MgI₂-Accelerated Enantioselective Morita-Baylis-Hillman Reactions of Cyclopentenone Utilizing a Chiral DMAP Catalyst

Alejandro Bugarin and Brian T. Connell*

Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-3012

connell@chem.tamu.edu

Table of Contents

General Information	S-1
References to Known Compounds	S-2
HPLC Data	S-3
Procedures and Characterization Data	S-4
¹ H and ¹³ C NMR Spectra	S-6

General Information

All reactions were carried out under an argon atmosphere in oven-dried glassware with magnetic stirring. All commercially obtained reagents were used as received. All aldehydes were distilled before use. Isopropanol was distilled from Na⁰.

Heating was accomplished by either a heating mantle or silicone oil bath. Purification of reaction products was carried out by flash column chromatography using silica gel 60 (230-400 mesh). TLC visualization was accompanied with UV light and/or ceric ammonium molybdate staining. Concentration in vacuo refers to the removal of volatile solvent using a rotary evaporator attached to a dry diaphragm pump (10-15 mm Hg) followed by pumping to a constant weight with an oil pump (<300 mTorr).

¹H NMR spectra were recorded at 300 MHz, and are reported relative to CDCl₃ (δ 7.27). ¹H NMR coupling constants (J) are reported in Hertz (Hz) and multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet). Proton-decoupled ¹³C NMR spectra were recorded at 75 MHz and reported relative to CDCl₃ (δ 77).

References to Known Compounds

Compound No.	d Product	Reference (racemic)	Reference (nonracemic)	Compound No.	Product	Reference (racemic)	Reference (nonracemic)
1	OH O	-	-	6 F ₃ (QH O	2	-
2 M	eO	1	-	7 O₂l		1	8
3	Ph OH O	2	6	8	Me OH O	4	7
4	OH O	3	7	9	OH O	5	7
5	OH O	1	_	10	Ph O	5	7

- [1] S. Luo, X. Mi, H. Xu, P. G. Wang, J. P. Cheng, J. Org. Chem. 2004, 69, 8413-8422.
- [2] S. Luo, B. Zhang, J. He, A. Janczuk, J.-P. Cheng, Tetrahedron Lett. 2002, 43, 7369-7371.
- [3] W. Pei, H.-X. Wei, G. Li, Chem. Commun. 2002, 2412-2413.
- [4] DE Patent 102004044250 A1, 2006.
- [5] H. Ito, Y. Takenaka, S. Fukunishi, K. Iguchi, Synthesis 2005, 18, 3035-3038.
- [6] N. T. MacDougal, W. L. Trevellini, S. A. Rodgen, L. T. Kliman S. E. Schaus, Adv. Synth. Catal. 2004, 346, 1231-1240.
- [7] K. Matsui, S. Takizawa, H. Sasai, Tetrahedron Lett. 2005, 46, 1943-1946.
- [8] M. Shi, X.-G. Liu, Org. Lett. 2008, 10, 1043-1046.

For data on all racemic adducts, also see: A. Bugarin, B. T. Connell, J. Org. Chem. 2009, 74, 4638-4641.

HPLC Data

Entry	y Product	HPLC RT	% ee	$[\alpha]_{D}^{22\ d}$	Entry		HPLC RT % 6	$\mathbf{e} = [\alpha]_{D}^{22d}$
1 ^a	OH O	t _{mājor} = 30.60 min t _{minor} = 27.25 min	98	+66.1	6° F ₃ (OH O	t _{major} = 17.61 min t _{minor} = 20.33 min 89	9 +17.3
2 ^b Me		t _{major} = 22.23 min t _{minor} = 24.29 min	95	+26.7	7^b O ₂ l		t _{major} = 21.45 min t _{minor} = 24.70 min 89	9 +38.5
3 ^a	Ph OH O	t _{major} = 23.67 min t _{minor} = 26.64 min	94	-22.7	8 ^c	OH O Me	$t_{major} = 8.79 \text{ min}$ $t_{minor} = 9.19 \text{ min}$	3 –25.4
4 ^b	OH O	t _{major} = 12.39 min t _{minor} = 13.49 min	94	+18.2	9 ^c	OH O	t _{major} = 7.94 min t _{minor} = 8.51 min 58	3 –21.7
5°	Me Me	t _{major} = 24.68 min t _{minor} = 25.94 min	92	+15.8	10 ^b	Ph O	t _{major} = 10.47 min t _{minor} = 10.83 min 55	3 –18.9

^a Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/iPrOH = 90/10), 1.0 mL/min, 254 nm.

