Synthesis of reaction-ready 6,6'-biindole and 6,6'-biisatin via palladium(II)-catalysed intramolecular C-H functionalisation

Allan B. Gamble and Paul A. Keller*

School of Chemistry, University of Wollongong, NSW 2522, Australia

Contents

Table 1 Optimisation of Pd C-H insertion reaction to generate indole monomers	S2
General Remarks	S3
Experimental procedures and characterisation data of products	S4
References	S13
¹ H and ¹³ C NMR spectra of key new compounds	S14

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2010 **Table 1.** Investigation into the Pd(II)-catalysed C-H activation of enamine **10**, affording 2,3-disubstituted indole **11**.

^aIsolated yield of indole 11.

^bValues in parentheses denotes amount of unreacted enamine **10** recovered after column chromatography. No value indicates complete consumption of **10**.

^cYield of dimethyl 7-acetoxy-4,6-dimethoxyindole-2,3-dicarboxylate isolated.

^dDimethyl 2-acetoxy-3-(3,5-dimethoxyphenylamino)maleate isolated in 11% yield.

^eDimethyl 2-acetoxy-3-(3,5-dimethoxyphenylamino)maleate isolated in 25% yield.

^fReaction performed under $N_{2(g)}$.

DMA = N, N-dimethylacetamide, MeCN = acetonitrile, DPPP = 1, 3-bis(diphenylphosphino)propane

Initial attempts at the synthesis of indole **11** involved air as the sole source of oxidant, with an excess of $Pd(OAc)_2$, analogous to the previously reported syntheses (Table 1, entry 1).¹⁴ Intramolecular cyclisation was observed, however, only the 7-acetoxy functionalised indole could be identified, indicating that the excess acetate source can prove problematic in the presence of a highly activated arene. In addition the high catalyst loading was expected to prove problematic for arenes carrying a halide substituent in which reductive dehalgenation is possible. The catalyst loading was subsequently dropped to 10 mol%, with the desired product observed in 38% yield. Various loadings of $Cu(OAc)_2.H_2O$ with 10 mol% $Pd(OAc)_2$ in DMA were investigated (Table 1, entries 3-5), and intriguingly, as the amount of $Cu(OAc)_2.H_2O$ was

reduced, the yield of indole **11** increased. Concurrently, the solvent was changed to acetonitrile, resulting in a much lower yield of the desired indole **11**, and a previously unseen by-product identified as dimethyl 2-acetoxy-3-(3,5-dimethoxyphenylamino)maleate in 11% yield (Table 1, entry 6). Addition of a base (NaOAc) did not help facilitate the reaction in acetonitrile (Table 1, entry 7), resulting in further acetoxylation of enaminone **10** (25%).¹ Promisingly, reducing the oxidant loading to 10 mol% in DMA, provided **11** in 77% yield (Table 1, entry 8). Further experiments with a stabilising phosphine ligand (Table 1, entire 9) and different oxidants (Table 1, entries 10-12) did not improve the yield of **11**.

General Remarks

Sonication reactions were performed in an Elma Transsonic T460 ultrasonic cleaning bath at a frequency of 35 kHz and a nominal power of 85 W with all reactions exposed to air in standard glassware or glass sample vials, with the temperature maintained at 30 $^{\circ}$ C

Infrared spectra (IR) were recorded on a Nicolet Avatar 360 FTIR spectrometer in percentage transmittance method, with peak values given in wavenumbers (cm⁻¹), and intensities described as strong (s), medium (m), or weak (w). Proton nuclear magnetic resonance spectra (¹H NMR) were acquired with Varian Unity-300 or -500 spectrometers at 300 and 500 MHz respectively. Spectra were recorded using solutions of dueterated solvents obtained from Cambridge Isotope Laboratories, Inc., including chloroform (δ 7.26 ppm), acetone (δ 2.05 ppm), methanol (δ 3.31 ppm), and DMSO (δ 2.50 ppm), with internal standards shown in brackets. Carbon nuclear magnetic resonance spectra were acquired with Varian Unity-300 or -500 spectrometers at 75 and 126 MHz respectively, with solutions of deuterated chloroform (δ 77.16 ppm), acetone (δ 29.84 ppm), methanol (δ 49.00 ppm), and DMSO (δ 39.52 ppm). Chemical shifts (δ) are expressed in ppm and coupling constants (J) are expressed in Hertz (Hz), both relative to the internal standard. Multiplicities are denoted as singlet (s), broad singlet (bs), doublet (d), doublet of doublets (dd), doublet of doublets (ddd), triplet (t), triplet of triplets (tt), quartet (q), septet (sep), and multiplet (m). Low resolution Electron impact (EI) mass spectra were recorded on a Shimadzu QP-5000 spectrometer, and low resolution Electrospray ionisation was recorded on a Micromass platform LCZ spectrometer. Principle ion peaks m/z values are stated with their respective intensities as a percentage.

