Preparation of Highly Functionalized Alkylzinc Halides from Alkyl Bromides using Mg, ZnCl₂ and LiCl

Tobias D. Blümke, Fabian M. Piller and Paul Knochel* Ludwig-Maximilians-Universität München Department Chemie und Biochemie Butenandtstrasse 5-13, Haus F, 81377 München (Germany) Fax: (+49) 089 2180 77680

e-mail: paul.knochel@cup.uni-muenchen.de

General information: All reactions were carried out under an argon atmosphere in dried glassware. Syringes and needles were flushed with argon three times before use. THF was continuously refluxed freshly distilled and from sodium benzophenone ketyl under nitrogen and kept over 4 Å molecular sieves. Yields refer to isolated yields of compounds estimated to be of > 95 % purity as determined by ¹H-NMR and capillary-GC analysis. NMR spectra were recorded on solutions in deuterated chloroform (CDCl₃) with residual chloroform (δ 7.25 ppm for ¹H NMR and δ 77.0 ppm for ¹³C NMR) or deuterated benzene (C₆D₆) with residual benzene (7.15 ppm for ^{1}H NMR and δ 128.0 ppm for ¹³C NMR). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Starting Materials: Commercially available starting materials were purchased from commercial sources and used without further purification.

General procedures for the preparation of various metal salt solutions:

ZnCl₂ 1M in THF:

A Schlenk-flask was charged with ZnCl₂ (20.45 g, 0.15 mol) and dried for 6 h at 150 °C under high vacuum $(5 \cdot 10^{-2} \text{ mbar})(\text{dry})$ of THF stirring). Careful addition (150 mL) (heat development!) and stirring overnight furnishes а clear colourless solution, which is kept over molecular sieves (4 \AA)

CuCN•2 LiCl 1M in THF:

A Schlenk-flask was charged with LiCl (16.96 g, 0.40 mol) and CuCN·2 LiCl (17.95 g, 0.20 mol) and dried for 6 h at 150 °C under high vacuum ($5 \cdot 10^{-2}$ mbar; dry stirring). Careful addition of THF (200 mL) (heat development!) and stirring overnight furnishes a slightly yellowish to greenish solution which is kept over molecular sieves (4 Å). A dark green to black colour indicates the presence of Cu(II), this solution should not be used.

General procedure for the preparation of alkylzinc reagents using the Mg/ZnCl₂/LiCl method:

An argon flushed Schlenk-flask was charged with LiCl (1.25-2.5 and dried 5-10 min at 400 °C (heat gun) under high equiv) vacuum $(5 \cdot 10^{-2} \text{ mbar})$. Mq-turnings or powder (2.5 equiv) were added under argon and heated additionally for 5 min at 400 °C. The flask was evacuated and backfilled with argon three times before ZnCl₂ solution (1M in THF, 1.1 equiv) was added with a syringe. A solution of alkyl bromide (1.0 equiv) (along with internal standard: tetradecane) in THF (2.5 mL/mmol) was added 25 °C and the resulting solution was stirred at the at. appropriate temperature. completion of The the insertion reaction was checked by GC analysis of reaction aliquots quenched with a solution of saturated NH4Cl in water. After complete conversion (>95%) the remaining Mg was allowed to

settle down and the resulting alkylzinc solution was seperated and canulated to a new dried and argon flushed flask. (Important note: Separation from remaining magnesium should be performed as soon as the conversion is complete, otherwise decomposition of the organometallic reagent is observed.)

Procedures for the preparation of products 3a-1 of TABLE 1 and Scheme 3-4 using the Mg/ZnCl₂/LiCl method:

Ethyl 7-oxo-7-p-tolylheptanoate (3a).

The general procedure was followed using Mg-turnings (244 mg, 10 mmol), LiCl (212 mg, 5 mmol), ZnCl₂ (1M solution in THF, 4.4 mL, 4.4 mmol) and ethyl 6-bromohexanoate (**2a**, 893 mg, 4 mmol). The reaction was carried out at 20 °C for 2.5 h and provided the alkylzinc reagent **1a** which was transferred to an argon flushed flask.