The absolute (S) configuration of products 3, 4, 7, 8, 9 and 10 was determined by comparison of the sign of optical rotation with the known compounds. Other absolute configurations are assigned by analogy.

^b Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/iPrOH = 85/15), 1.0 mL/min, 254 nm.

^c Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/iPrOH = 95/5), 1.0 mL/min, 254 nm.

^d Optical rotation at (c 1.00, CHCl₃).

S-4

Procedures and Characterization Data

Compounds **2-10**, are known compounds. Compound **1** is a new compound. Full tabulated data is available below for adduct of the optimization reaction (compound **3**) and the new compound **1**.

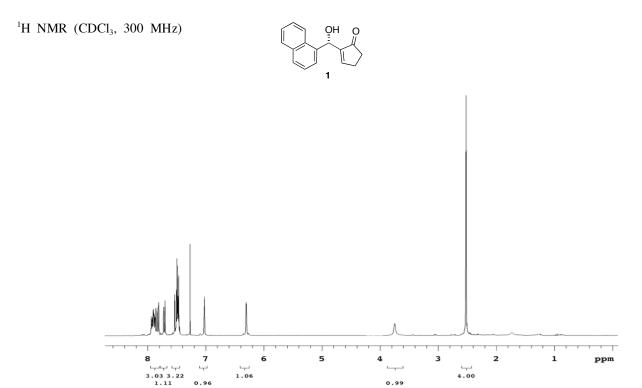
General method for the asymmetric MBH reaction: To a stirred mixture of (R)-(+)-4-dimethylaminopyrindinyl(pentaphenylcyclo-pentadienyl)iron (II) (5 mg, 0.0075 mmol, 10 mol%), MgI₂ (10 mg, 0.038 mmol, 50 mol%) in *i*-PrOH (1.5 mL) was added the aldehyde (0.075 mmol) at room temperature under argon. Then the reaction mixture was cooled down to -20 °C followed by the addition of cyclopent-2-enone (9 mg, 0.11 mmol, 1.5 equiv). After, the mixture was stirred for 24 h at -20 °C under argon atmosphere. The reaction was quenched by addition of saturated aqueous NH₄Cl solution (1.0 mL). The solution mixture was extracted twice with CH₂Cl₂ (5 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (20% EtOH/hexanes or CH₂Cl₂).

(S)-2-(hydroxy(naphthalen-1-yl)methyl)cyclopent-2-enone (1): To a stirred mixture of (R)-(+)-4-dimethylaminopyrindinyl(pentaphenylcyclopentadienyl) iron (II) (5 mg, 0.008 mmol), MgI_2 (10.4 mg, 0.038 mmol) in *i*-PrOH (1.5 mL) was added 1-naphthaldehyde (12 mg, 0.075 mmol) at room temperature under an argon atmosphere. Then the reaction mixture

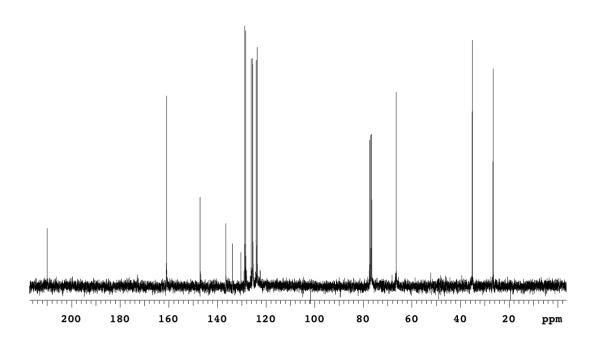
was cooled down to -20 °C followed by the addition of cyclopent-2-enone (9 mg, 0.11 mmol, 1.5 equiv). After, the mixture was stirred for 24 h at -20 °C under argon atmosphere. The reaction was quenched by addition of saturated aqueous NH₄Cl (1 mL). The mixture was extracted twice with CH₂Cl₂ (5 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography to give compound **1** (14 mg, 94%) as a colorless oil (CH₂Cl₂); IR (thin film) v 3403, 3028, 2920, 1695, 1611, 960 cm¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.93-7.88 (m, 2H), 7.82 (d, J = 8.7 Hz, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.70-7.46 (m, 3H), 7.02 (m, 1H), 6.30 (s, 1H), 3.79 (s, 10H), 2.50 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 210.1, 161.1, 147.2, 136.6, 133.8, 130.4, 128.8, 128.4, 126.1, 125.6, 125.5, 124.4, 123.7, 66.5, 35.2, 26.6. HRMS (ESI) calcd for C₁₆H₁₄O₂ + Li requires m/z 245.040, found 245.041. [α]²²_D = +66.09 (c 1.0, CHCl₃). Enanti omeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/iPrOH = 90/10), 1.0 mL/min, 254 nm, t_{major} = 30.60 min, t_{minor} = 27.25 min; 98% ee.

