Supplementary Material

for the paper

Lewis-Base Adducts of 9,10-Dihydro-9,10-diboraanthracene:
 Ditopic Hydroboration Reagents and a B-N Analogue of Triptycene

Andreas Lorbach, Michael Bolte, Hans-Wolfram Lerner and Matthias Wagner

Content:

1. Syntheses and NMR spectroscopic characterisations of $\mathbf{3}, \mathbf{5}, \mathbf{6}, \mathrm{Li}[7]$, and hydroboration of $t \mathrm{BuCCH}$ with $\mathbf{3}$ and $\mathbf{5}$
2. Single crystal X-ray structure analyses of $\mathbf{3}, \mathbf{6} \cdot \mathrm{THF}, \mathrm{Li}(\text { thf })_{4}[7] \cdot \mathrm{THF}$

1. Syntheses and NMR spectroscopic characterisations of $3,5,6, \mathrm{Li}[7]$, and hydroboration of $t \mathrm{BuCCH}$ with 3 and 5

All reactions were carried out under an atmosphere of dry nitrogen using Schlenk techniques. (Deutero)benzene, diethyl ether, dimethyl sulphide, hexane and $\left(d_{8}\right.$-)THF were dried over $\mathrm{Na} / \mathrm{benzophenone}$ and freshly distilled prior to use. NMR: Bruker AM250, Avance300 and Avance400; all NMR spectra were measured at $20^{\circ} \mathrm{C}$. Chemical shifts are referenced to residual solvent peaks ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ or external $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left({ }^{11} \mathrm{~B},{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}\right)$ and $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}\left({ }^{29} \mathrm{Si}\right.$ INEPT). Abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{n} . \mathrm{o} .=$ not observed, $\mathrm{bpdz}=$ benzo[d]pyridazine, pdz = pyridazine, $\mathrm{pz}=4$-trimethylsilylpyrazolide.

Synthesis of 3. A clear solution of $\mathbf{1}(525 \mathrm{mg}, 2.99 \mathrm{mmol})$ in dimethyl sulphide $\left(35 \mathrm{~cm}^{3}\right)$ was cooled to $-78^{\circ} \mathrm{C}$ to yield colourless crystals of $\mathbf{3}$ suitable for X-ray crystallography. The crystals were collected on a frit and dried under dynamic vacuum for 30 min ($392 \mathrm{mg}, 44 \%$).
${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}\left(300.0 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.16\left(12 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 5.48\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, h_{I / 2}=200 \mathrm{~Hz}, \mathrm{BH}\right), 7.38(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.00\left(4 \mathrm{H}, \quad \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{11} \mathrm{~B}$ NMR: $\delta_{\mathrm{B}}\left(96.3 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 28.1 \quad\left(\mathrm{br} \mathrm{s}, h_{1 / 2}=370 \mathrm{~Hz}\right)$, $\delta_{\text {B }}\left(96.3 \mathrm{MHz}\right.$; DMS) $1.9\left(\mathrm{br} \mathrm{d}, J_{\mathrm{BH}} \approx 60 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 18.5\left(\mathrm{SCH}_{3}\right), 129.3$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 138.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, n. o. (BC). Note: All chemical shifts are strongly influenced by the amount of dimethyl sulphide present in the sample.

Hydroboration of $\boldsymbol{t} \mathbf{B u C C H}$ with 3. Neat $t \mathrm{BuCCH}(30 \mathrm{mg}, 0.37 \mathrm{mmol})$ was added via syringe to $\mathbf{3}$ $(22.1 \mathrm{mg}, 0.0736 \mathrm{mmol})$ in benzene $\left(4 \mathrm{~cm}^{3}\right)$ at r . t. The mixture was stirred for 30 min and then freezedried for 2 h in a dynamic vacuum. All NMR spectroscopic data of the resulting colourless microcrystalline residue were in agreement with literature values of 4 . No ${ }^{1} \mathrm{H}$ NMR signal for SMe_{2} (free or coordinated) was detectable; combustion analysis of the sample gave a relative sulphur content of 0%.