CuCN·2 LiCl (1M solution in THF, 4.0 mL, 1.0 equiv) was added at -30 °C and the mixture stirred for 30 min. 4-Methylbenzoyl chloride (433 mg, 2.8 mmol, 0.7 equiv) was added dropwise at -30 °C under argon. The mixture was stirred for 2.5 h and allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH₄Cl solution (20 mL) and conc. aqueous ammonia (20 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:7) to yield compound **3a** (516 mg, 70%) as white powder. ¹H NMR (300 MHz, $CDCl_3$): δ 7.87-7.80 (m, 2H), 7.26-7.20 (m, 2H), 4.10 (q, ${}^{3}J_{HH} = 7.2$ Hz, 2H), 2.96-2.89 (m, 2H), 2.39 (s, 3H), 2.30 (t, ${}^{3}J_{HH}$ = 7.6 Hz, 2H), 1.79-1.60 (m, 2H), 1.23 (t, ${}^{3}J_{HH} = 7.2$ Hz, 3H); ${}^{13}C$ 4H), 1.47-1.34 (m, (75 MHz, CDCl₃) δ 199.9, 173.7, 143.6, 134.5, 129.2, 128.1, 60.2, 38.2, 34.1, 28.8, 24.8, 23.9, 21.6, 14.2; MS (EI, 70 eV): m/z 262 (<1) [M⁺], 134 (59), 119 (100), 91 (22), 65 (5); HRMS: m/z for $C_{16}H_{22}O_3$ (M⁺) 262.1569, found 262.1567; calcd. FT-IR

(Diamond-ATR, neat) $\tilde{\nu}$ 2988 (w), 2946 (m), 2930 (m), 1728 (s), 1670 (vs), 1606 (s), 1464 (s), 1408 (m), 1344 (s), 1240 (s), 1178 (s), 1160 (s), 1122 (s), 1096 (s), 1010 (s), 972 (s), 812 (vs), 762 (s), 728 (s), 694 (m) cm⁻¹, mp (°C) = 56-57.

Ethyl 7-p-tolylheptanoate (3b).

The general procedure was followed using Mg-turnings (122 mg, 5 mmol), LiCl (106 mg, 2.5 mmol), ZnCl₂ (1M solution THF, 2.2 mL, 2.2 mmol) and ethyl 6-bromohexanoate in (2a, 447 mg, 2 mmol). The reaction was carried out at 20 °C for 2.5 h and provided the alkylzinc reagent 1a which was transferred to an argon flushed flask.

A mixture of $Pd(OAc)_2$ (6 mg, 2.8·10⁻² mmol, 1.4 mol%), Ru-Phos (26 mg, $5.6 \cdot 10^{-2}$ mmol, 2.8 mol%) and *p*-bromotoluene (240 mg, 1.4 mmol, 0.7 equiv) in 2 mL THF was added at 20°C and the reaction mixture stirred for 1.5 h before being quenched with sat. aqueous NH₄Cl solution (25 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:60) to yield compound 3b (270 mg, 82%) as colourless liquid. ¹H NMR (300 MHz, $CDCl_3$): δ 7.15-7.06 (m, 4H), 4.15 (q, ${}^{3}J_{\rm HH}$ = 7.2 Hz, 2H), 2.60 (m, 2H), (s, 3H), 2.33-2.28 (m, 2H), 1.74-1.59 (m, 4H), 2.34 1.46-1.33 (m, 2H), 1.28 (t, ${}^{3}J_{HH}$ = 7.1 Hz, 3H); ${}^{13}C$ (75 MHz, CDCl₃) δ 173.8, 139.4, 135.1, 128.9, 128.3, 60.2, 35.3, 34.3, 31.2, 28.8, 24.9, 21.00, 14.2; MS (EI, 70 eV): m/z 234 (15) [M⁺], 188 (18), 144 (42), 105 (100), 85 (11), 71 (14), 57 (18); HRMS: m/z calcd. for $C_{15}H_{22}O_2$ (M⁺) 234.1620, found 234.1614; FT-IR (Diamond-ATR, neat) \tilde{v} 2980 (w), 2930 (m), 2858 (w), 1733 (vs), 1515 (w), 1463 (w), 1446 (w), 1372 (w), 1348 (w), 1177 (m), 1133 (w), 806 (w) cm^{-1}

Ethyl 5-(2-chlorophenyl)-5-oxopentanoate (3c).

