This journal is (c) The Royal Society of Chemistry 2010

The first asymmetric organolithium tetramers with simple ether donor bases

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Experimental Section:

General procedure:

The oxygen donor bases Et_2O (for 1), *t*BuOMe (for 2), and DME (for 3) (1.5 equival.) were added to trimethylsilylmethyllithium in hexane at 0 °C under a protective atmosphere. Crystallization was carried out in a freezer (-45 °C).

[(Et₂O)₂·(LiCH₂SiMe₃)₄] (1):

Yield: 0.98 g (1.87 mmol, 58 %) Found: C, 52.74; H, 12.41. Li₄C₂₄H₆₄O₂Si₄ requires C, 54.92; H, 12.29 %; δ^{1}_{H} (500 MHz, Tol-D₈) –1.96 (s, 8 H, CH₂Li), 0.24 (s, 36 H, Si(CH₃)₃), 1.09 (t, 12 H, J7.01 Hz, CH₂CH₃), 3.28 (q, 8 H, J7.01 Hz, OCH₂); δ^{13}_{C} (75 MHz, Tol-D₈) –5.31 (CH₂Li), 4.25 (Si(CH₃)₃), 15.27 (CH₂CH₃), 65.66 (OCH₂); δ^{29}_{Si} (99 MHz, Tol-D₈) –1.13 (s); δ^{7}_{Li} (194 MHz, Tol-D₈) –1.99 (s), 1.24 (s), 0.95 (s), 0.70 (s).

[(^tBuOMe)₂·(LiCH₂SiMe₃)₄] (2):

Yield: 1.12 g, (2.02 mmol, 63 %) Found: C, 56.51; H, 12.62. Li₄C₂₆H₆₈O₂Si₄ requires C, 56.48; H, 12.40 %; δ^{1}_{H} (500 MHz, Tol-D₈) –1.72 (s, 8 H, CH₂Li), 0.38 (s, 36 H, Si(CH₃)₃), 0.96 (s, 18 H, C(CH₃)₃), 2.92 (s, 6 H, OCH₃); δ^{13}_{C} (126 MHz, Tol-D₈) –3.88 (CH₂Li), 5.55 (Si(CH₃)₃), 27.47 (C(CH₃)₃), 50.27 (CH₃O), 75.07 (C(CH₃)₃); δ^{7}_{Li} (194 MHz, Tol-D₈) 2.75 (s). All the spectra had to be measured at –50 °C because of the low stability of the compound in solution. At room temperature: δ^{7}_{Li} (194 MHz, Tol-D₈) 2.41 (s), 1.61 (s), 1.33 (s), 1.07 (s)

[(DME)·(LiCH₂SiMe₃)]₂ (3):

Yield: 0.64 g (1.94 mmol, 61 %); Found: C, 50.37; H, 10.98. Li₄C₁₆H₄₂O₄Si₂ requires C, 52.14; H, 11.49 %; δ^{1}_{H} (300 MHz, C₆D₆) –1.95 (s, 4 H, CH₂Li), 0.39 (s,18 H, Si(CH₃)₃), 2.95 (s, 8 H, CH₂O), 3.09 (s, 12 H, OCH₃); δ^{13}_{C} (75 MHz, C₆D₆) –6.55 (CH₂Li), 5.76 (Si(CH₃)₃), 58.80 (OCH₃), 70.18 (CH₂O); δ^{29}_{Si} (60 MHz, C₆D₆) –0.68 (s); δ^{7}_{Li} (117 MHz, C₆D₆) –1.92 (s).

Fig. 1 ¹H-DOSY-NMR-spectra of [(DME)·(LiCH₂SiMe₃)]₂ (3)

 $LiCH_2SiMe_3 D = -9.024 \log(m^2 s^{-1})$

1,2-dimethoxyethane $D = -8.868 \log(m^2 s^{-1})$

This journal is (c) The Royal Society of Chemistry 2010

The first asymmetric organolithium tetramers with simple ether donor bases

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Single-crystal structural analysis:

The single crystals were mounted in inert oil under protective atmosphere by applying special cryo application techniques.¹ The X-ray data sets were collected at 100(2)K on an INCOATEC Microsource device² (1, 2) or on a sealed tube (3) with mirror-monochromated Mo-K_{α} radiation ($\lambda = 0.71073$ Å). Both instruments were equipped with a Bruker Smart Apex II detector. Structures were solved by direct methods with SHELXS and refined by full-matrix least squares on F^2 for all data with SHELXL.³ Non-hydrogen atoms were refined with anisotropic displacement parameters. H atoms in non-disordered C_{α}-positions were located in the difference Fourier map and refined isotropically, all other H atoms were placed in calculated positions and refined using a "riding-model".

$[(Et_2O)_2 \cdot (LiCH_2SiMe_3)_4]$ (1):

 $Li_4C_{24}H_{64}O_2Si_4$, M = 524.87, monoclinic, space group $P2_1$, a = 10.882(7), b = 19.081(13), c = 18.544(12) Å, V = 3719(4) Å³, Z = 4, μ (Mo-K_{α}) = 0.175 mm⁻¹, T = 100(2) K, 146011 reflections measured, 24606 unique reflections, $R_{int} = 0.0386$, 767 parameters refined, R_1 (all data) = 0.0433, R_1 [I>2 σ (I)] = 0.0336, w R_2 (all data) = 0.0832, w R_2 [I>2 σ (I)] = 0.0782, GOF = 1.045, largest diff. peak and hole 0.449 and -0.213 eÅ⁻³.

Table 1. Bond lengths [Å] and angles [°] for **1**.