Synthetic Procedures

2,2'-Diisopropoxy-1,1'-biphenyl (4)

To a solution of 2,2'-biphenol **3** (0.997 g, 5.36 mmol) in DMF (20 mL) was added K_2CO_3 (6.86 g, 49.6 mmol) and 2-bromopropane (4.62 mL, 49.2 mmol) and the resulting solution was heated at 100 °C for 48 h. TLC analysis revealed that the starting material had reacted but a large amount of mono-isopropoxy compound

still remained. Additional 2-bromopropane (2.50 mL) was added and stirring continued for a further 24 h. TLC analysis still identified the presence of mono-isopropoxy, therefore stirring was continued for a final 48 h at room temperature after which time only diisopropoxy compound remained. The reaction was diluted with water (40 mL) and extracted with diethyl ether (3 x 40 mL), and DCM (1 x 40 mL). The organic extracts were washed with 2M KOH (2 x 50 mL), brine

(100 mL) and water (2 x 100 mL), dried (MgSO₄), and concentrated to give the di-isopropoxy compound **4** as a light yellow liquid (1.336 g, 92%). ¹H NMR (CDCl₃, 300 MHz): δ 7.25, m, 4H, ArH4, ArH6, ArH4' and ArH6'; 6.97, m, 4H, ArH3, ArH5, ArH3' and ArH5'; 4.33, septet, *J* = 6.3 Hz, 2H, 2 x O<u>C</u>H(CH₃)₂; 1.16, d, *J* = 6.3 Hz, 12H, 2 x OC(C<u>H</u>₃)₂. ¹³C NMR (CDCl₃, 300 MHz): δ 155.6, ArC2 and ArC2'; 132.2, ArC6 and ArC6'; 130.0 ArC1 and ArC1'; 128.1, ArC4 and ArC4'; 120.4, ArC5 and ArC5'; 115.4, ArC3 and ArC3'; 71.2, 2 x O<u>C</u>H(CH₃)₂; 22.2, 2 x OC(<u>C</u>H₃)₂. MS (EI) *m*/*z* 270 (M⁺, 25 %), 185 (100%).

5,5'-Dibromo-2,2'-diisopropoxy-1,1'-biphenyl (5)

To a solution of 2,2'-diisopropoxy-1,1'-biphenyl **4** (1.30 g, 4.81 mmol) in glacial acetic acid (50 mL) at 0 °C was added NaOAc (1.13 g, 13.78 mmol). Molecular bromine (0.550 mL in 25 mL glacial acetic acid, 10.68 mmol) was added dropwise over 2 h to the icy slurry. The reaction was allowed to come to room temperature and stirred for a further 2 h before being quenched with 10% sodium

metabisulfite (80 mL) and partitioned with DCM (70 mL). The aqueous phase was further extracted with DCM (3 x 50 mL) and the combined organic layers were washed with water (3 x 100 mL), dried (MgSO₄), and concentrated to give an off white solid. The crude solid was purified by recrystallisation in hot absolute ethanol providing **5** as a white crystalline solid (1.94 g, 94%). mp: 60-61 °C. ¹H NMR (CDCl₃, 300 MHz): δ 7.36, dd, *J* = 9.3 Hz, 2.7 Hz, 2H, ArH4 and ArH4'; 7.35, d, *J* = 2.1 Hz, 2H, ArH6 and ArH6'; 6.81, d, *J* = 9.3 Hz, 2H, ArH3 and ArH3'; 4.34, septet, *J* = 5.7 Hz, 2H, 2 x OC<u>H</u>(CH₃)₂; 1.19, d, *J* = 6 Hz, 12H, 2 x OCH(C<u>H₃)₂</u>. ¹³C NMR (CDCl₃, 75 MHz): δ 154.7, ArC2 and ArC2'; 134.4, ArC6 and ArC6'; 131.3, ArC4 and ArC4'; 130.3, ArC1 and ArC1'; 116.4, ArC3 and ArC3'; 112.4, ArC5 and ArC5'; 71.4, 2 x OCH(CH₃)₂; 22.1, 2 x OCH(C<u>H₃)₂</u>. IR: υ_{max} 2979m, 2366m, 1461s, 1373m, 1243s, 1137m, 1111s, 805s cm⁻¹. MS (EI) *m/z* 426 (M⁷⁹Br⁷⁹Br, 25%), 428 (M⁸¹Br⁷⁹Br, 50%), 430 (M⁸¹Br⁸¹Br, 25%), 344 (100%). HRMS calculated for C₁₈H₂₀O₂⁷⁹Br₂: 425.9830, found 425.9839.

5,5'-Dibromo-2,2'-biphenol (6)

To a solution of 5,5'-dibromo-2,2'-dimethoxy-1,1'-biphenyl **5** (0.686 g, 1.85 mmol) in dry DCM (10 mL) at -10 °C under N₂ was added dropwise BBr₃ (1 M in DCM, 8.09 mL, 8.09 mmol). The reaction was allowed to come to room temperature while being stirred over 5 h. TLC analysis revealed the presence of only one spot, hence the

reaction was poured onto crushed ice and partitioned with DCM (30 mL). The aqueous phase was extracted with EtOAc (3 x 40 mL) and the combined organic layers were washed with brine (3 x 75 mL), water (3 x 100 mL), dried (MgSO₄), and concentrated to give a grey solid. Recrystallisation of

the crude solid from ether/hexane yielded biphenol **6** as a light brown crystalline solid (0.590 g, 94%), which was spectroscopically similar to that reported in the literature.^{2,3} mp: 181-183 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ 9.66, bs, 2 H, 2 x OH; 7.30, dd, J = 8.4 Hz, 2.7 Hz, 2H, ArH4 and ArH4'; 7.27, d, J = 2.7 Hz, 2H, ArH6 and ArH6'; 6.86, d, J = 8.4 Hz, 2H, ArH3 and ArH3'. ¹³C NMR (DMSO-*d*₆, 75 MHz): 154.0, ArC2 and ArC2'; 133.4, ArC6 and ArC6'; 131.0, ArC4 and ArC4'; 126.5, ArC1 and ArC1'; 117.7, ArC3 and ArC3'; 109.5, ArC5 and ArC5'. IR: υ_{max} 3252 m, 1482m, 1394s, 1225s, 813s cm⁻¹. MS (EI) *m/z* 342 (M⁷⁹Br⁷⁹Br, 15%), 344 (M⁸¹Br⁷⁹Br, 25%), 346 (M⁸¹Br⁸¹Br, 15%), 149 (100%). HRMS calculated for C₁₂H₈O₂⁷⁹Br₂: 341.8891, found 341.8898.