The general procedure was followed using Mg-turnings (244 mg, 10 mmol), LiCl (212 mg, 5 mmol), ZnCl₂ (1M solution in THF, 4.4 mL, 4.4 mmol) and ethyl 4-bromobutanoate (**2b**, 893 mg, 4 mmol). The reaction was carried out at 20 °C for 1.5 h and provided the alkylzinc reagent **1b** which was transferred to an argon flushed flask.

CuCN·2 LiCl (1M solution in THF, 4.0 mL, 1.0 equiv) was added at -30 °C and the mixture stirred for 30 min. 2-Chlorobenzoyl chloride (490 mg, 2.8 mmol, 0.7 equiv) was added dropwise at -30 °C under argon. The mixture was stirred for 2.5 h and allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH₄Cl solution (25 mL) and conc. aqueous ammonia (25 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:5) to yield compound **3c** (516 mg, 65%) as colourless liquid. ¹H NMR (300 MHz, CDCl₃): δ 7.45-7.27 (m, 4H), 4.12 (q, ${}^{3}J_{HH} = 7.2$ Hz, 2H), 3.00 (t, ${}^{3}J_{HH} = 7.2$ Hz, 2H), $(t, {}^{3}J_{\rm HH} = 7.2$ 2.40 Ηz, 2H), 2.09-1.98 (m, 2H), 1.24 (t, ${}^{3}J_{HH}$ = 7.2 Hz, 3H); ${}^{13}C$ (75 MHz, CDCl₃) δ 202.7, 173.1, 139.4, 131.6, 130.7, 130.5, 128.7, 126.9, 60.4, 41.8, 33.2, 19.3, 14.2; MS (EI, 70 eV): m/z 254 (6) [M⁺], 211 (12), 210 (11), 209 (40), 208 (23), 181 (28), 154 (16), 141 (100), 111 (39), 75 (10); HRMS: m/z calcd. for $C_{13}H_{15}ClO_3$ (M⁺) 254.0710, found 254.0701; FT-IR (Diamond-ATR, neat) \tilde{v} 2980 (w), 2940 (w), 2874 (vw), 1728 (vs), 1698 (s), 1590 (m), 1432 (m), 1374 (m), 1204 (s), 1028 (s), 754 (vs) cm⁻¹.

7-(4-Chlorophenyl)-2,2-dimethyl-7-oxoheptanenitrile (3d).

The general procedure was followed using Mg-turnings (244 mg, 10 mmol), LiCl (212 mg, 5 mmol), $ZnCl_2$ (1M solution in THF, 4.4 mL, 4.4 mmol) and 6-bromo-2,2-dimethylhexanenitrile (2c, 817 mg, 4 mmol). The reaction was carried out at 0 °C for

5 h and provided the alkylzinc reagent **1c** which was transferred to an argon flushed flask.