Li(1)-O(1)	1.978(3)	Li(1)-Li(2)	2.672(3)
Li(1)-O(1')	2.005(8)	Li(2)-O(2)	1.953(2)
Li(1)-C(13)	2.287(3)	Li(2)-C(5)	2.266(3)
Li(1)-C(5)	2.292(3)	Li(2)-C(21)	2.291(3)
Li(1)-C(17)	2.340(3)	Li(2)-C(13)	2.298(3)
Li(1)-Li(3)	2.569(3)	Li(2)-Li(3)	2.523(3)
Li(1)-Li(4)	2.580(3)	Li(2)-Li(4)	2.559(3)

This journal is (c) The Royal Society of Chemistry 2010

The first asymmetric organolithium tetramers with simple ether donor bases

Li(3)-C(5)	2.222(3)	Si(2)-C(15)	1.8884(18)
Li(3)-C(21)	2.244(3)	Si(3)-C(17)	1.8414(14)
Li(3)-C(17)	2.247(3)	Si(3)-C(18)	1.8831(15)
Li(3)-Li(4)	2.420(3)	Si(3)-C(20)	1.8834(16)
Li(4)-C(17)	2.203(3)	Si(3)-C(19)	1.8839(18)
Li(4)-C(13)	2.214(3)	Si(4)-C(21)	1.8493(15)
Li(4)-C(21)	2.255(3)	Si(4)-C(23)	1.8820(16)
Li(5)-O(3)	1.996(3)	Si(4)-C(24)	1.8832(18)
Li(5)-O(3')	2.019(6)	Si(4)-C(22)	1.8834(17)
Li(5)-C(37)	2.291(3)	Si(5)-C(33)	1.8407(15)
Li(5)-C(33)	2.309(3)	Si(5)-C(36)	1.8808(16)
Li(5)-C(41)	2.313(3)	Si(5)-C(34)	1.8814(18)
Li(5)-Li(8)	2.575(3)	Si(5)-C(35)	1.8952(18)
Li(5)-Li(7)	2.580(3)	Si(6)-C(37)	1.8383(15)
Li(5)-Li(6)	2.672(3)	Si(6)-C(40)	1.8635(18)
Li(6)-O(4)	1.956(2)	Si(6)-C(38)	1.8817(18)
Li(6)-C(33)	2.259(3)	Si(6)-C(39)	1.8927(18)
Li(6)-C(45)	2.296(3)	Si(7)-C(41)	1.8395(15)
Li(6)-C(37)	2.303(3)	Si(7)-C(43)	1.8793(18)
Li(6)-Li(7)	2.527(3)	Si(7)-C(44)	1.8818(16)
Li(6)-Li(8)	2.569(3)	Si(7)-C(42)	1.8880(15)
Li(7)-C(33)	2.219(3)	Si(8)-C(45)	1.8480(15)
Li(7)-C(41)	2.230(3)	Si(8)-C(47)	1.8759(16)
Li(7)-C(45)	2.254(3)	Si(8)-C(48)	1.8805(18)
Li(7)-Li(8)	2.416(3)	Si(8)-C(46)	1.8828(17)
Li(8)-C(37)	2.204(3)	C(4)-C(3)	1.502(3)
Li(8)-C(41)	2.211(3)	C(3)-O(1)	1.418(3)
Li(8)-C(45)	2.227(3)	C(3)-O(1')	1.516(8)
Si(1)-C(5)	1.8422(14)	O(1)-C(2)	1.430(2)
Si(1)-C(7)	1.8761(16)	C(2)-C(1)	1.499(3)
Si(1)-C(6)	1.8810(18)	O(1')-C(2')	1.456(9)
Si(1)-C(8)	1.8911(17)	C(2')-C(1')	1.509(10)
Si(2)-C(13)	1.8387(15)	O(4)-C(30)	1.4385(17)
Si(2)-C(16)	1.8702(17)	O(4)-C(31)	1.4401(16)
Si(2)-C(14)	1.8798(17)	C(31)-C(32)	1.507(2)

This journal is (c) The Royal Society of Chemistry 2010

The first asymmetric organolithium tetramers with simple ether donor bases

C(30)-C(29) 1.506(2) 53.64(7) C(5)-Li(1)-Li(2) C(28)-C(27) 1.486(3) C(17)-Li(1)-Li(2) 100.71(9) C(27)-O(3) 1.470(3)Li(3)-Li(1)-Li(2) 57.50(8) O(3)-C(26) 1.441(3)Li(4)-Li(1)-Li(2) 58.27(8) C(26)-C(25) 1.529(4) O(2)-Li(2)-C(5) 116.03(11) O(3')-C(26') 1.417(8) O(2)-Li(2)-C(21) 114.20(10) 1.439(9) 106.58(10) C(26')-C(25') C(5)-Li(2)-C(21) C(9)-C(10) 1.502(2)O(2)-Li(2)-C(13) 107.63(11) C(10)-O(2) 1.4439(17) C(5)-Li(2)-C(13) 106.41(9) O(2)-C(11) 1.4382(16) C(21)-Li(2)-C(13) 105.20(9) C(11)-C(12) 1.514(2) O(2)-Li(2)-Li(3) 152.29(11) O(1)-Li(1)-O(1') 14.96(17) C(5)-Li(2)-Li(3) 54.98(7) O(1)-Li(1)-C(13) 116.36(12) C(21)-Li(2)-Li(3) 55.32(8) O(1')-Li(1)-C(13) 105.3(2) C(13)-Li(2)-Li(3) 100.05(9) O(1)-Li(1)-C(5) 114.69(12) O(2)-Li(2)-Li(4) 142.82(11) O(1')-Li(1)-C(5) 129.3(2) C(5)-Li(2)-Li(4) 100.83(9) C(13)-Li(1)-C(5) 105.90(9) C(21)-Li(2)-Li(4) 55.08(7) O(1)-Li(1)-C(17) 110.40(11) C(13)-Li(2)-Li(4) 53.93(8) O(1')-Li(1)-C(17) 105.3(2)Li(3)-Li(2)-Li(4) 56.87(8) C(13)-Li(1)-C(17) 103.16(10) O(2)-Li(2)-Li(1)141.52(11) 105.17(9) 54.56(7) C(5)-Li(1)-C(17) C(5)-Li(2)-Li(1)O(1)-Li(1)-Li(3) 144.46(12) C(21)-Li(2)-Li(1) 103.82(9) O(1')-Li(1)-Li(3) 151.7(2) C(13)-Li(2)-Li(1) 54.17(8) 98.99(10) Li(3)-Li(2)-Li(1) 59.19(7) C(13)-Li(1)-Li(3) C(5)-Li(1)-Li(3) 54.04(7) Li(4)-Li(2)-Li(1) 59.05(9) C(17)-Li(1)-Li(3) 54.25(8) C(5)-Li(3)-C(21) 109.78(10) 110.81(10) O(1)-Li(1)-Li(4) 145.54(13) C(5)-Li(3)-C(17) 108.97(10) O(1')-Li(1)-Li(4) 131.2(2) C(21)-Li(3)-C(17) C(13)-Li(1)-Li(4) 53.72(8) C(5)-Li(3)-Li(4) 106.57(10) C(5)-Li(1)-Li(4) 99.49(9) C(21)-Li(3)-Li(4) 57.68(8) C(17)-Li(1)-Li(4) 52.94(7) C(17)-Li(3)-Li(4) 56.19(8) Li(3)-Li(1)-Li(4) 56.06(8) C(5)-Li(3)-Li(2) 56.62(8) O(1)-Li(1)-Li(2)148.88(12) C(21)-Li(3)-Li(2) 57.11(7) O(1')-Li(1)-Li(2) 150.5(2) C(17)-Li(3)-Li(2) 108.14(9) C(13)-Li(1)-Li(2) 54.54(7) Li(4)-Li(3)-Li(2) 62.32(9)