(S,E)-2-(1-hydroxy-3-phenylallyl)cyclopent-2-enone (3): To a stirred mixture of (R)-(+)-4-dimethylaminopyrindinyl(pentaphenylcyclopentadienyl) iron (II) (5 mg, 0.0075 mmol, 10 mol%), MgI₂ (10 mg, 0.038 mmol, 50 mol%) in i-PrOH (1.5 mL) was added trans-cinnamaldehyde (10 mg, 0.075 mmol) at room temperature under an argon atmosphere.

Then the reaction mixture was cooled down to -20 °C followed by the addition of cyclopent-2-enone (9 mg, 0.11 mmol, 1.5 equiv). After, the mixture was stirred for 24 h at -20 °C under an argon atmosphere. The reaction was quenched by addition of saturated aqueous NH₄Cl (1 mL). The solution mixture was extracted twice with CH₂Cl₂ (5 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was

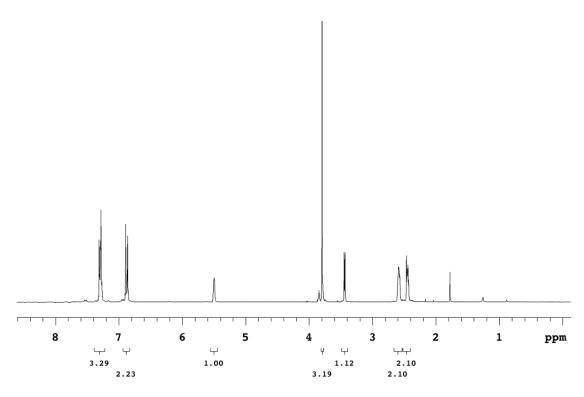

Supplementary Information

S-5

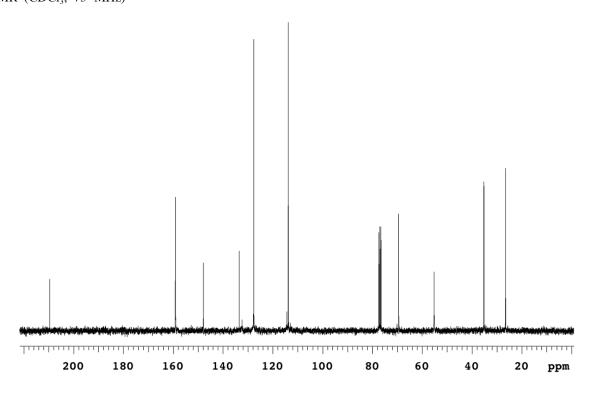

purified by flash silica gel column chromatography to give compound **3** (16 mg, 96%) as a colorless oil (CH₂Cl₂); IR (thin film) v 3400, 3026, 2921, 1691, 1605, 970 cm¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.55 (td, J = 1.1 Hz, 1.4 Hz, 3.1 Hz, 1H), 7.41 (m, 2H), 7.27-7.17 (m, 3H), 6.70 (dd, J = 1.1 Hz, 14.8 Hz, 1H), 6.35 (dd, J = 6.5Hz, 9.8 Hz, 1H), 5.17 (d, J = 6.7 Hz, 1H), 3.31 (d, J = 4.1 Hz, 10H), 2.65 (m, 2H), 2.49 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 209.6, 158.8, 146.3, 136.3, 131.1, 128.6, 128.5, 127.8, 126.5, 68.4, 35.1, 26.7. HRMS (ESI) calcd for C₁₄H₁₄O₂ + Li requires m/z 221.115, found 221.114. [α]²²_D = -22.66 (c 1.0, CHCl₃). Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane/i-PrOH = 90/10), 1.0 mL/min, 254 nm, $t_{major} = 23.67$ min, $t_{minor} = 26.64$ min; 94% ee.