CuCN·2 LiCl (1M solution in THF, 4.0 mL, 1.0 equiv) was added at -30 °C and the mixture stirred for 30 min. 4-Chlorobenzoyl chloride (490 mg, 2.8 mmol, 0.7 equiv) was added dropwise at -30 °C under argon. The mixture was stirred for 2.5 h and allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH4Cl solution (25 mL) and conc. aqueous ammonia (25 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:7) to yield compound **3d** (606 mg, 83%) as white powder. ¹H NMR (300 MHz, $CDCl_3$): δ 7.90-7.85 (m, 2H), 7.45-7.39 (m, 2H), 2.97 (t, ${}^{3}J_{HH} = 7.2$ Hz, 2H), 1.83-1.69 (m, 2H), 1.59-1.51 (m, 4H), 1.33 (s, 6H); ¹³C (75 MHz, CDCl₃) δ 139.4, 135.2, 129.4, 128.9, 125.0, 40.9, 38.2, 198.4, 32.3, 26.6, 25.0, 23.9; MS (EI, 70 eV): m/z 263 (<1) [M⁺], 156 (16), 154 (52), 139 (100), 111 (20); HRMS: m/z calcd. for $C_{15H_{18}}ClNO$ (M^+) 263.1077, found 263.1068; FT-IR (Diamond-ATR, neat) \tilde{V} 2978 2936 (m), 1680 (vs), 1584 (m), 1570 (m), 1396 (m), 1370 (m), (m), 1322 (m), 1260 (m), 1220 (m), 1204 (m), 1094 (s), 1010 (m), 986 (s), 836 (vs), 735 (m) cm^{-1} , mp (°C) = 78-79.

6-(4-Fluorophenylthio)-2,2-dimethylhexanenitrile (3e).

The general procedure was followed using Mq-turnings (244 mg, 10 mmol), LiCl (212 mg, 5 mmol), ZnCl₂ (1M solution in THF, 4.4 mL, 4.4 mmol) and 6-bromo-2,2-dimethylhexanenitrile (2c, 817 mg, 4 mmol). The reaction was carried out at 0 °C for provided the alkylzinc 5 h and reagent 1cwhich was transferred to an argon flushed flask.

CuCN·2 LiCl (1M solution in THF, 4.0 mL, 1.0 equiv) was added at -30 °C and the mixture stirred for 30 min. S-4-Fluorophenyl benzenesulfonothioate (751 mg, 2.8 mmol, 0.7 equiv) was added at -30 °C under argon. The mixture was stirred for 16 h and

allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH_4Cl solution (20 mL) and conc. aqueous ammonia (20 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:7) to yield compound **3e** (610 mg, 86%) as yellow liquid. ¹H NMR (300 MHz, CDCl₃): δ 7.36-7.28 (m, 2H), 2.86 (t, ${}^{3}J_{\rm HH}$ = 7.1 Hz, 2H), 7.02-6.93 (m, 2H), 1.68 - 1.43(m, 6H), 1.31 (s, 6H); ${}^{13}C$ (75 MHz, CDCl₃) δ 161.7 (d, ${}^{1}J_{CF}$ = 246.1 Hz), 132.3 (d, ${}^{3}J_{CF} = 8.0$ Hz), 131.1 (d, ${}^{4}J_{CF} = 3.1$ Hz) 124.9, 115.9 (d, ${}^{2}J_{CF} = 21.9 \text{ Hz}$), 40.5, 34.7 (d, ${}^{6}J_{CF} = 0.8 \text{ Hz}$), 32.3, 29.0, 26.5, 24.3; MS (EI, 70 eV): m/z 251 (86) [M⁺], 218 (10), 141 (74), 128 (100), 124 (17); HRMS: m/z calcd. for C₁₄H₁₈SFN (M⁺) 251.1144, found 251.1143; FT-IR (Diamond-ATR, neat) $\tilde{\nu}$ 2938 (w), 2234 (w), 1490 (vs), 1472 (m), 1462 (m), 1220 (vs), 1156 (m), 1090 (m), 824 (vs), 734 (m), 630 (m), 622 (m) cm^{-1} .

2,2-Dimethyl-6-p-tolyl-hexanenitrile (3f).

The general procedure was followed using Mg-turnings (122 mg, 5 mmol), LiCl (106 mg, 2.5 mmol), ZnCl₂ (1M solution in THF, 2.2 mL, 2.2 mmol) and 6-bromo-2,2-dimethylhexanenitrile (**2c**, 407 mg, 2 mmol). The reaction was carried out at 20 °C for 2.5 h and provided the alkylzinc reagent **1c** which was transferred to an argon flushed flask.

