 134.5, 136.4, 136.8, 139.3, 139.4, 140.1, 144.1 (x 2), 144.7, 148.2 (x 2), 152.8, 154.9, 156.7, 156.8, 157.0, 159.9, 160.3, 161.4, 161.9, 169.4. LRFAB-MS (3-NOBA matrix): $m/z = 2200 \, [\text{M}^{104}\text{Pd} + H]^+$. HRFAB-MS (3-NOBA matrix): $m/z = 2200.2534 \, [\text{M} + H]^+$ (calcd. for $\text{C}_{145}\text{H}_{173}\text{O}_6\text{N}_6^{104}\text{Pd}$, 2200.2446, $[\text{M} + H]^+$).

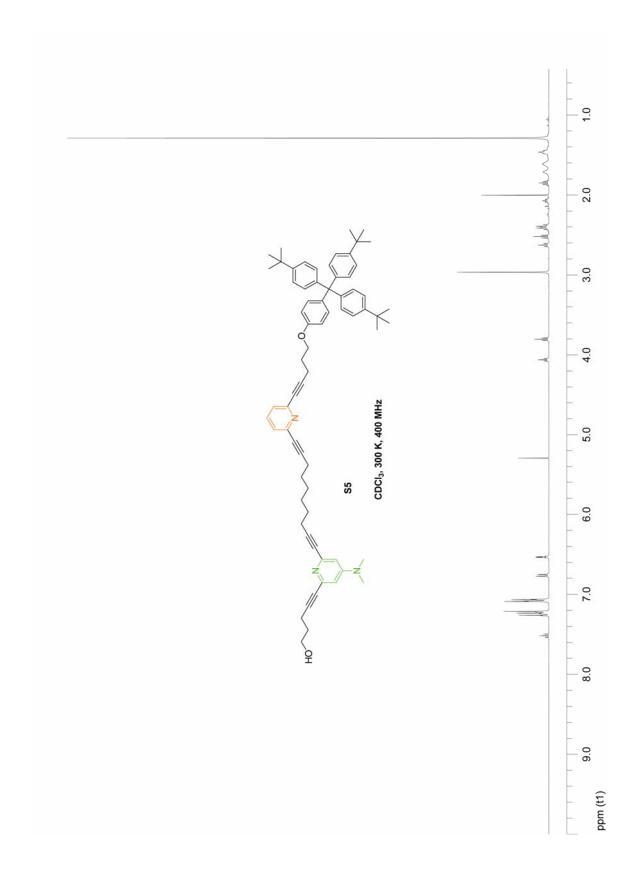
Scheme S3: Synthesis of thread **S10**. Reagents and conditions: (i) **S1**, $Pd(PPh_3)_4$, Cul, THF/Et_3N , 18 h, RT, 44%; (ii) **S3**, $Pd(PPh_3)_2Cl_2$, Cul, THF/Et_3N , 18 h, RT, 32%; (iii) $Pd(OH)_2/C$, H_2 , THF, 18 h, RT, 83%.


To a solution of 2,6-diiodoDMAP (1.11 g, 2.96 mmol, 1.0 equiv.) and **S1** (1.69 g, 2.96 mmol, 1.0 equiv.) in THF (20 mL) and Et₃N (10 mL) was added Pd(PPh₃)₄ (1.03 g, 0.89 mmol, 0.3 equiv.) and CuI (0.338 g, 1.78 mmol, 0.6 equiv.). The resulting mixture was stirred at RT for 18 h. The solvent was removed under reduced pressure and the residue redissolved in EtOAc (50 mL) and washed with a saturated aqueous solution of NH₄Cl (3 x 25 mL) and brine (50 mL). The organic layer was dried (MgSO₄), concentrated under reduced pressure and the crude residue purified by column chromatography (1:3 petroleum ether 40-60:CH₂Cl₂) to yield the title compound as a white solid (1.07 g, yield = 44%). m.p. = 133-135 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.30 (s, 27H, H_a), 2.04-2.08 (m, 2H, H_g), 2.61 (t, J = 7.0, 2H, H_h), 2.95 (s, 6H, H_i), 4.05 (t, J = 6.0, 2H, H_f), 6.57 (d, J = 2.3, 1H, H_i), 6.77 (d, J = 8.9, 2H, H_e), 6.82 (d, J = 2.3, 1H, H_k), 7.06-7.10 (m, 8H, $H_{c,d}$), 7.23 (d, J = 8.5, 6H, H_b); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 16.2$, 28.1, 31.4, 34.3, 39.2, 63.0, 66.1, 80.4, 89.4, 109.7, 113.0, 115.8, 118.3, 124.0, 130.4, 132.2, 139.6, 143.2, 144.1, 148.3, 154.5, 156.6; LREI-MS (3-NOBA matrix): $m/z = 816 \text{ [M]}^+$; HREI-MS (3-NOBA matrix): m/z = 816.3508 (calcd. for $C_{49}H_{57}INO_2$ 816.3510, [M]⁺).