5,5'-Dibromo-3,3'-dinitro-2,2'-biphenol

To a suspension of 5,5'-dibromo-2,2'-biphenol **6** (0.496 g, 1.44 mmol) in glacial acetic acid (20 mL) at 0 °C was added dropwise 70% HNO_3 (0.270 mL, 4.26 mmol). The reaction was allowed to stir at room temperature for 45 min, after which time the reaction was quenched with water (50 mL)

and extracted with DCM (3 x 50 mL). The combined extracts were washed with water (3 x 75 mL), dried (MgSO₄), and concentrated to give a yellow solid (0.576 g, 92%), with TLC analysis indicating only one product. The crude solid was recrystallised from hot ethanol to give 5,5'dibromo-3,3'-dinitro-2,2'-biphenol as a pure, bright yellow crystalline solid (0.462 g, 74%), which was spectroscopically identical to that reported in the literature.⁴ mp: 203-205 °C (Lit. 205 °C).⁴ ¹H NMR (CDCl₃, 300 MHz): δ 10.87, s, 2H, 2 x OH; 8.36, d, *J* = 2.7 Hz, 2H, ArH4 and ArH4'; 7.73, d, *J* = 2.4 Hz, 2H, ArH6 and ArH6'. ¹³C NMR (CDCl₃, 75 MHz): 152.1, ArC2 and ArC2'; 141.6, ArC6 and ArC6'; 134.6, ArC3 and ArC3'; 128.1, ArC4 and ArC4'; 127.9, ArC1 and ArC1'; 111.4, ArC5 and ArC5'. IR: υ_{max} 3087w, 1528s, 1387m, 1332m, 1238s, 1163m, 880m, 704m cm⁻¹. MS (EI) *m/z* 432 (M⁷⁹Br⁷⁹Br, 20%), 434 (M⁸¹Br⁷⁹Br, 30%), 436 (M⁸¹Br⁸¹Br, 20%), 59 (100%). HRMS calculated for C₁₂H₆N₂O₆⁷⁹Br₂: 431.8593, found 431.8510.

5,5'-Dibromo-2,2'-dimethoxy-3,3'-dinitro-1,1'-biphenyl (7)

To a solution of 5,5'-dibromo-3,3'-dinitro-2,2'-biphenol (0.545 g, 1.26 mmol) in acetone (30 mL) was added K_2CO_3 (1.96 g, 14.20 mmol) and methyl iodide (0.790 mL, 12.58 mmol). The reaction was heated at 30 °C under N₂ for 24 h, after which time further K_2CO_3 (0.697 g, 5.04 mmol) and

methyl iodide (0.320 mL, 5.10 mmol) were added and stirred for another 24 h at 30 °C, forcing the conversion of mono-methylated compound to di-methylated compound. The solvent was evaporated, water (80 mL) was added to the crude residue and partitioned with diethyl ether (80 mL). The aqueous phase was extracted with further portions of diethyl ether (4 x 30 mL) and DCM

(1 x 15 mL) and the combined organic extracts were washed with 2M KOH (3 x 50 mL) and water (3 x 100 mL), dried (MgSO₄), and concentrated. The crude yellow solid was recrystallised from hot ethanol to give 5,5'-dibromo-2,2'-dimethoxy-3,3'-dinitro-1,1'-biphenyl **7** as light yellow needles (0.505 g, 87%), which were spectroscopically identical to that reported in the literature.⁴ mp: 130-131 °C (Lit. 135-136 °C).⁴ ¹H NMR (CDCl₃, 300 MHz): δ 8.02, d, J = 2.4 Hz, 2H, ArH4 and ArH4'; 7.70, d, J = 2.7 Hz, 2H, ArH6 and ArH6'; 3.66, s, 6H, 2 x OCH₃. ¹³C NMR (CDCl₃, 75 MHz): 150.5, ArC2 and ArC2'; 144.8, ArC3 and ArC3'; 138.2, ArC6 and ArC6'; 133.3, ArC1 and ArC1'; 128.7, ArC4 and ArC4'; 116.1, ArC5 and ArC5'; 62.7, 2 x OCH₃. IR: υ_{max} 1526s, 1341s, 1244s, 982s, 884s cm⁻¹. MS (EI) m/z 460 (M⁷⁹Br⁷⁹Br, 50%), 462 (M⁸¹Br⁷⁹Br, 100%), 464 (M⁸¹Br⁸¹Br, 50%). HRMS (EI) calculated for C₁₄H₁₀N₂O₆⁷⁹Br₂: 459.8906, found 459.8902.