A mixture of $Pd(OAc)_2$ (6 mg, $2.8 \cdot 10^{-2}$ mmol, 1.4 mol%), Ru-Phos (26 mg, $5.6 \cdot 10^{-2}$ mmol, 2.8 mol%) and *p*-bromotoluene (240 mg, 1.4 mmol, 0.7 equiv) in 2 mL THF was added at 20°C and the reaction mixture stirred for 1.5 h before being quenched with sat. aqueous NH₄Cl solution (25 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:50) to yield compound **3f**

(211 mg, 70%) as colourless liquid. ¹H NMR (300 MHz, C_6D_6): δ 7.07-6.98 (m, 4H), 2.43-2.35 (m, 2H), 2.16 (s, 3H), 1.44-1.23 (m, 4H), 1.08-0.99 (m, 2H), 0.82 (s, 6H); ¹³C (75 MHz, CDCl₃) δ 139.1, 134.9, 129.0, 128.2, 124.3, 40.6, 35.2, 31.8, 31.4, 26.0, 24.7, 20.7; MS (EI, 70 eV): m/z 215 (27) [M⁺], 200 (9), 144 (7), 105 (100), 91 (11), 71 (22); HRMS: *m/z* calcd. for $C_{15H_{21}N}$ (M⁺) 215.1674, found 215.1661; FT-IR (Diamond-ATR, neat) \tilde{V} 3048 (w), 2977 (m), 2936 (vs), 2860 (m), 1515 (s), 1470 (m), 1458 (m), 1391 (w), 1369 (w), 1206 (w), 841 (w), 807 (m) cm⁻¹.

5-(2-Bromophenyl)-5-oxopentanenitrile (3g).

The general procedure was followed using Mg-turnings (244 mg, 10 mmol), LiCl (212 mg, 5 mmol), ZnCl₂ (1M solution in THF, 4.4 mL, 4.4 mmol) and 4-bromobutanenitrile (**2d**, 592 mg, 4 mmol). The reaction was carried out at 20 °C for 1 h and provided the alkylzinc reagent **1d** which was transferred to an argon flushed flask.

CuCN·2 LiCl (1M solution in THF, 4.0 mL, 1.0 equiv) was added at -30 °C and the mixture stirred for 30 min. 2-Bromobenzoyl chloride (615 mg, 2.8 mmol, 0.7 equiv) was added dropwise at -30 °C under argon. The mixture was stirred for 2 h and allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH₄Cl solution (25 mL) and conc. aqueous ammonia (25 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:3) to yield compound **3g** (587 mg, 70%) as yellow oil. ¹H NMR (300 MHz, CDCl₃): 7.63-7.59 (m, 1H), 7.42-7.28 (m, 3H), 3.11 (t, ${}^{3}J_{HH}$ = 6.8 Hz, 2H), 5.52 (t, ${}^{3}J_{HH}$ = 7.1 Hz, 2H), 2.10 (pent, ${}^{3}J_{\rm HH}$ = 6.9 Hz, 2H); ${}^{13}C$ (75 MHz, CDCl₃) δ 202.3, 141.0, 133.8, 131.9, 128.3, 127.6, 119.2, 118.6, 40.5, 19.7, 16.5; MS (EI, 70 eV): m/z 251 (3) [M⁺], 185 (97), 183 (100), 157 (16), 155 (15); HRMS: m/z calcd. for $C_{11}H_{10}BrNO$ (M^{+}) 250.9946, found 250.9933; FT-IR (Diamond-ATR, neat) \tilde{V} 3675

(vw), 2977 (w), 2961 (w), 2960 (w), 2246 (w), 1697 (s), 1587 (m), 1428 (m), 755 (vs) cm⁻¹.

7-chloro-1-(2-chlorophenyl)heptan-1-one (3h).

The general procedure was followed using Mg-turnings (244 mg, 10 mmol), LiCl (212 mg, 5 mmol), ZnCl₂ (1M solution in THF, 4.4 mL, 4.4 mmol) and 1-bromo-6-chlorohexane (**2e**, 798 mg, 4 mmol). The reaction was carried out at 20 °C for 40 min and provided the alkylzinc reagent **1e** which was transferred to an argon flushed flask.

