Supporting information

Silver-catalyzed intramolecular cyclization of 9propargyladenine via N3 alkylation

Rajneesh Kumar Prajapati, Jitendra Kumar and Sandeep Verma* Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 (UP), India

General procedures: ¹H and ¹³C NMR spectra were obtained on a JEOL-DELTA2 500 model spectrometer operating at 500MHz. The spectra were recorded in DMSO-*d6* solution and the chemical shifts were referenced with respect to tetramethylsilane. High resolution (ESI+ mode) mass spectra were obtained on WATERS HAB 213 machine, Department of Chemistry, IIT Kanpur. Infrared spectra were obtained (KBr disk, 400 – 4000 cm⁻¹) on a Perkin-Elmer Model 1320 spectrometer.

Synthesis of 9-propargyladenine (1): The title compound was synthesized by following a literature procedure¹. Adenine (2.0g, 1eq) was suspended in DMF (45mL) followed by addition of K₂CO₃ (4.09g, 2eq) and stirring under N₂ atmosphere for 30 min, after this propargyl bromide (4.40g, 2eq) is added and stirred for 15 hours under N₂ atmosphere. After this time DMF was evaporated at 60°C under high vacuum and compound was purified by column chromatography eluting with methanol/DCM to afford white powder (1.8g, 70% Yield). HRMS: $(M+1)^+$ calculated: 174.0780, Found: 174.0782(100); M.P.209-210 °C; IR (KBr): 2110 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆, 25 °C): δ (ppm) 3.43 (s, 1H, Acetylenic C-H), 4.98 (d, 2H, CH₂), 7.26 (s, 2H, NH₂), 8.12 (s, 1H, C8-H), 8.15 (s, 1H, C2-H); ¹³C NMR (125 MHz, DMSO-*d*₆, 25 °C): δ (ppm) 32.76, 76.38, 78.86, 119.00, 140.62, 149.59, 153.23, 156.53.

Synthesis and characterization of cyclized product (2): In a 25 ml round bottom flask, wrapped with aluminum foil, 50 mg ligand (1) was dissolved in methanol and to this aqueous solution of silver nitrate (1 mole equivalent) was added drop wise with stirring. The complex started precipitating out immediately. Stirring was continued for another one hour. After this time, the precipitate was filtered carefully to avoid direct light, washed with water (4x 5 mL) and methanol (4 x 5 mL) to remove any traces of unreacted metal salt and ligand. The product so

obtained was dried under high vacuum (50 mg, 73.5% Yield). HRMS: M⁺ calculated: 174.0780, Found: 174.0787(100); M.P. > 300 °C; ¹H NMR (500 MHz, DMSO-*d*₆, 25 °C): δ (ppm) 5.01 (d, 2H, CH₂), 9.60, 9.54 (s, 2H, NH₂), 8.42 (s, 1H, C8-H), 8.67 (s, 1H, C2-H); ¹³C NMR (125 MHz, DMSO-*d*₆, 25 °C): 43.46, 112.63, 116.62, 120.56, 141.86, 143.28, 157.29.

Synthesis of 6-*N*-acetyl-9-propargyl adenine: 9-Propargyladenine (1.0g, 1eq) was dissolved in DMF (25ml) followed by the addition of acetic anhydride (1.64ml, 3eq, d=1.08g/ml). The reaction mixture was refluxed at 160 °C for two hour with constant stirring. After this time DMF was evaporated at 60 °C under high vacuum and compound was purified by column chromatography eluting with methanol/DCM to afford white powder (800mg, 64.5% Yield). HRMS: $(M+1)^+$ calculated: 216.0885, Found: 216.0883 (100);M.P. 208-209°C; IR (KBr): 2127 cm⁻¹ ¹H NMR (500 MHz, DMSO-*d*₆, 25 °C): δ (ppm) 3.51 (s, 1H, acetylenic C-H), 5.14 (d, 2H, CH₂), 10.71 (s, 1H, N6-H), 8.51 (s, 1H, C8-H), 8.66 (s, 1H, C2-H), 2.24 (s, 3H, CH₃); ¹³C NMR (125 MHz, DMSO-*d*₆, 25 °C): 24.31, 32.67, 76.27, 77.87, 123.07, 143.60, 149.48, 151.47, 151.80, 168.85.

Crystal structure refinement details for 1 and 2: Single Crystal of 1 and 2 were coated with light hydrocarbon oil and mounted in the 100 K dinitrogen stream of a Bruker SMART APEX CCD diffractometer equipped with CRYO Industries low-temperature apparatus and intensity data were collected using graphite-monochromated Mo K α radiation. The data integration and reduction were processed with the SAINT software.² An absorption correction was applied.³ Structures were solved by the direct method using SHELXS-97 and refined on *F*2 by a full-matrix least-squares technique using the SHELXL-97 program package.⁴ Non-hydrogen atoms were refined anisotropically. In the refinement, hydrogens were treated as riding atoms using the SHELXL default parameters. Crystal structure refinement parameters are given in Table S1 whereas H-bonding parameters are provided in Table S2. CCDC contains the supplementary crystallographic data for this paper with a deposition number of CCDC **757808** and **757809**. Copies of this information can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK. [Fax: +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Table S1. Crystal structure refinement parameters for 1 and 2.