Synthesis of 5. A vigorously stirred solution of $\mathbf{3}(47.3 \mathrm{mg}, 0.158 \mathrm{mmol})$ in benzene $\left(8 \mathrm{~cm}^{3}\right)$ was treated at r . t. with pyridazine $(12.7 \mathrm{mg}, 0.159 \mathrm{mmol})$ whereupon a voluminous yellow solid formed. After 1 h , the precipitate was isolated by centrifugation and dried in vacuum. $\mathbf{5} \cdot 0.25 \mathrm{C}_{6} \mathrm{H}_{6}$ (34 mg , 78%) was obtained as a yellow microcrystalline solid (note: The amount of benzene was estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy). Reprecipitation of $\mathbf{5} \cdot 0.25 \mathrm{C}_{6} \mathrm{H}_{6}$ from a THF solution into hexane yielded benzene-free samples.
${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}\left(400.1 \mathrm{MHz} ; d_{8}-\mathrm{THF}\right) 4.47\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, h_{1 / 2}=240 \mathrm{~Hz}, \mathrm{BH}\right), 6.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.39(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.08(2 \mathrm{H}, \mathrm{m}, \mathrm{pdzH}-4,5), 9.63(2 \mathrm{H}, \mathrm{m}, \mathrm{pdzH}-3,6) ;{ }^{11} \mathrm{~B}$ NMR: $\delta_{\mathrm{B}}\left(128.4 \mathrm{MHz} ; d_{8}\right.$-THF) 5.3 (br s, $\left.h_{1 / 2}=230 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; d_{8}\right.$-THF) $124.4\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 131.0\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 135.1$
(pdzC-4,5), 149.8 (pdzC-3,6), n. o. (BC). Found: C, $74.8 ; \mathrm{H}, 5.5 ; \mathrm{N}, 10.7 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~B}_{2} \mathrm{~N}_{2}$ requires C, 75.1; H, 5.5; N, 11.0.

Hydroboration of $\boldsymbol{t} \mathbf{B u C C H}$ with 5. A solution of $\mathbf{5} \cdot 0.25 \mathrm{C}_{6} \mathrm{H}_{6}(1 \mathrm{mg}, 0.004 \mathrm{mmol})$ in d_{8}-THF $\left(0.5 \mathrm{~cm}^{3}\right)$ was transferred to an NMR tube and treated with excess $t \mathrm{BuCCH}(10 \mathrm{mg}, 0.1 \mathrm{mmol})$. The NMR tube was flame-sealed and kept at $20^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR spectroscopy revealed approximately 50% conversion (Fig. S1). Therefore, the sample was stored at $40^{\circ} \mathrm{C}$ for further 30 min to achieve quantitative conversion (Fig. S1).
${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}\left(300.0 \mathrm{MHz} ; d_{8}\right.$-THF) $1.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.45\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=18.6 \mathrm{~Hz}, \mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H})\right), 6.67$ $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=18.6 \mathrm{~Hz}, \mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H})\right), 6.78\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.54\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.99(2 \mathrm{H}, \mathrm{br}$ s, pdzH-4,5), 9.77 (2 H , br s, pdzH-3,6); ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta_{\mathrm{B}}\left(96.3 \mathrm{MHz} ; d_{8}-\mathrm{THF}\right) 4.6$ (br s, $h_{1 / 2}=700 \mathrm{~Hz}$).

Fig. S1 Hydroboration of t BuCCH with 5. $0.25 \mathrm{C}_{6} \mathrm{H}_{6}$ in d_{8}-THF.

Note: The hydroboration of $t \mathrm{BuCCH}$ with $\mathrm{Li}[7]$ is also possible under similar conditions, however, it requires higher reaction temperatures of $60^{\circ} \mathrm{C}$.

Synthesis of 6. Benzo[$d]$ pyridazine ($13 \mathrm{mg}, 0.10 \mathrm{mmol}$) in benzene $\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise at r. t. to a stirred solution of $\mathbf{3}(25.5 \mathrm{mg}, 0.0850 \mathrm{mmol})$ in benzene $\left(3 \mathrm{~cm}^{3}\right)$, whereupon a pale yellow solid precipitated. Stirring was continued for 30 min and afterwards all volatiles were removed in vacuum. Yellow X-ray quality crystals of $\mathbf{6} \cdot \mathrm{THF}$ were grown by vapour diffusion of diethyl ether into a THF $\left(4 \mathrm{~cm}^{3}\right)$ solution of the crude product ($4 \mathrm{mg}, 12 \%$ based on isolated single crystalline material). ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}\left(400.1 \mathrm{MHz} ; d_{8}\right.$-THF) $4.52\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, h_{1 / 2}=170 \mathrm{~Hz}, \mathrm{BH}\right), 6.74\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.42(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.20\left(2 \mathrm{H}, \mathrm{m}\right.$, bpdzH), $8.36\left(2 \mathrm{H}, \mathrm{m}\right.$, bpdzH), $10.21\left(2 \mathrm{H}, \mathrm{s}\right.$, bpdzH-1,4); ${ }^{11} \mathrm{~B}$ NMR: $\delta_{\mathrm{B}}\left(96.3 \mathrm{MHz} ; d_{8}-\mathrm{THF}\right) 4.4\left(\mathrm{br} \mathrm{s}, h_{I / 2}=390 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; d_{8}-\mathrm{THF}\right) 124.4\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 129.4 (bpdzC-4a,8a), 129.6 (bpdzC), $131.0\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 137.2$ (bpdzC), 150.7 (bpdzC-1,4), n. o. (BC).