This journal is (c) The Royal Society of Chemistry 2010

The first asymmetric organolithium tetramers with simple ether donor bases

C(5)-Li(3)-Li(1)	56.61(8)	O(3)-Li(5)-Li(7)	149.39(13)
C(21)-Li(3)-Li(1)	108.63(10)	O(3')-Li(5)-Li(7)	140.7(2)
C(17)-Li(3)-Li(1)	57.67(7)	C(37)-Li(5)-Li(7)	98.62(10)
Li(4)-Li(3)-Li(1)	62.20(9)	C(33)-Li(5)-Li(7)	53.62(8)
Li(2)-Li(3)-Li(1)	63.32(9)	C(41)-Li(5)-Li(7)	53.88(8)
C(17)-Li(4)-C(13)	110.31(11)	Li(8)-Li(5)-Li(7)	55.89(8)
C(17)-Li(4)-C(21)	110.17(10)	O(3)-Li(5)-Li(6)	151.90(13)
C(13)-Li(4)-C(21)	109.34(9)	O(3')-Li(5)-Li(6)	147.5(2)
C(17)-Li(4)-Li(3)	57.94(8)	C(37)-Li(5)-Li(6)	54.64(7)
C(13)-Li(4)-Li(3)	105.77(11)	C(33)-Li(5)-Li(6)	53.35(8)
C(21)-Li(4)-Li(3)	57.25(8)	C(41)-Li(5)-Li(6)	101.07(10)
C(17)-Li(4)-Li(2)	108.31(10)	Li(8)-Li(5)-Li(6)	58.60(8)
C(13)-Li(4)-Li(2)	57.02(7)	Li(7)-Li(5)-Li(6)	57.47(8)
C(21)-Li(4)-Li(2)	56.43(8)	O(4)-Li(6)-C(33)	112.04(11)
Li(3)-Li(4)-Li(2)	60.82(9)	O(4)-Li(6)-C(45)	117.69(10)
C(17)-Li(4)-Li(1)	57.93(8)	C(33)-Li(6)-C(45)	106.91(11)
C(13)-Li(4)-Li(1)	56.38(8)	O(4)-Li(6)-C(37)	108.80(11)
C(21)-Li(4)-Li(1)	107.92(10)	C(33)-Li(6)-C(37)	107.24(9)
Li(3)-Li(4)-Li(1)	61.74(9)	C(45)-Li(6)-C(37)	103.40(9)
Li(2)-Li(4)-Li(1)	62.68(8)	O(4)-Li(6)-Li(7)	151.24(12)
O(3)-Li(5)-O(3')	16.37(18)	C(33)-Li(6)-Li(7)	54.89(8)
O(3)-Li(5)-C(37)	109.01(12)	C(45)-Li(6)-Li(7)	55.48(8)
O(3')-Li(5)-C(37)	120.7(2)	C(37)-Li(6)-Li(7)	99.86(9)
O(3)-Li(5)-C(33)	126.48(13)	O(4)-Li(6)-Li(8)	146.83(12)
O(3')-Li(5)-C(33)	110.3(2)	C(33)-Li(6)-Li(8)	100.64(10)
C(37)-Li(5)-C(33)	105.99(9)	C(45)-Li(6)-Li(8)	54.15(7)
O(3)-Li(5)-C(41)	105.40(12)	C(37)-Li(6)-Li(8)	53.45(8)
O(3')-Li(5)-C(41)	110.8(2)	Li(7)-Li(6)-Li(8)	56.60(8)
C(37)-Li(5)-C(41)	103.62(11)	O(4)-Li(6)-Li(5)	138.66(11)
C(33)-Li(5)-C(41)	104.11(10)	C(33)-Li(6)-Li(5)	55.06(8)
O(3)-Li(5)-Li(8)	134.24(13)	C(45)-Li(6)-Li(5)	103.44(10)
O(3')-Li(5)-Li(8)	149.8(2)	C(37)-Li(6)-Li(5)	54.23(8)
C(37)-Li(5)-Li(8)	53.48(8)	Li(7)-Li(6)-Li(5)	59.44(8)
C(33)-Li(5)-Li(8)	99.14(9)	Li(8)-Li(6)-Li(5)	58.80(9)
C(41)-Li(5)-Li(8)	53.46(7)	C(33)-Li(7)-C(41)	110.03(9)

