Supplementary information for

Analyte-Induced Aggregation of Conjugatd Polyelectrolyte: Role of the Charged Moieties and Its Sensing Application

Zhiyi Yao, Hua Bai, Chun Li* and Gaoquan Shi*

Department of Chemistry and the Key Laboratory of Bio-organic Phosphorous Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China. Fax: +86-10-6277-1149; Tel:+86-10-6279-8909; E-mail: chunli@mail.tsinghua.edu.cn; gshi@tsinghua.edu.cn.

Materials. All chemicals were purchased from Aldrich and Beijing Chem. Reagents Co. (Beijing, China) and were used as received. Water-soluble polythiophene derivative, PMTPA, was synthesized and purified as reported previously.^{S1}

Sample Preparation. The in *situ* premodification reaction of taurine and OPA was performed as the following procedures: stock solutions of taurine and OPA were mixed at 25 °C to give a mixture with the molar ratio of OPA to taurine, 1.5:1, in 20 mM borate buffer (pH = 9.0).

Control experiments for addressing the specificity of PMTPA toward taurine were carried out under the identical conditions. Sulfur-containing amino acids, Met, Cys, Hcy, Cyt, and aromatic acids, Trp and Tyr were premodified by reacting with OPA for 3 min, respectively, and then the probe PMTPA was added into the OPA/analyte mixture to give a solution containing 0.1 mM PMTPA, 0.5 mM analyte and 0.75 mM OPA. After 5 min, the sample was measured by UV-visible spectrometer.

For NMR measurements, equimolar amount of taurine or β -Ala and OPA (1.0 × 10⁻³ M) was reacted for 48 h at 25°C in 20 mM borate buffer (pH = 9.0). Then the reaction mixture

was sent to be freezing-dried and the obtained powder was dissolved in deuterated water for NMR measurements. PI-taurine: ¹H NMR (D₂O, 300 MHz) (δ): 7.37-7.59 (m, 4H), 4.49 (s, 2H), 3.86 (t, 2H), 3.13 (t, 2H); PI- β -Ala: ¹H NMR (D₂O, 300 MHz) (δ): 7.42-7.63 (m, 4H), 4.47 (s, 2H), 3.74 (t, 2H), 2.45 (t, 2H).

Measurements. Absorption spectra were collected by using a Hitachi 3010 UV-visible spectrometer. ¹H-NMR spectra were carried out on a JNM-ECA300 spectrometer (JEOL).

Reference

S1 C. Li, M. Numata, A.-H. Bae, K. Sakurai and S. Shinkai, J. Am. Chem. Soc., 2005, 127, 4548.

Fig. S1 Variation in the absorption spectra of PMTPA $(1.0 \times 10^{-4} \text{ M})$ in 20 mM borate buffer (pH = 9.0) with increasing concentrations of taurine as indicated.

Fig. S2 ¹H-NMR spectra of the phthalimidine derivative of taurine (PI-taurine). Solvent: D_2O .

Fig. S3 Absorption spectra of PMTPA $(1.0 \times 10^{-4} \text{ M})$ in 20 mM borate buffer (pH = 9.0) in the absence and the presence of sulfur-containing amino acids as indicated.

Fig. S4 ¹H-NMR spectra of the phthalimidine derivative of β -Ala (PI- β -Ala). Solvent: D₂O.

Fig. S5 Absorption spectra of PMTPA $(1.0 \times 10^{-4} \text{ M})$ in borate buffer in the absence and the presence of PI-taurine and PI- β -Ala. [OPA] = 1.0×10^{-4} M, [β -Ala] = [taurine] = 5.0×10^{-4} M.

Fig. S6 Relative absorbance of PMTPA $(1.0 \times 10^{-4} \text{ M})$ in the presence of OPA $(7.5 \times 10^{-4} \text{ M})$ and Met, Cys, Hcy, Cyt, Trp, Tyr and taurine in borate buffer (pH = 9.0). [amino acids] = 5.0 $\times 10^{-4} \text{ M}$.

Fig. S7 Fluorescence quenching of PMTPA $(1.0 \times 10^{-5} \text{ M})$ by PI-taurine at various concentrations. The fluorescence quenching $QI = [(I_0-I)/I_0] \times 100\%$; I_0 is the fluorescence intensity at 552 nm of a solution of PMTPA $(1.0 \times 10^{-5} \text{ M})$; *I* is the fluorescence intensity at 552 nm of a solution of PMTPA $(1.0 \times 10^{-5} \text{ M})$; *I* is the fluorescence intensity at 552 nm of a solution of PMTPA $(1.0 \times 10^{-5} \text{ M})$; *I* is the fluorescence intensity at 552 nm of a solution of PMTPA $(1.0 \times 10^{-5} \text{ M})$ in the presence of different amounts of taurine. Inset: plot of *QI* vs taurine concentration at lower concentration. Excitated wavelength $\lambda_{ex} = 450 \text{ nm}$.