Identification code	Complex 1	Complex 2
Empirical formula	$C_8H_7N_5$	$C_8H_8N_6O_3$
<i>M</i> r	173.19	236.20
crystal system	orthorhombic	triclinic
space group	P 21 21 21	P-I
a/A	4.232(2)	5.536(3)
b/A	8.030(5)	6.938(4)
c/A	23.829(5)	12.729(7)
$\alpha/^{\circ}$	90.000(5)	93.040(10)
$\beta/^{\circ}$	90.000(5)	97.088(10)
$\gamma/^{\circ}$	90.000(5)	101.559(10)
Volume/ Å'	809.8(7)	473.8(5)
Ζ	4	2
$Dx/Mg m^{-3}$	1.421	1.656
F(000)	360	244
μ/mm^{-1}	0.096	0.132
θ range for data collection/°	2.68 to 25.99	3.01 to 25.00
Limiting indices	$-5 \rightarrow h \rightarrow 3$	$-4 \rightarrow h \rightarrow 6$
e	$-9 \rightarrow k \rightarrow 9$	$-8 \rightarrow k \rightarrow 6$
	$-29 \rightarrow 1 \rightarrow 27$	$-14 \rightarrow 1 \rightarrow 15$
Reflections collected	4220	2428
unique reflections	1548	1643
R(int)	0.0672	0.0449
Completeness to θ	= 25.99, 98.9	= 25.00, 98.1
$T_{\rm max}$ / $T_{\rm min}$	0.9867/0.9811	0.9869 / 0.9767
Data / restraints / parameters	1548/0/118	1643 / 0 / 155
Goodness-of-fit on F^2	1.067	1.019
R1 and R2 $[I > 2\sigma(I)]$	0.0516. 0.1163	0.0751.0.1776
R1 and R2 (all data)	0.1220, 0.1271	0.0896, 0.1971
Largest diff. peak and hole/e.A-3	0.240 and -0.243	0.443 and -0.587

Table S2. (a) Hydrogen bond parameters for complexes 1 and 2, (b) Observed bond lengths

b

between constituent atoms for complexes 1 and 2.

4	-	
	4	
	1	

D—HA ^a	HA	DA	D—HA	Bond	Complex 1	Complex 2
С	omplex	1		C2—N1	1.33	1.31
$N(6) - H(6A) N(7)^{l}$	2.19	3.043(4)	173	C2—N3	1.33	1.35
$N(6) - H(6B) N(1)^{u}$	2.09	2.907(4)	159	C4—C5	1.38	1.37
$C(11) - H(11) N(3)^{m}$	2.34	3.257(4)	169	C4—N3	1.34	1.35
Complex 2			C4—N9	1.36	1.33	
$N(6) - H(6A) O(1)^{iv}$	2.01	2.859(3)	169	C5—C6	1.41	1.41
$N(6) - H(6B) N(7)^{\nu}$	2.14	2.972(4)	162	C5—N7	1.38	1.39
$C(8) - H(8) O(3)^{vi}$	2.16	3.042(4)	158	C6—N1	1.34	1.39
$C(9) - H(9B) O(2)^{vu}$	2.50	3.390(4)	153	C6—N6	1.33	1.32
$C(10) - H(10) O(2)^{vuu}$	2.50	3.338(4)	149	C8—N7	1.32	1.32
$C(11) - H(11) O(1)^{tx}$	2.46	3.278(4)	147	C8—N9	1.36	1.37
$C(11) - H(11) O(2)^{tx}$	2.37	3.256(4)	159	C9—C10	1.46	1.49
				C9—N9	1.46	1.48
				C10-C11	1.16	1.31
				C11—N3		1.44

^aSymmetry of A: (i) 1-x,1/2+y,1/2-z; (ii) 1-x,-1/2+y,1/2-z; (iii) 1/2+x,1/2-y,-z; (iv) 1-x,1-y,-z; (v) 2-x,2-y,-z; (vi) 1+x,1+y,z; (vii) 2-x,1-y,1-z; (viii) 1-x,1-y,-z; (ix) -1+x,y,z; where A= acceptor and D=donor

Figures:

Figure S1 shows the formation of adenine ribbon with Watson-Crick and Hoogsteen interaction and further interaction of adjacent adenine ribbons with C-H....N hydrogen bonds.

Figure S1: (a) View of crystal lattice of 1 along a-axis (b) different view of highlighted region shows helical structure.

Figure S2 shows the formation of adenine dimer with Hoogsteen face interaction which is further connected with nitrate counter anion with N-H....O and C-H....O hydrogen bonding.

Figure S2: View of crystal lattice of 2 along b-axis.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S7: ¹³C NMR of cyclized derivative of 9-Propargyl adenine (2).

Figure S8: HRMS of 9-propargyladenine (1).

Figure S13: HRMS 6-N-acetyl-9-propargyladenine.

Figure S14: IR spectra of 9-propargyladenine (1)

Figure S15: IR spectra of 6-N-acetyl-9-propargyladenine.

- 1. R. V. Joshi, J. Zemlicka, Tetrahedron 1993, 49, 2353.
- 2. SAINT+, 6.02 ed.; Bruker AXS, Madison, WI, 1999.
- 3. G. M. Sheldrick, SADABS 2.0; University of Göttingen: Göttingen, Germany, 2000.
- 4. G. M. Sheldrick, *SHELXL-97: Program for Crystal Structure Refinement*; University of Göttingen: Göttingen, Germany, 1997.