This journal is (c) The Royal Society of Chemistry 2010

The first asymmetric organolithium tetramers with simple ether donor bases

C(33)-Li(7)-C(45)	109.82(10)	C(13)-Si(2)-C(16)	111.30(8)
C(41)-Li(7)-C(45)	109.03(10)	C(13)-Si(2)-C(14)	115.67(6)
C(33)-Li(7)-Li(8)	106.75(11)	C(16)-Si(2)-C(14)	107.52(8)
C(41)-Li(7)-Li(8)	56.66(8)	C(13)-Si(2)-C(15)	109.65(7)
C(45)-Li(7)-Li(8)	56.85(8)	C(16)-Si(2)-C(15)	106.61(9)
C(33)-Li(7)-Li(6)	56.42(8)	C(14)-Si(2)-C(15)	105.57(8)
C(41)-Li(7)-Li(6)	108.13(10)	C(17)-Si(3)-C(18)	114.83(7)
C(45)-Li(7)-Li(6)	57.06(7)	C(17)-Si(3)-C(20)	109.95(7)
Li(8)-Li(7)-Li(6)	62.59(9)	C(18)-Si(3)-C(20)	107.56(8)
C(33)-Li(7)-Li(5)	56.91(8)	C(17)-Si(3)-C(19)	112.09(7)
C(41)-Li(7)-Li(5)	56.92(8)	C(18)-Si(3)-C(19)	104.56(8)
C(45)-Li(7)-Li(5)	107.64(10)	C(20)-Si(3)-C(19)	107.44(8)
Li(8)-Li(7)-Li(5)	61.93(10)	C(21)-Si(4)-C(23)	112.35(7)
Li(6)-Li(7)-Li(5)	63.09(9)	C(21)-Si(4)-C(24)	111.22(6)
C(37)-Li(8)-C(41)	110.11(11)	C(23)-Si(4)-C(24)	105.58(6)
C(37)-Li(8)-C(45)	109.06(10)	C(21)-Si(4)-C(22)	114.30(6)
C(41)-Li(8)-C(45)	110.69(10)	C(23)-Si(4)-C(22)	106.03(8)
C(37)-Li(8)-Li(7)	106.29(11)	C(24)-Si(4)-C(22)	106.78(7)
C(41)-Li(8)-Li(7)	57.43(9)	C(33)-Si(5)-C(36)	112.26(7)
C(45)-Li(8)-Li(7)	57.90(8)	C(33)-Si(5)-C(34)	115.23(7)
C(37)-Li(8)-Li(6)	57.09(8)	C(36)-Si(5)-C(34)	106.42(9)
C(41)-Li(8)-Li(6)	107.29(11)	C(33)-Si(5)-C(35)	109.07(8)
C(45)-Li(8)-Li(6)	56.65(8)	C(36)-Si(5)-C(35)	107.45(7)
Li(7)-Li(8)-Li(6)	60.82(9)	C(34)-Si(5)-C(35)	105.97(9)
C(37)-Li(8)-Li(5)	56.67(8)	C(37)-Si(6)-C(40)	111.78(8)
C(41)-Li(8)-Li(5)	57.21(8)	C(37)-Si(6)-C(38)	114.80(7)
C(45)-Li(8)-Li(5)	108.67(10)	C(40)-Si(6)-C(38)	107.02(8)
Li(7)-Li(8)-Li(5)	62.18(9)	C(37)-Si(6)-C(39)	109.87(7)
Li(6)-Li(8)-Li(5)	62.60(8)	C(40)-Si(6)-C(39)	107.46(9)
C(5)-Si(1)-C(7)	112.51(7)	C(38)-Si(6)-C(39)	105.47(8)
C(5)-Si(1)-C(6)	115.14(7)	C(41)-Si(7)-C(43)	109.81(8)
C(7)-Si(1)-C(6)	106.13(9)	C(41)-Si(7)-C(44)	111.14(7)
C(5)-Si(1)-C(8)	109.07(8)	C(43)-Si(7)-C(44)	108.43(8)
C(7)-Si(1)-C(8)	106.84(7)	C(41)-Si(7)-C(42)	114.62(7)
C(6)-Si(1)-C(8)	106.69(9)	C(43)-Si(7)-C(42)	105.51(8)

This journal is (c) The Royal Society of Chemistry 2010

The first asymmetric organolithium tetramers with simple ether donor bases

C(44)-Si(7)-C(42)	107.03(8)	Li(2)-C(5)-Li(1)	71.80(8)
C(45)-Si(8)-C(47)	111.85(7)	Si(5)-C(33)-Li(7)	96.81(9)
C(45)-Si(8)-C(48)	111.63(6)	Si(5)-C(33)-Li(6)	162.63(9)
C(47)-Si(8)-C(48)	105.99(7)	Li(7)-C(33)-Li(6)	68.69(9)
C(45)-Si(8)-C(46)	114.84(6)	Si(5)-C(33)-Li(5)	113.29(8)
C(47)-Si(8)-C(46)	106.18(8)	Li(7)-C(33)-Li(5)	69.46(8)
C(48)-Si(8)-C(46)	105.75(7)	Li(6)-C(33)-Li(5)	71.59(8)
O(1)-C(3)-C(4)	107.74(15)	Si(3)-C(17)-Li(4)	108.76(9)
O(1)-C(3)-O(1')	20.0(2)	Si(3)-C(17)-Li(3)	112.55(8)
C(4)-C(3)-O(1')	117.1(3)	Li(4)-C(17)-Li(3)	65.87(8)
C(3)-O(1)-C(2)	110.98(17)	Si(3)-C(17)-Li(1)	177.47(9)
C(3)-O(1)-Li(1)	126.68(15)	Li(4)-C(17)-Li(1)	69.13(9)
C(2)-O(1)-Li(1)	121.47(15)	Li(3)-C(17)-Li(1)	68.09(8)
O(1)-C(2)-C(1)	113.14(18)	Si(7)-C(41)-Li(8)	110.31(10)
C(2')-O(1')-C(3)	118.6(6)	Si(7)-C(41)-Li(7)	113.93(8)
C(2')-O(1')-Li(1)	122.3(5)	Li(8)-C(41)-Li(7)	65.92(8)
C(3)-O(1')-Li(1)	119.1(4)	Si(7)-C(41)-Li(5)	176.56(9)
O(1')-C(2')-C(1')	115.0(6)	Li(8)-C(41)-Li(5)	69.34(10)
Si(2)-C(13)-Li(4)	88.69(8)	Li(7)-C(41)-Li(5)	69.19(8)
Si(2)-C(13)-Li(1)	128.23(8)	Si(6)-C(37)-Li(8)	90.24(8)
Li(4)-C(13)-Li(1)	69.90(10)	Si(6)-C(37)-Li(5)	128.14(9)
Si(2)-C(13)-Li(2)	144.07(9)	Li(8)-C(37)-Li(5)	69.85(10)
Li(4)-C(13)-Li(2)	69.05(8)	Si(6)-C(37)-Li(6)	146.16(9)
Li(1)-C(13)-Li(2)	71.29(8)	Li(8)-C(37)-Li(6)	69.46(8)
Si(4)-C(21)-Li(3)	104.71(8)	Li(5)-C(37)-Li(6)	71.13(8)
Si(4)-C(21)-Li(4)	168.33(8)	C(30)-O(4)-C(31)	114.17(10)
Li(3)-C(21)-Li(4)	65.07(8)	C(30)-O(4)-Li(6)	118.40(10)
Si(4)-C(21)-Li(2)	113.94(8)	C(31)-O(4)-Li(6)	126.12(10)
Li(3)-C(21)-Li(2)	67.58(9)	O(4)-C(31)-C(32)	112.83(11)
Li(4)-C(21)-Li(2)	68.49(8)	O(4)-C(30)-C(29)	112.11(11)
Si(1)-C(5)-Li(3)	96.37(9)	Si(8)-C(45)-Li(8)	165.43(9)
Si(1)-C(5)-Li(2)	161.24(9)	Si(8)-C(45)-Li(7)	102.84(8)
Li(3)-C(5)-Li(2)	68.40(9)	Li(8)-C(45)-Li(7)	65.24(8)
Si(1)-C(5)-Li(1)	114.15(7)	Si(8)-C(45)-Li(6)	115.26(8)
Li(3)-C(5)-Li(1)	69.36(8)	Li(8)-C(45)-Li(6)	69.20(8)