CuCN·2 LiCl (1M solution in THF, 4.0 mL, 1.0 equiv) was added at -30 °C and the mixture stirred for 30 min. 2-Chlorobenzoyl chloride (490 mg, 2.8 mmol, 0.7 equiv) was added dropwise at -30 °C under argon. The mixture was stirred for 2.5 h and allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH₄Cl solution (25 mL) and conc. aqueous ammonia (25 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:10) to yield compound **3h** (457 mg, 63%) as colourless liquid. ¹H NMR (300 MHz, CDCl₃): δ 7.44-7.27 $(m, 4H), 3.52 (t, {}^{3}J_{HH} = 6.6 Hz, 2H), 2.93 (t, {}^{3}J_{HH} = 7.3 Hz,$ 2H), 1.83-1.68 (m, 4H), 1.52-1.32 (m, 4H); ¹³C (75 MHz, CDCl₃) δ 203.6, 139.7, 131.5, 130.7, 130.5, 128.7, 126.9, 45.0, 42.8, 32.4, 28.4, 26.6, 23.9; MS (EI, 70 eV): m/z 258 (<1) [M⁺], 156 154 (81), 139 (100), 111 (19) HRMS: *m/z* calcd. (23), for C₁₃H₁₆Cl₂O (M⁺) 258.0578, found 258.0567; FT-IR (Diamond-ATR, neat) \tilde{v} 2936 (m), 2860 (w), 1698 (s), 1590 (m), 1466 (m), 1432 (s), 1287 (m), 1268 (m), 1208 (m), 1062 (m), 756 (vs), 730 $(s), 644 (s) cm^{-1}$

5-Cyclohex-2-en-1-yl-N,N-diethylpentanamide (3i)

The followed using Mq-turnings general procedure was (122 mg, 5 mmol), LiCl (212 mg, 5 mmol), ZnCl₂ (1M solution in THF, 2.2 mL, 2.2 mmol) and 5-bromo-N,N-diethylpentanamide (2f, 472 mg, 2 mmol) dissolved in THF (3 mL). The reaction was 25 °C for 1 h and provided the alkylzinc carried out at reagent 1f which was transferred to an argon flushed flask. CuCN·2 LiCl (1M solution in THF, 0.4 mL, 0.2 equiv) was added -20 °C mixture stirred for 30 at and the min. 3-Bromocyclohexene (225 1.4 mmol, 0.7 equiv) was mg, added at -20 °C under argon. The mixture was stirred for 1 h and allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH₄Cl solution (20 mL) and conc. aqueous ammonia (20 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (ethyl acetate/pentane = 1:4) to yield compound **3i** (232 mg, 70%) as colorless liquid.

¹H NMR (300 MHz, CDCl₃): δ 5.64-5.51 (m, 2H), 3.37-3.23 (m, 4H), 2.28-2.23 (m, 2H) 2.03-1.09 (m, 19H); ¹³C (75 MHz, CDCl₃) δ 172.2, 132.1, 126.7, 41.9, 40.0 36.1, 35.0, 33.1, 29.0, 26.8, 25.7, 25.3, 21.5, 14.4, 13.1; MS (EI, 70 eV): m/z 237 (9) [M⁺], 156 (15), 115 (100), 100 (59), 58 (38); HRMS: *m/z* calcd. for C₁₅H₂₇NO (M⁺) 237.2093, found 237.2097; FT-IR (Diamond-ATR, neat) \tilde{V} 2967 (m), 2931 (s), 2861 (m), 1616 (vs), 1480 (m), 1448 (m), 1430 (s), 1380 (m), 1362 (m), 1264 (m), 1221 (w) cm⁻¹.

{3-[3-(Benzylthio)propyl]phenyl}(phenyl)methanone (3j).

The general procedure was followed using Mg-powder (122 mg, 5 mmol), LiCl (212 mg, 5 mmol), $ZnCl_2$ (1M solution in THF, 2.2 mL, 2.2 mmol) and [3-(3-bromopropyl)phenyl] (phenyl)-methanone (**2g**, 606 mg, 2 mmol) dissolved in THF (3 mL). The reaction was carried out at 25 °C for 1.5 h and provided the

alkylzinc reagent 1g which was transferred to an argon flushed flask.