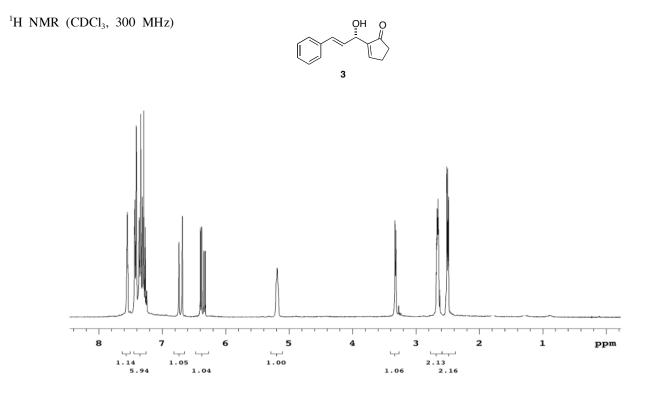
Supplementary Information

¹H and ¹³C NMR Spectra

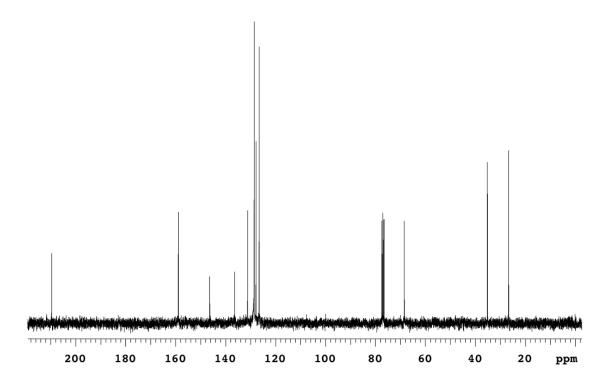


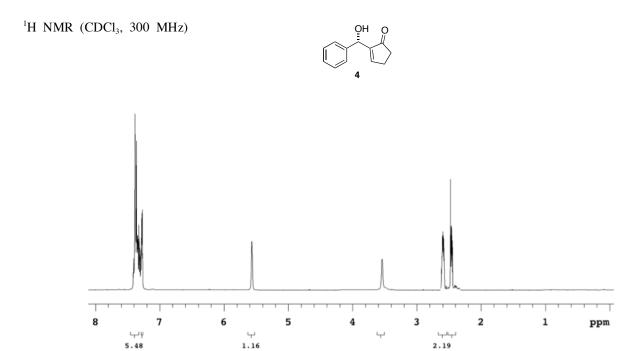
¹³C NMR (CDCl₃, 75 MHz)

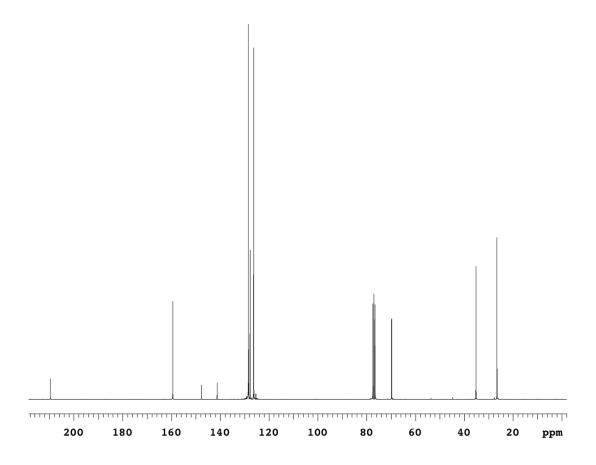


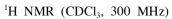

S-6

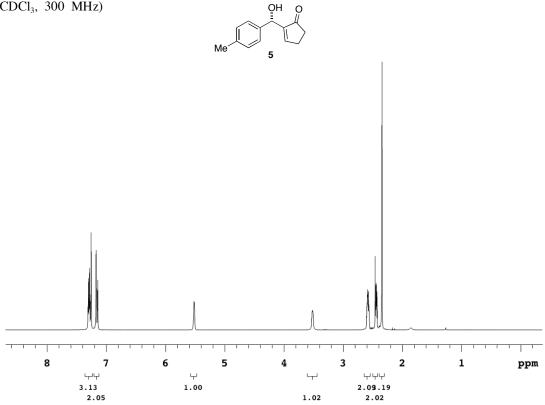
¹H NMR (CDCl₃, 300 MHz)