This journal is (c) The Royal Society of Chemistry 2010

The first asymmetric organolithium tetramers with simple ether donor bases

Li(7)-C(45)-Li(6)	67.47(9)	O(3')-C(26')-C(25')	116.8(7)
O(3)-C(27)-C(28)	112.47(15)	O(2)-C(10)-C(9)	112.07(11)
C(26)-O(3)-C(27)	114.16(17)	C(11)-O(2)-C(10)	114.84(10)
C(26)-O(3)-Li(5)	121.79(16)	C(11)-O(2)-Li(2)	127.25(10)
C(27)-O(3)-Li(5)	124.05(16)	C(10)-O(2)-Li(2)	116.51(10)
O(3)-C(26)-C(25)	112.92(18)	O(2)-C(11)-C(12)	112.66(11)
C(26')-O(3')-Li(5)	122.3(5)		

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Supplementary Material

[(^tBuOMe)₂·(LiCH₂SiMe₃)₄] (2):

 $Li_4C_{26}H_{68}O_2Si_4$, M = 552.92, orthorhombic, space group $Pna2_1$, a = 21.569(3), b = 10.6442(14), c = 17.116(2) Å, V = 3929.6(9) Å³, Z = 4, μ (Mo-K_{α}) = 0.169 mm⁻¹, T = 100(2) K, 38585 reflections measured, 7279 unique reflections, $R_{int} = 0.0549$, 566 parameters refined, R_1 (all data) = 0.0725, R_1 [I>2 σ (I)] = 0.0588, w R_2 (all data) = 0.1619, w R_2 [I>2 σ (I)] = 0.1520, GOF = 1.079, largest diff. peak and hole 0.594 and -0.225 eÅ⁻³.

Figure 3 Molecular structure of [('BuOMe)₂·(LiCH₂SiMe₃)₄] (2) in the crystal (asymmetric unit) including disordered sites.

 Table 2.
 Bond lengths [Å] and angles [°] for 2.

Li(1)-O(1)	200.1(8)	Li(2)-C(11')	207.2(16)
Li(1)-O(1')	221.0(18)	Li(2)-C(19)	229.3(8)
Li(1)-C(11')	226.8(14)	Li(2)-C(15')	231.8(15)
Li(1)-C(19)	234.2(9)	Li(2)-C(11)	234.5(12)
Li(1)-C(23)	238.1(9)	Li(2)-C(15)	245.5(8)
Li(1)-C(11)	239.3(11)	Li(2)-Li(4)	254.9(9)
Li(1)-Li(3)	255.8(10)	Li(2)-Li(3)	262.3(9)
Li(1)-Li(4)	257.1(10)	Li(3)-C(15')	203.2(18)
Li(1)-Li(2)	271.3(9)	Li(3)-C(19)	215.8(8)
Li(2)-O(2)	202.7(7)	Li(3)-C(23)	220.4(7)
Li(2)-O(2')	205.2(15)	Li(3)-C(15)	227.4(8)