S-benzyl benzenesulfonothioate (370 mg, 1.4 mmol, 0.7 equiv) was added at -20 °C and the mixture stirred for 1 h. The solution was allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH₄Cl solution (20 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:19) to yield compound **3j** (254 mg, 58%) as colorless liquid. ¹H NMR (300 MHz, CDCl₃): δ 7.79-7.70 (m, 4H), 7.60-7.44 (m, 3H), 7.31-7.22 (m, 7H), 3.70 (s, 2H), 2.75 (t, ${}^{3}J_{HH}$ = 7.3 Hz, 2H), 2.44 (t, ${}^{3}J_{HH}$ = 7.0 Hz, 2H), 1.95-1.85 (m, 2H); ${}^{13}C$ (75 MHz, CDCl₃) δ 196.4, 146.7, 138.4, 137.9, 137.5, 137.5, 135.4, 132.2, 130.4, 129.9, 128.8, 128.5, 128.4, 128.2, 127.0, 36.6, 34.7, 30.6, 30.4; MS (EI, 70 eV): m/z 346 (52) [M⁺] 255 (12), 222 (21), 209 (100), 196 (18), 145 (28), 105 (55), 91 (79); HRMS: m/z calcd. for $C_{23}H_{22}OS$ (M⁺) 346.1391, found 346.1394; FT-IR (Diamond-ATR, neat) \tilde{V} 3059 (w), 3027 (w), 2922 (w), 2857 (w), 1653 (vs), 1604 (s), 1578 (w), 1568 (w), 1494 (w), 1446 (m), 1412 (w), 1315 (m), 1310 (m), 1276 (vs), 1202 (w), 1176 (m), 1148 (w), 1072 (w), 1028 (w), 1020 (w), 1000 (w), 938 (m), 922 (m), 847 (w), 787 (w), 768 (w), 740 (w), 697 (vs), 680 (m) cm^{-1} .

[3-(3-Cyclohex-2-en-1-ylpropyl)phenyl](phenyl)methanone (3k).

The general procedure was followed using Mg-powder (122 mg, 5 mmol), LiCl (212 mg, 5 mmol), ZnCl₂ (1M solution in THF, 2.2 mL, 2.2 mmol) and [3-(3-bromopropyl)phenyl] (phenyl)-methanone (**2g**, 606 mg, 2 mmol) dissolved in THF (3 mL). The reaction was carried out at 25 °C for 1.5 h and provided the alkylzinc reagent **1g** which was transferred to an argon flushed flask.

CuCN·2 LiCl (1M solution in THF, 0.4 mL, 0.2 equiv) was added -20 °C mixture stirred for 30 3at and the min. Bromocyclohexene (225 1.4 mmol, 0.7 equiv) was added mg, at -20 °C under argon. The mixture was stirred for 1 h and allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH₄Cl solution (20 mL) and conc. aqueous ammonia (20 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (diethyl ether/pentane = 1:9) to yield compound 3k (261 mg, 61%) as colorless liquid.

¹H NMR (300 MHz, CDCl₃): δ 7.43-6.97 (m, 9H), 5.70-5.56 (m, 2H), 3.02 (s, 1H) 2.60-2.53 (m, 2H), 2.10 (brs, 1H), 1.79-1.17 (m, 9H); ¹³C (75 MHz, CDCl₃) δ 144.5, 141.5, 141.3, 132.1, 128.6, 128.4, 127.3, 127.2, 126.8, 126.8, 126.8, 126.7, 35.9, 35.6, 35.0, 29.0, 28.5, 25.4, 21.5; MS (EI, 70 eV): m/z 304 (59) [M⁺], 209 (100), 196 (42), 183 (22), 118 (18), 105 (92), 77 (75); HRMS: *m/z* calcd. For C₂₂H₂₄O (M⁺) 304.1827, found 304.1804; FT-IR (Diamond-ATR, neat) \tilde{V} 2971 (m), 2941 (s), 2859 (m), 1659 (vs), 1610 (s), 1582 (w), 1560 (w), 1493 (w), 1314 (m), 1321 (m), 1275 (vs), 1243 (w), 1153 (m), 1144 (w), 1111 (w), 1022 (w), 1020 (w), 998 (w), 846 (w), 787 (w), 768 (w), 740 (w), 690 (s), 680 (m) cm⁻¹.