Synthesis of Li[7]. Lithium 4-trimethylsilylpyrazolide ($24.7 \mathrm{mg}, 0.169 \mathrm{mmol}$; prepared from 4-trimethylsilylpyrazole and n-butyllithium in hexane) was dissolved in a mixture of benzene ($5 \mathrm{~cm}^{3}$) and THF ($0.03 \mathrm{~cm}^{3}$) and added at r. t. via syringe to a stirred solution of $\mathbf{3}(49.1 \mathrm{mg}, 0.164 \mathrm{mmol})$ in benzene $\left(6 \mathrm{~cm}^{3}\right)$. After 1 h , all volatiles were removed from the clear solution in vacuum and the residue was redissolved in THF $\left(5 \mathrm{~cm}^{3}\right)$. The resulting clear solution was concentrated to saturation under reduced pressure and stored at $-40^{\circ} \mathrm{C}$ for 15 h to yield colourless X-ray quality crystals of $\mathrm{Li}(\mathrm{thf})_{4}[7] \cdot \mathrm{THF}(46 \mathrm{mg}, 41 \%$ based on isolated single crystalline material).
${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}\left(300.0 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)-0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 4.79\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, h_{1 / 2}=190 \mathrm{~Hz}, \mathrm{BH}\right), 7.04(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.71(2 \mathrm{H}, \mathrm{s}, \mathrm{pzH}-3,5), 7.97\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{11} \mathrm{~B}$ NMR: $\delta_{\mathrm{B}}\left(96.3 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)-5.8(\mathrm{br} \mathrm{s}$, $\left.h_{1 / 2}=350 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)-0.3\left(\mathrm{SiCH}_{3}\right), 112.4(\mathrm{pzC}-4), 124.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 131.8$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 136.2(\mathrm{pzC}-3,5)$, n. o. (BC); ${ }^{29} \mathrm{Si} \mathrm{NMR}(\mathrm{INEPT}): \delta_{\mathrm{si}}\left(59.6 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)-11.4 ;$ ESI-MS: $m / z 315.2$ ([7] $]^{-}, 100 \%$). Found: C, 66.4; H, 8.8; N, 4.4. $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{~B}_{2} \mathrm{LiN}_{2} \mathrm{O}_{4}$ Si requires C, 66.9; H, 8.75; N, 4.6.

2. Single crystal X-ray structure analyses of $\mathbf{3 , 6} \mathbf{6} \cdot \mathbf{T H F}, \mathrm{Li}(\text { thf })_{4}[7] \cdot \mathrm{THF}$

Crystal data of 3. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~B}_{2} \mathrm{~S}_{2}, M=300.08 \mathrm{~g} \mathrm{~mol}^{-1}$, monoclinic, $a=14.0791(11) \AA, b=7.3214(5) \AA$, $c=16.6356(14) \AA, \beta=102.414(6)^{\circ}, V=1674.7(2) \AA^{3}, T=173(2) \mathrm{K}$, space group $P 2_{1} / n, Z=4$, $\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=0.305 \mathrm{~mm}^{-1}, 18440$ reflections measured, 3128 unique $\left(R_{\text {int }}=0.0764\right)$ which were used in all calculations. The final $w R\left(F^{2}\right)$ was 0.0947 (all data).
Crystal data of 6•THF. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}, \quad M=378.07 \mathrm{~g} \mathrm{~mol}^{-1}, \quad$ triclinic, $\quad a=10.6419(7) \AA$, $b=13.8641(8) \AA, c=13.8898(9) \AA, \alpha=91.748(5)^{\circ}, \beta=95.552(5)^{\circ}, \gamma=92.350(5)^{\circ}, V=2036.8(2) \AA^{3}$, $T=173(2) \mathrm{K}$, space group $P 1, Z=4, \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=0.074 \mathrm{~mm}^{-1}, 34216$ reflections measured, 7626 unique ($R_{\text {int }}=0.0887$) which were used in all calculations. The final $w R\left(F^{2}\right)$ was 0.2108 (all data).
The compound crystallises together with one equivalent of THF molecules, which are disordered. The asymmetric unit contains two crystallographically independent molecules, $6 \cdot \mathrm{THF}_{\mathrm{A}}$ and $\mathbf{6} \cdot \mathrm{THF}_{\mathrm{B}}$. Since most structure parameters of $\mathbf{6} \cdot \mathrm{THF}_{\mathrm{A}}$ and $\mathbf{6} \cdot \mathrm{THF}_{\mathrm{B}}$ are the same within the experimental error margins, only the plot and selected data of $\mathbf{6} \cdot \mathrm{THF}_{\mathrm{A}}$ are shown in Fig. S2.