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Li(3)-Li(4)	237.6(9)	Si(1')-C(12')	185.3(11)
Li(3)-Si(2')	296.8(15)	Si(1')-C(13')	186.0(11)
Li(4)-C(11')	190.9(16)	Si(1')-C(14')	190.1(11)
Li(4)-C(15)	213.3(8)	C(15)-Si(2)	181.30
Li(4)-C(23)	218.7(8)	Si(2)-C(16)	182.8(8)
Li(4)-C(11)	230.7(11)	Si(2)-C(18)	188.59
Li(4)-C(15')	246.5(19)	Si(2)-C(17)	191.2(7)
Li(4)-C(14')	268.4(15)	C(15')-Si(2')	188.0(11)
O(1)-C(1)	142.5(9)	Si(2')-C(16')	186.8(12)
O(1)-C(2)	146.3(7)	Si(2')-C(18')	187.3(12)
C(2)-C(4)	145.1(8)	Si(2')-C(17')	190.5(12)
C(2)-C(3)	146.1(9)	C(19)-Si(3)	185.7(4)
C(2)-C(5)	166.3(10)	Si(3)-C(21)	183.8(7)
O(1')-C(1')	145.2(13)	Si(3)-C(22')	186.4(12)
O(1')-C(2')	147.8(11)	Si(3)-C(20)	186.9(7)
C(2')-C(4')	146.0(13)	Si(3)-C(21')	188.2(12)
C(2')-C(3')	146.4(13)	Si(3)-C(22)	188.7(6)
C(2')-C(5')	166.0(14)	Si(3)-C(20')	189.0(12)
O(2)-C(6)	140.8(12)	O(1)-Li(1)-O(1')	29.1(4)
O(2)-C(7)	145.7(6)	O(1)-Li(1)-C(11')	128.6(5)
C(7)-C(9)	152.2(8)	O(1')-Li(1)-C(11')	111.9(6)
C(7)-C(8)	152.7(9)	O(1)-Li(1)-C(19)	116.6(4)
C(7)-C(10)	153.4(11)	O(1')-Li(1)-C(19)	103.8(6)
O(2')-C(6')	141(2)	C(11')-Li(1)-C(19)	101.3(5)
O(2')-C(7')	146.5(16)	O(1)-Li(1)-C(23)	107.5(4)
C(7')-C(9')	152.7(19)	O(1')-Li(1)-C(23)	136.5(6)
C(7')-C(8')	154.0(18)	C(11')-Li(1)-C(23)	96.0(5)
C(7')-C(10')	154(2)	C(19)-Li(1)-C(23)	102.5(3)
C(23)-Si(4)	187.3(4)	O(1)-Li(1)-C(11)	118.9(4)
Si(4)-C(25)	186.7(5)	O(1')-Li(1)-C(11)	101.9(5)
Si(4)-C(24)	188.1(4)	C(11')-Li(1)-C(11)	10.2(4)
Si(4)-C(26)	188.1(4)	C(19)-Li(1)-C(11)	105.9(4)
C(11)-Si(1)	188.5(8)	C(23)-Li(1)-C(11)	103.5(4)
Si(1)-C(13)	186.0(9)	O(1)-Li(1)-Li(3)	139.7(4)
Si(1)-C(12)	187.1(8)	O(1')-Li(1)-Li(3)	150.9(6)
Si(1)-C(14)	188.3(8)	C(11')-Li(1)-Li(3)	90.8(5)
C(11')-Si(1')	196.2(11)	C(19)-Li(1)-Li(3)	52.0(2)

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

C(23)-Li(1)-Li(3)	52.8(2)	C(11)-Li(2)-C(15)	102.6(3)
C(11)-Li(1)-Li(3)	100.8(4)	O(2)-Li(2)-Li(4)	157.6(4)
O(1)-Li(1)-Li(4)	145.9(4)	O(2')-Li(2)-Li(4)	150.3(5)
O(1')-Li(1)-Li(4)	153.6(6)	C(11')-Li(2)-Li(4)	47.4(5)
C(11')-Li(1)-Li(4)	46.0(4)	C(19)-Li(2)-Li(4)	97.9(3)
C(19)-Li(1)-Li(4)	96.0(3)	C(15')-Li(2)-Li(4)	60.6(5)
C(23)-Li(1)-Li(4)	52.2(2)	C(11)-Li(2)-Li(4)	56.1(3)
C(11)-Li(1)-Li(4)	55.3(3)	C(15)-Li(2)-Li(4)	50.4(2)
Li(3)-Li(1)-Li(4)	55.2(2)	O(2)-Li(2)-Li(3)	147.3(4)
O(1)-Li(1)-Li(2)	151.8(4)	O(2')-Li(2)-Li(3)	133.9(5)
O(1')-Li(1)-Li(2)	122.9(5)	C(11')-Li(2)-Li(3)	93.6(5)
C(11')-Li(1)-Li(2)	48.1(4)	C(19)-Li(2)-Li(3)	51.5(2)
C(19)-Li(1)-Li(2)	53.3(2)	C(15')-Li(2)-Li(3)	48.1(5)
C(23)-Li(1)-Li(2)	100.6(3)	C(11)-Li(2)-Li(3)	100.3(4)
C(11)-Li(1)-Li(2)	54.2(3)	C(15)-Li(2)-Li(3)	53.1(2)
Li(3)-Li(1)-Li(2)	59.6(2)	Li(4)-Li(2)-Li(3)	54.7(2)
Li(4)-Li(1)-Li(2)	57.6(2)	O(2)-Li(2)-Li(1)	129.8(4)
O(2)-Li(2)-O(2')	23.6(4)	O(2')-Li(2)-Li(1)	150.8(6)
O(2)-Li(2)-C(11')	116.3(5)	C(11')-Li(2)-Li(1)	54.6(4)
O(2')-Li(2)-C(11')	132.0(6)	C(19)-Li(2)-Li(1)	55.0(2)
O(2)-Li(2)-C(19)	103.0(3)	C(15')-Li(2)-Li(1)	101.1(5)
O(2')-Li(2)-C(19)	107.3(5)	C(11)-Li(2)-Li(1)	55.9(3)
C(11')-Li(2)-C(19)	109.4(5)	C(15)-Li(2)-Li(1)	99.0(3)
O(2)-Li(2)-C(15')	126.1(6)	Li(4)-Li(2)-Li(1)	58.4(3)
O(2')-Li(2)-C(15')	102.5(7)	Li(3)-Li(2)-Li(1)	57.3(3)
C(11')-Li(2)-C(15')	106.5(7)	C(15')-Li(3)-C(19)	103.8(6)
C(19)-Li(2)-C(15')	91.3(5)	C(15')-Li(3)-C(23)	118.5(7)
O(2)-Li(2)-C(11)	108.5(4)	C(19)-Li(3)-C(23)	115.3(4)
O(2')-Li(2)-C(11)	125.8(6)	C(15')-Li(3)-C(15)	14.2(6)
C(11')-Li(2)-C(11)	8.7(5)	C(19)-Li(3)-C(15)	111.9(3)
C(19)-Li(2)-C(11)	109.2(4)	C(23)-Li(3)-C(15)	104.3(3)
C(15')-Li(2)-C(11)	115.2(6)	C(15')-Li(3)-Li(4)	67.5(6)
O(2)-Li(2)-C(15)	130.9(4)	C(19)-Li(3)-Li(4)	107.3(3)
O(2')-Li(2)-C(15)	107.9(5)	C(23)-Li(3)-Li(4)	56.9(3)
C(11')-Li(2)-C(15)	94.2(5)	C(15)-Li(3)-Li(4)	54.5(3)
C(19)-Li(2)-C(15)	101.3(3)	C(15')-Li(3)-Li(1)	115.5(5)
C(15')-Li(2)-C(15)	13.7(5)	C(19)-Li(3)-Li(1)	58.8(3)