3,3'-Diamino-5,5'-dibromo-2,2'-dimethoxy-1,1'-biphenyl (8)

To a suspension of biaryl 7 (0.205 g, 0.445 mmol) in a mixture of glacial acetic acid (4 mL), ethanol (4 mL) and water (2 mL) was added reduced iron powder (0.285 g, 5.10 mmol). The reaction was sonicated at 30 °C for 1 h before it was filtered and washed with EtOAc/DCM. The filtrate was partitioned with 2M NaOH (50 mL) and extracted with further portions of

EtOAc (3 x 30 mL), and the combined organic extracts were washed with water (3 x 50 mL), dried (MgSO₄) and concentrated to yield bianiline **8** as a brown/dark red crystalline solid (0.174 g, 98%), which was spectroscopically identical that reported in the literature.⁴ mp: 172-175 °C (Lit. 185-186 °C).⁴ ¹H NMR (CDCl₃, 300 MHz): δ 6.89, d, *J* = 2.4 Hz, 2H, ArH4 and ArH4'; 6.80, d, *J* = 2.1 Hz, 2H, ArH6 and ArH6'; 3.96, bs, 4H, 2 x NH₂; 3.44, s, 6H, 2 x OCH₃. ¹³C NMR (CDCl₃, 75 MHz): δ 144.0, ArC2 and ArC2'; 141.5, ArC3 and ArC3'; 132.5, ArC1 and ArC1'; 122.8, ArC6 and ArC6'; 118.1, ArC4 and ArC4'; 116.8, ArC5 and ArC5', 60.1, 2 x OCH₃. IR: υ_{max} 3356m, 2973w, 2361m, 1618s, 1475s, 1221s, 987s, 836s cm⁻¹. MS (EI) *m/z* 400 (M⁷⁹Br⁷⁹Br, 50%), 402 (M⁸¹Br⁷⁹Br, 100%), 404 (M⁸¹Br⁸¹Br, 50%). HRMS calculated for C₁₄H₁₄N₂O₂⁷⁹Br₂: 399.9422, found 399.9419.

Dimethyl 2-(3,5-dimethoxyphenylamino)maleate (10)

To a solution of 3,5-dimethoxyaniline **9** (1.07 g, 7.01 mmol) in methanol (20 mL) was added dimethyl acetylenedicarboxylate (1.29 mL, 10.52 mmol) and the reaction stirred at 25 °C for 24 h. The solvent was removed *in vacuo* and the crude residue redissolved in EtOAc (50 mL). The organic

layer was washed with water (3 x 50mL) and brine (1 x 50 mL), dried (MgSO₄), and concentrated *in vacuo*. The crude residue was subjected to flash silica gel column chromatography (10% EtOAc:hexane) to yield the desired Michael addition product **10** as a bright yellow viscous oil,

which after standing at room temperature for one week solidified to a yellow solid (1.96 g, 95%). mp: 57-59 °C. ¹H NMR (CDCl₃, 500 MHz) δ 9.57, bs, 1H, NH; 6.19, t, *J* = 2.0 Hz, 1H, ArC4; 6.04, d, *J* = 2.0 Hz, 2H, ArH2 and ArH6; 5.34, s, 1H, C=CH; 3.721, s, 6H, ArC3 and ArC5-OCH₃; 3.717, s, 3H, OCH₃; 3.714, s, 3H, OCH₃. ¹³C NMR (CDCl₃, 126 MHz): δ 169.9, C=O; 165.1, C=O; 161.4, ArC3 and ArC5; 148.1, C=CH; 142.2, ArC1; 99.1, ArC2 and ArC6; 96.8, ArC4; 94.0, CH=C; 55.5, ArC3 and ArC5-OCH₃; 53.0, C(O)OCH₃; 51.4, C(O)OCH₃. MS (EI) *m*/*z* 295 (M⁺, 100%). HRMS calculated for C₁₄H₁₇NO₆: 295.1056, found 295.1052.

Dimethyl 4,6-dimethoxyindole-2,3-dicarboxylate (11)

A 50 mL round bottom flask was charged with the Michael product **10** (87 mg, 0.295 mmol), Cu(OAc)₂.H₂O (5.9 mg, 10 mol%) and Pd(OAc)₂ (6.6 mg, 10 mol%), and *N*,*N*-dimethylacetamide (DMA) (2 mL). The reaction was stirred at 75 °C for 18 h, after which time TLC analysis showed