To a solution of **S3** (1.12 g, 1.43 mmol, 1.0 equiv.) and **S8** (1.17 g, 1.43 mmol, 1.0 equiv.) in THF (10 mL) and Et₃N (5 mL) was added Pd(PPh₃)₂Cl₂ (0.100 g, 0.143 mmol, 0.1 equiv.) and CuI (54.0 mg, 0.286 mmol, 0.2 equiv.). The resulting mixture was stirred at RT for 18 h. The solvent was removed under reduced pressure and the residue was redissolved in EtOAc (30 mL) and washed with a saturated aqueous solution of NH₄Cl (3 x 15 mL) and brine (30 mL). The organic layer was dried (MgSO₄), concentrated under reduced pressure and the crude residue purified by column chromatography (1:1 Et_2O :hexane) to yield the title compound as an off-white solid (0.674 g, yield = 32%). m.p. = 164 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.29 (s, 54H, H_{a,bb}), 1.42-1.48 (m, 4H, $H_{n,o}$), 1.60-1.64 (m, 4H, $H_{m,o}$), 2.04-2.08 (m, 4H, $H_{e,v}$), 2.38-2.42 (m, 4H, $H_{l.a}$), 2.59-2.63 (m, 4H, $H_{h.u}$), 2.96 (s, 6H, H_i), 4.06 (t, J = 5.6, 4H, $H_{f,w}$), 6.51-6.55 (m, 2H, $H_{i,k}$), 6.74-6.78 (m, 4H, $H_{e,x}$), 7.04-7.12 (m, 16H, $H_{c,d,y,z}$), 7.18-7.25 (m, 14H, $H_{b,r,t,aa}$), 7.51 (t, J = 7.8, 1H, H_s); ¹³C NMR (200 MHz, CDCl₃, 298 K): $\delta = 16.0$, 19.1, 27.8, 27.9 (x 4), 28.2 (x 3), 29.1, 31.1, 33.2, 34.0, 39.1, 62.8, 65.8, 65.9 (x 2), 79.9, 80.0, 80.3 (x 2), 80.4 (x 2), 89.8, 89.9, 108.4, 108.6, 112.7 (x 2), 123.8 (x 2), 125.2, 125.3, 130.5 (x 2), 132.0 (x 2), 136.0, 139.3, 139.4, 143.9 (x 2), 148.0 (x 2), 148.1, 156.3 (x 2), 156.4 (x 2), 160.6 (x 2). LRFAB-MS (3-NOBA matrix): $m/z = 1469 \text{ [M+H]}^+$; HRFAB-MS (3-NOBA matrix): $m/z = 1468.9521 \text{ [M+H]}^+ \text{ (calcd. for C}_{106}H_{122}O_2N_3, 1468.9532, [M+H]^+).$


To a solution of **S9** (0.641 g, 0.436 mmol) in THF (10 mL) was added 10% w/w Pd(OH)₂/C (0.256 g, 60% b/w). The suspension was repeatedly degassed and purged with N₂ before being repeatedly degassed and purged with H₂ and then stirred for 18 h at RT under an atmosphere of H₂. The reaction mixture was purified by column chromatography (EtOAc) to yield the title compound as a white solid (0.539 g, yield = 83%). m.p. = 97-99 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.23-1.38 (m, 66H, $H_{a,p,q,r,s,t,u,jj}$), 1.50-1.54 (m, 4H, $H_{h,cc}$), 1.65-1.84 (m, 12H, $H_{g,i,o,v,bb,dd}$), 2.63-2.67 (m, 4H, $H_{n,i}$), 2.73-2.77 (m, 4H, $H_{w,aa}$), 2.96 (s, 6H, H_l), 3.90-3.94 (m, 4H, $H_{f,ee}$), 6.21 (s, 2H, $H_{k,m}$), 6.72-6.76 (m, 4H, $H_{e,ff}$), 6.93 (d, J = 7.7, 2H, $H_{x,z}$), 7.03-7.10 (m, 16H, $H_{c,d,gg,hh}$), 7.22 (d, J = 8.6, 12H, $H_{b,ii}$), 7.46 (t, J = 7.7, 1H, H_v); ¹³C NMR (100 MHz, CDCl₃, 300 K): $\delta = 25.9$ (x 2), 29.1 (x 3), 29.4 (x 2), 29.5 (x 4), 29.6, 29.9, 30.0, 30.1, 30.3, 31.3 (x 2), 34.2 (x 2), 38.4, 38.5, 39.2, 62.9 (x 2), 67.5 (x 2), 102.8 (x 2), 112.8 (x 2), 119.6 (x 2), 123.9 (x 2), 130.6 (x 2), 132.1 (x 2), 136.4, 139.2 (x 2), 144.1 (x 3), 148.1 (x 2), 155.4, 155.7, 155.8, 161.4 (x 2), 161.9; LRFAB-MS (3-NOBA matrix): $m/z = 1485 \text{ [M+H]}^+$. HRFAB-MS (3-NOBA matrix): $m/z = 1485.0761 \text{ [M+H]}^+$ (calcd. for $C_{106}H_{138}O_2N_3$, $1485.0784, [M+H]^{+}$).


References:


- [1] S. M. Goldup, D. A. Leigh, P. J. Lusby, R. T. McBurney, A. M. Z. Slawin, *Angew. Chem. Int. Ed.* 2008, **47**, 3381-3384.
- [2] J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni, A.-L. Lee, D. A. Leigh, *Angew. Chem. Int. Ed.* 2007, **46**, 5709-5713.
- [3] J. D. Crowley, D. A. Leigh, P. J. Lusby, R. T. McBurney, L.-E. Perret-Aebi, C. Petzold, A. M. Z. Slawin, M. D. Symes, J. Am. Chem. Soc. 2007, 129, 15085-15090.
- [4] H. W. Gibson, S. H. Lee, P. T. Engen, P. Lecavalier, J. Sze, Y. X. Shen, M. Bheda, *J. Org. Chem.* 1993, **58**, 3748-3756.