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

C(23)-Li(3)-Li(1)	59.5(3)	C(11')-Li(4)-Li(1)	58.6(4)
C(15)-Li(3)-Li(1)	108.8(3)	C(15)-Li(4)-Li(1)	113.1(4)
Li(4)-Li(3)-Li(1)	62.7(3)	C(23)-Li(4)-Li(1)	59.4(3)
C(15')-Li(3)-Li(2)	58.1(4)	C(11)-Li(4)-Li(1)	58.5(3)
C(19)-Li(3)-Li(2)	56.3(2)	Li(3)-Li(4)-Li(1)	62.1(3)
C(23)-Li(3)-Li(2)	108.5(3)	C(15')-Li(4)-Li(1)	101.2(5)
C(15)-Li(3)-Li(2)	59.7(2)	Li(2)-Li(4)-Li(1)	64.0(3)
Li(4)-Li(3)-Li(2)	61.1(3)	C(11')-Li(4)-C(14')	82.4(5)
Li(1)-Li(3)-Li(2)	63.1(3)	C(15)-Li(4)-C(14')	95.4(5)
C(15')-Li(3)-Si(2')	38.8(4)	C(23)-Li(4)-C(14')	139.8(4)
C(19)-Li(3)-Si(2')	131.1(4)	C(11)-Li(4)-C(14')	81.3(5)
C(23)-Li(3)-Si(2')	111.8(4)	Li(3)-Li(4)-C(14')	155.6(6)
C(15)-Li(3)-Si(2')	41.6(4)	C(15')-Li(4)-C(14')	106.4(7)
Li(4)-Li(3)-Si(2')	87.4(4)	Li(2)-Li(4)-C(14')	107.5(4)
Li(1)-Li(3)-Si(2')	149.1(4)	Li(1)-Li(4)-C(14')	137.3(5)
Li(2)-Li(3)-Si(2')	96.8(3)	C(1)-O(1)-C(2)	111.1(6)
C(11')-Li(4)-C(15)	110.6(6)	C(1)-O(1)-Li(1)	121.4(5)
C(11')-Li(4)-C(23)	114.9(5)	C(2)-O(1)-Li(1)	126.2(4)
C(15)-Li(4)-C(23)	109.9(3)	C(4)-C(2)-C(3)	114.4(6)
C(11')-Li(4)-C(11)	4.6(6)	C(4)-C(2)-O(1)	112.8(6)
C(15)-Li(4)-C(11)	115.1(4)	C(3)-C(2)-O(1)	114.9(5)
C(23)-Li(4)-C(11)	113.0(4)	C(4)-C(2)-C(5)	109.3(5)
C(11')-Li(4)-Li(3)	106.4(5)	C(3)-C(2)-C(5)	103.5(6)
C(15)-Li(4)-Li(3)	60.3(3)	O(1)-C(2)-C(5)	100.4(4)
C(23)-Li(4)-Li(3)	57.6(2)	C(1')-O(1')-C(2')	103.4(12)
C(11)-Li(4)-Li(3)	109.2(4)	C(1')-O(1')-Li(1)	105.7(15)
C(11')-Li(4)-C(15')	106.5(6)	C(2')-O(1')-Li(1)	124.1(12)
C(15)-Li(4)-C(15')	12.0(4)	C(4')-C(2')-C(3')	112.8(13)
C(23)-Li(4)-C(15')	102.9(5)	C(4')-C(2')-O(1')	109.1(13)
C(11)-Li(4)-C(15')	111.1(5)	C(3')-C(2')-O(1')	120.7(13)
Li(3)-Li(4)-C(15')	49.6(5)	C(4')-C(2')-C(5')	108.9(14)
C(11')-Li(4)-Li(2)	53.0(5)	C(3')-C(2')-C(5')	104.1(14)
C(15)-Li(4)-Li(2)	62.5(3)	O(1')-C(2')-C(5')	99.7(12)
C(23)-Li(4)-Li(2)	111.7(3)	C(6)-O(2)-C(7)	114.0(6)
C(11)-Li(4)-Li(2)	57.5(3)	C(6)-O(2)-Li(2)	114.2(5)
Li(3)-Li(4)-Li(2)	64.2(3)	C(7)-O(2)-Li(2)	129.7(4)
C(15')-Li(4)-Li(2)	55.1(4)	O(2)-C(7)-C(9)	111.1(5)