Ethyl 2-(1,4-dioxaspiro[4.5]dec-8-ylmethyl)acrylate (31).

followed using The general procedure was Mg-turnings (122 mg, 5 mmol), LiCl (212 mg, 5 mmol), ZnCl₂ (1M solution in THF, 2.2 mL, 2.2 mmol) and 8-bromo-1,4-dioxaspiro[4.5]decane (2h, 442 mg, 2 mmol) dissolved in THF (3 mL). The reaction was 25 °C for 2 h and provided the carried out at alkylzinc reagent 1h which was transferred to an argon flushed flask. CuCN·2 LiCl (1M solution in THF, 0.4 mL, 0.2 equiv) was added at -20 °C and the mixture stirred for 30 min. ethyl 2-

(bromomethyl)acrylate (270 mg, 1.4 mmol, 0.7 equiv) was added at -20 °C under argon. The mixture was stirred for 1 h and allowed to warm up slowly to 20 °C before being quenched with sat. aqueous NH₄Cl solution (20 mL) and conc. aqueous ammonia (20 mL). The aqueous layer was extracted with diethyl ether three times. The combined organic extracts were dried over Na_2SO_4 and concentrated in vacuo. The crude residue was purified by flash column chromatography on silica gel (ethyl acetate/pentane = 1:9) to yield compound **31** (245 mg, 69%) as colorless liquid. ¹H NMR (300 MHz, CDCl₃): δ 6.13 (d, ³J_{HH} = 1.7 Hz, 1H), 5.46-5.45 (m, 1H), 4.18 (q, ${}^{3}J_{HH}$ = 7.3 Hz, 2H), 3.90 $(s, 4H), 2.21 (d, {}^{3}J_{HH} = 6.8 Hz, 2H), 1.74-1.64 (m, 4H), 1.53-$ 1.43 (m, 3H), 1.27 (t, ${}^{3}J_{HH} = 7.3$ Hz, 3H), 1.28-1.21 (m, 2H); ^{13}C (75 MHz, CDCl₃) δ 167.3, 139.3, 125.8, 109.0, 64.2, 60.5, 38.8, 35.1, 34.3, 29.9, 14.2; MS (EI, 70 eV): m/z 254 (<1) [M⁺], 198 (3), 181 (5), 99 (100), 86 (13); HRMS: *m/z* calcd. for C₁₄H₂₂O₄ (M⁺) 254.1518, found 254.1494; FT-IR (Diamond-ATR, neat) \tilde{V} 2980 (w), 2930 (m), 2879 (m), 2860 (w), 1713 (vs), 1629 (w), 1477 (vw), 1446 (w), 1410 (w), 1371 (w), 1329 (w), 1301 (m), 1284 (w), 1200 (m), 1174 (m), 1156 (m), 1133 (m), 1104 (vs), 1076 (m), 1067 (w), 1033 (m), 1001 (w), 982 (w), 929 (m), 884 (w), 857 (vw), 820 (w), 768 (vw), 661 (w) cm⁻¹.

Preparation of Highly Functionalized Alkylzinc Halides from

Alkyl Bromides using Mg, $ZnCl_2$ and LiCl

¹H and ¹³C spectra

Tobias D. Blümke, Fabian M. Piller and Paul Knochel*

Ludwig-Maximilians-Universität München

Department Chemie und Biochemie

Butenandtstrasse 5-13, Haus F, 81377 München (Germany)

Fax: (+49) 089 2180 77680

e-mail: paul.knochel@cup.uni-muenchen.de