complete conversion of the starting material to the desired indole (bright blue absorbance under UV light). The reaction was diluted with EtOAc (50 mL) and filtered through a short plug of gravity silica gel and washed with EtOAc (50 mL). The organic filtrate was then washed with 1M HCl (30 mL), which was back extracted with EtOAc (1 x 20 mL). The combined organic extracts were then washed with water (4 x 30 mL) and brine (1 x 20 mL), dried (MgSO₄) and concentrated in vacuo to provide the desired indole **11** as a light brown crystalline solid (69 mg, 80%), which upon ¹H NMR analysis showed >95% purity. The crude indole was subjected to flash silica gel column chromatography (20% acetone:hexane) to remove any slight impurities, giving the indole 11 as pale brown crystals (66 mg, 77%), which were spectroscopically identical to that reported in the literature.⁵ mp: 178-180 °C (Lit. 195-196 °C).⁵ ¹H NMR (DMSO-*d*₆ + CDCl₃, 300 MHz): δ 11.90, bs, 1H, NH; 6.45, d, J = 1.8 Hz, 1H, ArH7; 6.17, d, J = 2.1 Hz, 1H, ArH5; 3.82, s, 3H, C=O(OCH₃); 3.81, s, 3H, C=O(OCH₃); 3.79, s, 3H, OCH₃; 3.78, s, 3H, OCH₃. ¹³C NMR (DMSO*d*₆ + CDCl₃, 75 MHz) δ 166.1, C=O'; 160.3, C=O; 159.6, ArC6; 153.7, ArC4; 137.5, ArC7a; 121.3, ArC2; 113.8, ArC3; 110.4, ArC3a; 93.0, ArC5; 86.3, ArC7; 55.3, OCH₃; 55.1, OCH₃; 51.8, C=O(OCH₃); 51.6, C=O(OCH₃). IR: v_{max} 3318m, 2912w, 1729m, 1685s, 1634m, 1584m, 1541m, 1459m, 1281s, 1215s, 1152s, 1130m, 1070m, 805m cm⁻¹. MS (EI) m/z 293 (M⁺, 50%), 261 (100%). HRMS calculated for C₁₄H₁₅NO₆: 293.0899, found 293.0895.

Dimethyl 7-acetoxy-4,6-dimethoxyindole-2,3-dicarboxylate

To a solution of the Michael product **10** (109 mg, 0.369 mmol) in DMA (3 mL) was added $Pd(OAc)_2$ (166 mg, 0.729 mmol). The reaction was stirred at

70 °C for 24 h with exposure to air, after which time EtOAc (50 mL) was added. The solution was filtered through celite with washes of EtOAc (50 mL), and the filtrate partitioned with water (50 mL). The aqueous layer was back extracted with EtOAc (2 x 15 mL), and the combined organic extracts were washed with water (4 x 50 mL), brine (30 mL), dried (MgSO₄), and concentrated *in vacuo*. The crude residue was subjected to flash silica gel column chromatography (40% EtOAc:hexane) yielding the title indole as an opaque semi-solid (70 mg, 54%). mp: 115-118 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.86, bs, 1H, NH; 6.31, s, 1H, ArH5; 3.96, s, 3H, C(O)OCH₃'; 3.90, 3.892, 3.885, s, 2 x OCH₃ and C(O)OCH₃; 2.39, s, 3H, CH₃ (from OAc). ¹³C NMR (CDCl₃, 126 MHz): δ 169.0, <u>C</u>(O)CH₃; 166.5, <u>C</u>(O)OCH₃'; 161.0, <u>C</u>(O)OCH₃; 152.3, 150.1, ArC4 and ArC6; 130.7, ArC7a; 123.1, ArC2; 118.6, ArC3a; 115.2, ArC3; 112.3, ArC7; 90.5, ArC5; 57.2, 56.1, 2 x OCH₃; 52.7, 52.5, 2 x C(O)O<u>C</u>H₃; 20.6, CH₃. IR: υ_{max} 3432w, 2940w, 1737s, 1711s, 1649m, 1537m, 1460m, 1301s, 1250s, 1219s, 1127s, 789m cm⁻¹. MS (EI) *m/z* 351 (M⁺, 75%), 277 (100%). HRMS calculated for C₁₆H₁₇NO₈: 351.0954, found 351.0953.

Dimethyl 2-(4-cyanophenylamino)maleate (12)

To a solution of 4-aminobenzonitrile (0.242 g, 2.05 mmol) in methanol (7 mL) was added dimethyl acetylenedicarboxylate (0.327 mL, 2.66 mmol) and the reaction stirred at 70 °C for 24 h. The solvent was removed *in vacuo* and the crude residue redissolved in EtOAc (25 mL) and absorbed onto gravity

silica gel. The crude residue was subjected to gravity silica gel column chromatography (10% EtOAc:hexane) to yield the desired Michael addition product **12** as an off-white crystalline solid (0.459 g, 86%). mp: 108-109 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.69, bs, 1H, NH; 7.53, AA'XX' spin system, $J_{AA'XX'} = 8.5$ Hz, 2H, ArH2 and ArH6; 6.85, AA'XX' spin system, $J_{AA'XX'} = 8.5$ Hz, 2H, ArH3 and ArH5; 5.61, s, 1H, C=CH; 3.75, s, 3H, OCH₃; 3.74, s, 3H, OCH₃. ¹³C NMR (CDCl₃, 126 MHz): δ 169.3, C=O; 164.1, C=O; 145.4, C=CH; 144.4, ArC4; 133.3, ArC3 and ArC5; 119.8, ArC2 and ArC6; 118.9, CN; 106.4, ArC1; 98.6, C=CH; 53.2, OCH₃; 51.7, OCH₃. IR: υ_{max} 3257w, 2950w, 2361w, 2223m, 1738m, 1682m, 1699s, 1515m, 1429m, 1279s, 1213s, 1192s, 1140s, 1025m, 806s cm⁻¹. MS (EI) *m/z* 260 (M⁺, 75%), 169 (100%). HRMS calculated for C₁₃H₁₂N₂O₄: 260.0797, found 260.0807.