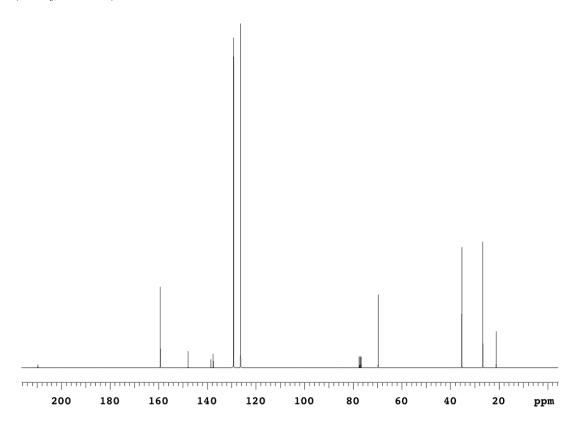


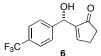

¹³C NMR (CDCl₃, 75 MHz)

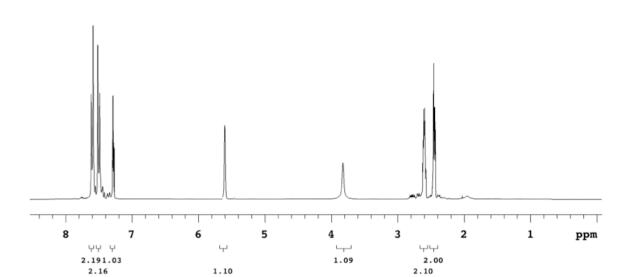



¹³C NMR (CDCl₃, 75 MHz)

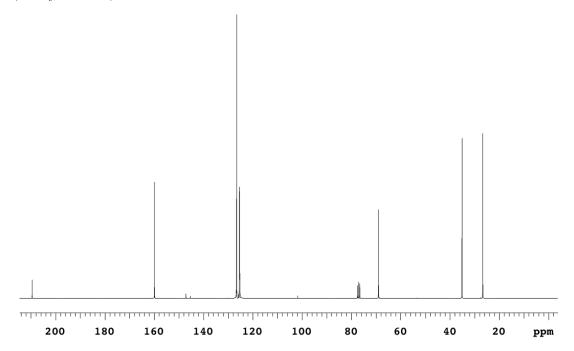



¹³C NMR (CDCl₃, 75 MHz)

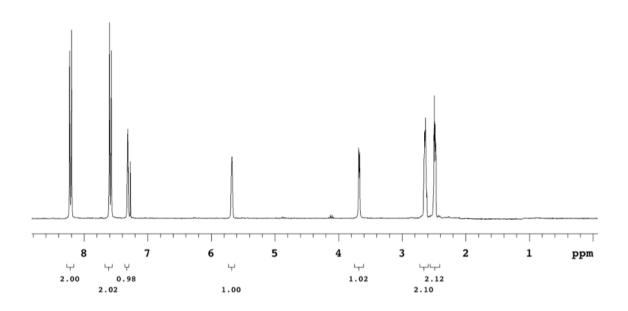




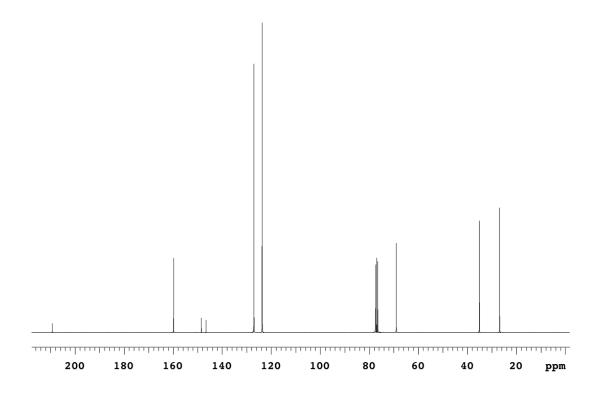
¹³C NMR (CDCl₃, 75 MHz)

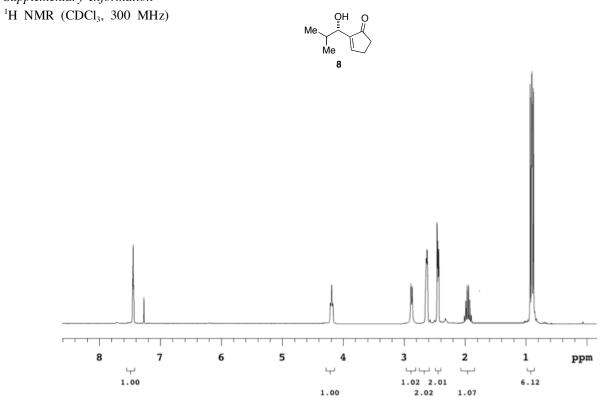


Supplementary Information ¹H NMR (CDCl₃, 300 MHz)