Fig. S2 Molecular structure and numbering scheme of compound $6 \cdot \mathrm{THF}_{\mathrm{A}}$; displacement ellipsoids are drawn at the 50% probability level; protons attached to carbon atoms and the THF molecule are omitted for clarity. Selected bond lengths [\AA], atom \cdots atom distances $[\AA]$, bond angles $\left[{ }^{\circ}\right]$ and dihedral angles [${ }^{\circ}$]: $\mathrm{B}(1)-\mathrm{C}(11)=1.617(4), \mathrm{B}(1)-\mathrm{C}(21)=1.602(4), \mathrm{B}(2)-\mathrm{C}(12)=1.614(4), \mathrm{B}(2)-\mathrm{C}(22)=$ $1.609(4), \mathrm{B}(1)-\mathrm{N}(1)=1.641(3), \mathrm{B}(2)-\mathrm{N}(2)=1.639(3), \mathrm{B}(1)-\mathrm{H}(1)=1.12(3), \mathrm{B}(2)-\mathrm{H}(2)=1.17(3)$, $\mathrm{B} \cdots \mathrm{B}=2.730(4) ; \mathrm{C}(11)-\mathrm{B}(1)-\mathrm{C}(21)=108.7(2), \mathrm{C}(12)-\mathrm{B}(2)-\mathrm{C}(22)=108.9(2), \mathrm{C}(11)-\mathrm{B}(1)-\mathrm{N}(1)=$ $102.2(2), \mathrm{C}(21)-\mathrm{B}(1)-\mathrm{N}(1)=102.3(2), \mathrm{C}(12)-\mathrm{B}(2)-\mathrm{N}(2)=101.9(2), \mathrm{C}(22)-\mathrm{B}(2)-\mathrm{N}(2)=102.6(2)$, $\mathrm{B}(1)-\mathrm{N}(1)-\mathrm{N}(2)=114.5(2), \quad \mathrm{B}(2)-\mathrm{N}(2)-\mathrm{N}(1)=114.1(2) ; \operatorname{Ar}(\mathrm{C}(11)) / / \mathrm{Ar}(\mathrm{C}(21))=126.9$, $\mathrm{B}(1) \mathrm{C}(11) \mathrm{C}(21) / / \mathrm{B}(2) \mathrm{C}(12) \mathrm{C}(22)=88.7$.

Crystal data of $\mathbf{L i}(\text { thf })_{4}[7] \cdot T H F . \quad \mathrm{C}_{38} \mathrm{H}_{61} \mathrm{~B}_{2} \mathrm{LiN}_{2} \mathrm{O}_{5} \mathrm{Si}, \quad M=682.54 \mathrm{~g} \mathrm{~mol}^{-1}, \quad$ monoclinic, $a=10.0824(12) \AA, b=17.4274(15) \AA, c=12.4327(16) \AA, \beta=110.322(9)^{\circ}, V=2048.6(4) \AA^{3}$, $T=173(2) \mathrm{K}$, space group $P 2_{1}, Z=2, \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=0.098 \mathrm{~mm}^{-1}, 12751$ reflections measured, 7065 unique ($R_{\mathrm{int}}=0.0377$) which were used in all calculations. The final $w R\left(F^{2}\right)$ was 0.1822 (all data). Flack x-parameter $=-0.04(19)$.
CCDC reference numbers: 762845 (3), 762846 ($6 \cdot \mathrm{THF}$), 762847 ($\left.\mathrm{Li}(\mathrm{thf})_{4}[7] \cdot \mathrm{THF}\right)$.