Dimethyl 5-cyanoindole-2,3-dicarboxylate (13)

A 50 mL round bottom flask was charged with the Michael product **12** (100 mg, 0.385 mmol), Cu(OTf)₂ (20.9 mg, 15 mol%) and Pd(OAc)₂ (8.64 mg, 10 mol%), and DMA (2 mL). The reaction was stirred at 70 °C for 24 h, after

which time TLC analysis showed complete conversion of the starting material to the desired indole (bright blue absorbance under UV light). The reaction was diluted with EtOAc (50 mL) and filtered through a short plug of gravity silica gel and washed with EtOAc (50 mL). The organic filtrate was then washed with 1M HCl (30 mL), which was then back extracted with EtOAc (1 x 20 mL). The combined organic extracts were washed with water (4 x 30 mL) and brine (1 x 20 mL), dried (MgSO₄) and concentrated *in vacuo*. The crude residue was subjected to gravity silica gel column chromatography (30% EtOAc:hexane increased to 50% EtOAc:hexane), providing the desired indole **13** as a light yellow crystalline solid (35 mg, 35%). mp: 198-199 °C. ¹H NMR (DMSO-*d*₆ + CDCl₃, 500 MHz): δ 12.93, bs, 1H, NH; 8.31, s, 1H, ArH4; 7.62, d, *J* = 8.5 Hz, 1H, ArH6; 7.52, d, *J* = 8.5Hz, 1H, ArH7; 3.92, s, 3H, OCH₃; 3.88, s, 3H, OCH₃. ¹³C NMR (DMSO-*d*₆, 75 MHz) δ 163.1, C=O'; 160.8, C=O; 136.8, ArC7a; 132.0, ArC2; 127.3, ArC4; 127.1, ArC6; 125.2, ArC3; 119.4, ArC3a; 114.5, ArC7; 109.5, CN; 104.6, ArC5; 52.9, OCH₃; 51.8, OCH₃. IR: υ_{max} 3318s, 2955w, 2366w, 2217m, 1711m, 1679s, 1537s, 1435s, 1356s, 1315m, 1275s, 1231s, 1145m, 811m cm⁻¹. MS (EI) *m*/*z* 258 (M⁺, 25%), 161 (100%). HRMS calculated for C₁₃H₁₀N₂O₄: 258.0641, found 258.0634.

Dimethyl 2-(4-bromophenylamino)maleate (14)

To a solution of 4-bromoaniline (0.375 g, 2.17 mmol) in methanol (7 mL) was added dimethyl acetylenedicarboxylate (0.346 mL, 2.82 mmol) and the reaction stirred at 70 °C for 24 h. The solvent was removed *in vacuo* and the crude residue redissolved in EtOAc (25 mL) and absorbed onto gravity silica

gel. The crude residue was subjected to gravity silica gel column chromatography (5% EtOAc:hexane) to yield the desired Michael addition product **14** as a bright yellow oil (0.546 g, 79%). ¹H NMR (CDCl₃, 300 MHz): δ 9.59, bs, 1H, NH; 7.38, AA'XX spin system, $J_{AA'XX'} = 9.0$ Hz, 2H, ArH3 and ArH5; 6.76, AA'XX' spin system, $J_{AA'XX'} = 9.0$ Hz, 2H, ArH2 and ArH6; 5.45, s, 1H, C=CH; 3.74, s, 3H, OCH₃; 3.72, s, 3H, OCH₃. ¹³C NMR (CDCl₃, 75 MHz): δ 169.9, C=O; 164.6, C=O; 147.4, C=CH; 139.6, ArC1; 132.3, ArC2 and ArC6; 122.4, ArC3 and ArC5; 117.2, ArC4; 95.0, C=CH; 53.0, OCH₃; 51.5, OCH₃. MS (EI) *m/z* 313 (M⁷⁹Br, 60%), 315 (M⁸¹Br, 60%), 224 (100%). HRMS calculated for C₁₂H₁₂NO₄⁷⁹Br: 312.9950, found 312.9950.

Dimethyl 5-bromoindole-2,3-dicarboxylate (15)

A 50 mL round bottom flask was charged with the Michael product **14** (88 mg, 0.280 mmol), Cu(OAc)₂.H₂O (28.0 mg, 50 mol%) and Pd(OAc)₂ (6.30 mg, 10 mol%), and DMA (2 mL). The reaction was stirred at 70 °C for 24 h,

after which time TLC analysis showed complete conversion of the starting material to two major products. The reaction was diluted with EtOAc (50 mL) and partitioned with 1M HCl (30 mL), which was then back extracted with EtOAc (2 x 10 mL). The combined organic extracts were then washed with water (3 x 30 mL) and brine (1 x 30 mL), dried (MgSO₄) and concentrated *in vacuo*. The crude indole was subjected to gravity silica gel column chromatography (50% EtOAc:petroleum spirit) providing the desired indole **15** as a yellow solid (19 mg, 22%), which was spectroscopically identical to that reported in the literature.⁶ ¹H NMR (CDCl₃, 300 MHz): δ 9.51, bs, 1H, NH; 8.22, d, *J* = 1.5 Hz, 1H, ArH4; 7.45, dd, *J* = 8.7 Hz, 1.8 Hz, 1H, ArH6; 7.32, d, *J* = 8.7 Hz, 1H, ArH7; 3.99, s, 3H and 3.98, s, 3H, 2 x C(O)OCH₃. ¹³C NMR (CDCl₃, 75 MHz): δ 164.1 and 161.2, 2 x C(O)OCH₃; 133.4 and 133.2, ArC7a and ArC3a; 129.3, ArC2; 129.2, ArC4; 128.4, ArC3; 125.5, ArC6; 116.3, ArC5; 113.6, ArC7; 53.0 and 52.1, 2 x C(O)OCH₃. IR: υ_{max} 1711m, 1245m, 780m cm⁻¹. MS (EI) *m*/*z* 331 (M⁷⁹Br, 50%), 333 (M⁸¹Br, 50%), 279 (60%), 221 (100%). HRMS calculated for C₁₂H₁₀NO₄⁷⁹Br: 310.9793, found 310.9791.