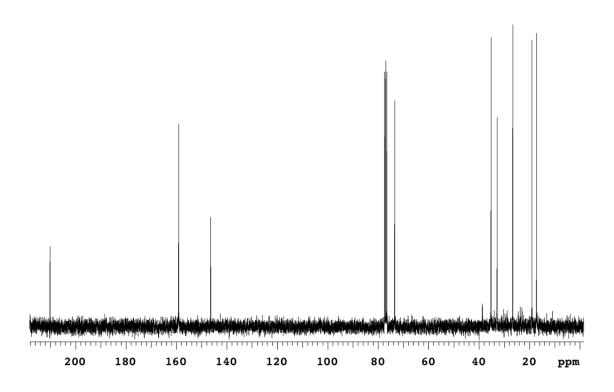


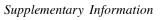
¹³C NMR (CDCl₃, 75 MHz)

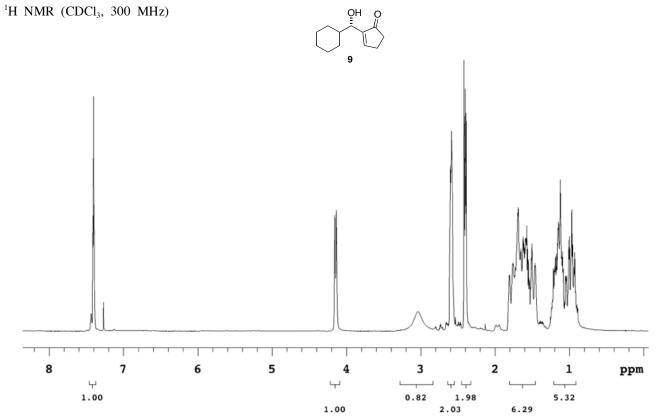


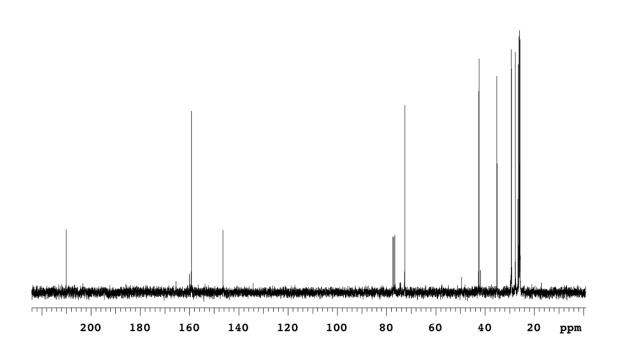

S-11

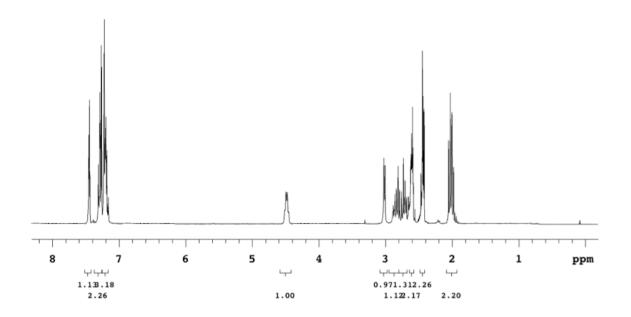
¹H NMR (CDCl₃, 300 MHz)



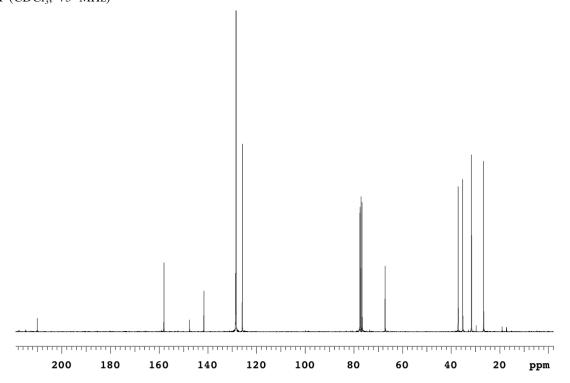

¹³C NMR (CDCl₃, 75 MHz)




¹³C NMR (CDCl₃, 75 MHz)



¹³C NMR (CDCl₃, 75 MHz)



S-14

¹H NMR (CDCl₃, 300 MHz)

¹³C NMR (CDCl₃, 75 MHz)