Tetramethyl 2,2'-(5,5'-dibromo-2,2'-dimethoxy-1,1'-biphenyl-3,3'-diamino)dimaleate (16)

To a solution of bianiline **8** (40 mg, 0.010 mmol) in methanol (5 mL) was added dimethyl acetylenedicarboxylate (0.05 mL, 0.398 mmol) and the reaction was heated at reflux for 24 h. The solvent was removed *in vacuo*, and the crude residue was redissolved in EtOAc (30 mL), and washed with water (3 x 50

mL), dried (MgSO₄) and concentrated *in vacuo*. The crude residue was subjected to flash silica gel column chromatography (5% EtOAc:hexane) yielding the title compound **16** as a bright yellow viscous oil, which solidified to a yellow solid at room temperature after approximately 5 days (48 mg, 71%). mp: 121-122 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.65, s, 2H, 2 x NH; 7.11, d, J = 2 Hz, 2H, ArH4 and ArH4'; 7.03, d, J = 2 Hz, 2H, ArH6 and ArH6'; 5.54, s, 2H, 2 x C=CH; 3.78, s, 6H, 2 x C=CH-C(O)OC<u>H</u>₃; 3.75, s, 6H, 2 x HC=C-C(O)OC<u>H</u>₃; 3.40, s, 6H, 2 x OCH₃. ¹³C NMR (CDCl₃, 126 MHz): δ 169.9, 2 x HC=C-C(O)OCH₃; 164.1, 2 x C=CH-C(O)OCH₃; 148.6, ArC2 and ArC2'; 147.1, 2 x C=CH; 135.5, ArC1 and ArC1'; 132.5, ArC3 and ArC3'; 128.9, ArC6 and ArC6'; 124.1, ArC4 and ArC4'; 116.3, ArC5 and ArC5'; 94.8, 2 x C=CH; 60.8, 2 x OCH₃; 53.0, C=CH-C(O)OCH₃; 51.5, HC=C-C(O)OCH₃. MS (EI) *m*/*z* 684 (M⁷⁹Br⁷⁹Br, 50%), 686 (M⁸¹Br⁷⁹Br, 100%), 688 (M⁸¹Br⁸¹Br, 50%). HRMS calculated for C₂₆H₂₆N₂O₁₀⁷⁹Br₂: 683.9954, found 683.9973.

Tetramethyl-4,4'-dibromo-7,7'-dimethoxy-6,6'-biindole-2,2',3,3'-tetracarboxylate (1)

To a solution of the Michael product **16** (143 mg, 0.209 mmol) in DMA (3 mL) was added $Pd(OAc)_2$ (14 mg, 30 mol%) and $Cu(OAc)_2.H_2O$ (41.7 mg, 100 mol%). A CaCl₂ drying tube was placed on the flask and the reaction was heated at 80 °C while exposed to air for 18 h, until TLC analysis indicated that no

starting material remained. The reaction was diluted with EtOAc (30 mL), filtered through a celite:gravity silica gel plug (1:1), washed with further portions of EtOAc (100 mL) and partitioned with 1M HCl (15 mL). The aqueous phase was back extracted with further portions of EtOAc (2 x 10 mL) and the combined organic extracts were washed with water (3 x 30 mL), dried (MgSO₄) and concentrated *in vacuo*. The crude residue was absorbed onto gravity silica gel and purified by flash silica gel column chromatography (40% EtOAc:petroleum spirit up to 50% EtOAc:petroleum spirit), providing the 6,6'-biindole **1** as an off-white solid (31 mg, 22%). mp: 282-284 °C. ¹H NMR (CDCl₃, 300 MHz): δ 9.36, bs, 2H, 2 x NH; 7.37, s, 2H, ArC5 and ArC5'; 4.03, s, 6H, and 3.98, s, 6H, 4 x C(O)OCH₃; 3.56, s, 6H, 2 x OCH₃. ¹³C NMR (CDCl₃, 75 MHz): δ 165.7 and 160.7, 4 x C(O)OCH₃; 143.6, ArC7 and ArC7'; 130.4, ArC7a and ArC7a'; 128.5, ArC5 and ArC5'; 125.9, ArC2 and ArC2'; 125.7, ArC6 and ArC6'; 125.6, ArC3 and ArC3'; 116.4, ArC3a and ArC3a'; 108.8, ArC4 and C4'; 61.3, 2 x OCH₃; 53.1 and 53.0, 4 x C(O)OCH₃. IR: υ_{max} 3339m, 3257m, 2955w, 1731m, 1706s, 1537m, 1455m, 1302s, 1234s, 1207m, 994m, 789m cm⁻¹. MS (EI) *m/z* 680 (M⁷⁹Br⁷⁹Br, 45%), 682 (M⁸¹Br⁷⁹Br, 100%), 684 (M⁸¹Br⁸¹Br, 50%). HRMS calculated for HRMS calculated for HRMS calculated for C₂₆H₂₂N₂O₁₀⁸¹Br₂: 683.9600, found 683.9602.

5,5'-Dibromo-3,3'-di(N-2-hydroxyiminoacetanilide)-2,2'-dimethoxy-1,1'-biphenyl (17)

To a suspension of bianiline **8** (40 mg, 0.100 mmol) in water (3 mL) heated at 50 °C was added a warmed solution (35 °C) of chloral hydrate (99 mg, 0.597 mmol) and solid Na_2SO_4 (0.509 g, 3.59 mmol) in water (3 mL), concentrated HCl (0.100 mL, 1.02 mmol), and finally a solution of hydroxylamine hydrochloride (125 mg, 1.79 mmol) in

water (3 mL). The mixture was stirred and heated at 80 °C for 22 h before being diluted with water (40 mL). The reaction was allowed to cool to room temperature and filtered, leaving a white gum. Upon drying under high vacuum a white solid was obtained, and determined to be the title compound **17** (40 mg, 74%). mp: 231-234 °C. ¹H NMR (DMSO-*d*₆, 300 MHz): δ 12.48, bs, 2H, 2 x OH; 9.50, s, 2H, 2 x NH; 8.42, d, *J* = 2.4 Hz, 2H, ArH4 and ArH4'; 7.79, s, 2H, 2 x CH=N; 7.31, d, *J* = 2.4 Hz, 2H, ArH6 and ArH6'; 3.45, s, 6H, 2 x OCH₃. ¹³C NMR (DMSO-*d*₆, 75 MHz): δ 160.4, 2 x C=O; 146.6, ArC2 and ArC2'; 143.6, <u>C</u>H=N; 132.6, ArC3 and ArC3'; 131.4, ArC1 and ArC1';

128.4, ArC6 and ArC6'; 123.5, ArC4 and ArC4'; 115.5, ArC5 and ArC5'; 60.9, 2 x OCH₃. IR: υ_{max} 3375m, 3185m, 2909m, 2361w, 1668s, 1615s, 1593s, 1519s, 1456s, 1418s, 1255s, 1228s, 1136m, 1020s, 868m, 754s cm⁻¹. MS (ES-) *m*/*z* 540.54 (M⁷⁹Br⁷⁹Br-1, 50%), 542.53 (M⁸¹Br⁷⁹Br-1, 100%), 544.53 (M⁸¹Br⁸¹Br-1, 50%). HRMS calculated for C₁₈H₁₅N₄O₆⁷⁹Br₂: 540.9358, found 540.9359.

4,4'-Dibromo-7,7'-dimethoxy-6,6'-biisatin (2)

To concentrated H_2SO_4 (2.5 mL) at 50 °C was added **17** (26 mg, 0.048 mmol). The reaction was heated at 80 °C for 2 h, before being quenched by transferring onto crushed ice and diluted to 50 mL. The resultant solution was filtered and washed with water, then dried under high

vacuum to yield 6,6'-biisatin **2** as a dark red solid (20 mg, 83%). mp: >280 °C. ¹H NMR (DMSO d_6 , 300 MHz): δ 11.49, bs, 2H, 2 x NH; 7.18, s, 2H, ArH5 and ArH5'; 3.53, s, 6H, 2 x OCH₃. ¹³C NMR (DMSO- d_6 , 75 MHz): δ 181.3, ArC3 and ArC3'; 158.9, ArC2 and ArC2'; 145.5, ArC7a and ArC7a'; 141.9, ArC7 and ArC7'; 139.4, ArC3a and ArC3a'; 127.5, ArC5 and ArC5'; 117.8, ArC4 and ArC4'; 113.1, ArC6 and ArC6'; 61.2, 2 x OCH₃. IR: υ_{max} 3161w, 2986w, 2362m, 2328m, 1737s, 1615s, 1573m, 1473m, 1395m, 1300m, 1241s, 1192m, 973m, 887m cm⁻¹. MS (ES-) *m/z* 506.36 (M⁷⁹Br⁷⁹Br-1, 50%), 508.33 (M⁸¹Br⁷⁹Br-1, 100%), 510.31 (M⁸¹Br⁸¹Br-1, 50%). HRMS calculated for C₁₈H₉N₂O₆⁷⁹Br₂: 506.8827, found 506.8868.

References:

- A similar acetoxy-product was reported during an attempted aryl C–H intramolecular insertion on a naphthoquinone using an excess of Pd(OAc)₂ and no additional oxidant in acetonitrile, see Knölker, H-J.; O'Sullivan, N. *Tetrahedron* 1994, **50**, 10893-10908.
- 2. Facchetti, S.; Losi, D.; Iuliano, A. Tetrahedron: Asymm. 2006, 17, 2993-3003.
- 3. Chen, X.; Tordeux, M.; Desmurs, J.-R.; Wakselman, C. J. Fluorine Chem. 2003, 123, 51-56.
- 4. Viswanathan, N.; Patankar, S. J. Ind. J. Chem. 1985, 24B, 1284-1285.
- 5. Black, D. St. C.; Kumar, N.; Wong, L. C. H. Aust. J. Chem. 1986, 39, 15-20.
- Miki, Y.; Umemoto, M.; Nakamura, M.; Hibino, H.; Ohkita, N.; Kato, A.; Aoki, Y. *Heterocycles* 2006, 68, 1893-1899.

S14

S15