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

O(2)-C(7)-C(8)	111.8(5)	C(14)-Si(1)-C(11)	109.2(4)
C(9)-C(7)-C(8)	111.0(6)	Li(4)-C(11')-Si(1')	95.5(6)
O(2)-C(7)-C(10)	104.1(5)	Li(4)-C(11')-Li(2)	79.5(6)
C(9)-C(7)-C(10)	109.7(6)	Si(1')-C(11')-Li(2)	112.7(7)
C(8)-C(7)-C(10)	109.0(6)	Li(4)-C(11')-Li(1)	75.4(5)
C(6')-O(2')-C(7')	108.6(17)	Si(1')-C(11')-Li(1)	165.5(9)
C(6')-O(2')-Li(2)	120.9(18)	Li(2)-C(11')-Li(1)	77.2(5)
C(7')-O(2')-Li(2)	123.0(13)	C(12')-Si(1')-C(13')	108.8(10)
O(2')-C(7')-C(9')	109.8(17)	C(12')-Si(1')-C(14')	108.0(9)
O(2')-C(7')-C(8')	112.5(14)	C(13')-Si(1')-C(14')	104.4(10)
C(9')-C(7')-C(8')	109.3(17)	C(12')-Si(1')-C(11')	119.3(8)
O(2')-C(7')-C(10')	103(2)	C(13')-Si(1')-C(11')	109.4(10)
C(9')-C(7')-C(10')	109(2)	C(14')-Si(1')-C(11')	105.8(6)
C(8')-C(7')-C(10')	113(2)	Si(1')-C(14')-Li(4)	75.2(5)
Si(4)-C(23)-Li(4)	99.4(3)	Si(2)-C(15)-Li(4)	127.1(2)
Si(4)-C(23)-Li(3)	161.5(3)	Si(2)-C(15)-Li(3)	87.9(2)
Li(4)-C(23)-Li(3)	65.5(3)	Li(4)-C(15)-Li(3)	65.2(3)
Si(4)-C(23)-Li(1)	118.2(3)	Si(2)-C(15)-Li(2)	143.7(2)
Li(4)-C(23)-Li(1)	68.3(3)	Li(4)-C(15)-Li(2)	67.1(3)
Li(3)-C(23)-Li(1)	67.7(3)	Li(3)-C(15)-Li(2)	67.3(3)
C(25)-Si(4)-C(23)	108.6(2)	C(15)-Si(2)-C(16)	112.6(4)
C(25)-Si(4)-C(24)	107.5(2)	C(15)-Si(2)-C(18)	116.4
C(23)-Si(4)-C(24)	112.1(2)	C(16)-Si(2)-C(18)	106.6(4)
C(25)-Si(4)-C(26)	108.1(2)	C(15)-Si(2)-C(17)	108.7(3)
C(23)-Si(4)-C(26)	115.7(2)	C(16)-Si(2)-C(17)	107.4(5)
C(24)-Si(4)-C(26)	104.5(2)	C(18)-Si(2)-C(17)	104.6(3)
Si(1)-C(11)-Li(4)	97.3(4)	Si(2')-C(15')-Li(3)	98.6(8)
Si(1)-C(11)-Li(2)	111.2(4)	Si(2')-C(15')-Li(2)	171.1(12)
Li(4)-C(11)-Li(2)	66.4(3)	Li(3)-C(15')-Li(2)	73.8(5)
Si(1)-C(11)-Li(1)	162.1(5)	Si(2')-C(15')-Li(4)	117.0(10)
Li(4)-C(11)-Li(1)	66.3(3)	Li(3)-C(15')-Li(4)	62.9(5)
Li(2)-C(11)-Li(1)	69.8(3)	Li(2)-C(15')-Li(4)	64.3(4)
C(13)-Si(1)-C(12)	106.3(7)	C(16')-Si(2')-C(18')	107.5(10)
C(13)-Si(1)-C(14)	107.0(7)	C(16')-Si(2')-C(15')	109.3(10)
C(12)-Si(1)-C(14)	108.5(6)	C(18')-Si(2')-C(15')	117.2(8)
C(13)-Si(1)-C(11)	110.3(6)	C(16')-Si(2')-C(17')	106.3(9)
C(12)-Si(1)-C(11)	115.2(6)	C(18')-Si(2')-C(17')	107.2(10)

 $Tanja\ Tatic^a,\ Kathrin\ Meindl^a,\ Julian\ Henn^a,\ Sushil\ Kumar\ Pandey^b,\ and\ Dietmar\ Stalke^{*a}$

C(15')-Si(2')-C(17')	108.8(9)	C(21)-Si(3)-C(21')	37.3(10)
C(16')-Si(2')-Li(3)	108.6(9)	C(19)-Si(3)-C(21')	114.0(9)
C(18')-Si(2')-Li(3)	143.4(7)	C(22')-Si(3)-C(21')	105.9(10)
C(15')-Si(2')-Li(3)	42.6(6)	C(20)-Si(3)-C(21')	130.5(9)
C(17')-Si(2')-Li(3)	68.3(7)	C(21)-Si(3)-C(22)	108.0(5)
Si(3)-C(19)-Li(3)	105.4(3)	C(19)-Si(3)-C(22)	112.0(3)
Si(3)-C(19)-Li(2)	169.5(3)	C(22')-Si(3)-C(22)	35.0(10)
Li(3)-C(19)-Li(2)	72.2(3)	C(20)-Si(3)-C(22)	102.1(4)
Si(3)-C(19)-Li(1)	117.5(3)	C(21')-Si(3)-C(22)	74.2(11)
Li(3)-C(19)-Li(1)	69.2(3)	C(21)-Si(3)-C(20')	72.7(11)
Li(2)-C(19)-Li(1)	71.6(3)	C(19)-Si(3)-C(20')	117.0(8)
C(21)-Si(3)-C(19)	113.7(4)	C(22')-Si(3)-C(20')	102.8(9)
C(21)-Si(3)-C(22')	131.3(9)	C(20)-Si(3)-C(20')	37.0(10)
C(19)-Si(3)-C(22')	111.1(8)	C(21')-Si(3)-C(20')	104.9(9)
C(21)-Si(3)-C(20)	107.4(5)	C(22)-Si(3)-C(20')	125.5(10)
C(19)-Si(3)-C(20)	112.9(3)		
C(22')-Si(3)-C(20)	70.4(11)		

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Supplementary Material

[(DME)·(LiCH₂SiMe₃)]₂ (3):

 $Li_4C_{16}H_{42}O_4Si_2$, M = 368.56, monoclinic, space group $P2_1/c$, a = 10.4667(8), b = 18.33838(13), c = 19.22670(14) Å, $\beta = 92.8900^{\circ}(10)$, V = 3702.6(5) Å³, Z = 6, μ (Mo-K_{α}) = 0.156 mm⁻¹, T = 100(2) K, 65904 reflections measured, 7276 unique reflections, $R_{int} = 0.0239$, 358 parameters refined, R_1 (all data) = 0.0324, R_1 [I>2 σ (I)] = 0.0287, w R_2 (all data) = 0.0778, w R_2 [I>2 σ (I)] = 0.0755, GOF = 1.029, largest diff. peak and hole 0.344 and -0.169 eÅ⁻³.

Figure 4 Molecular structure of [(DME)·(LiCH₂SiMe₃)]₂ (3) in the crystal (asymmetric unit).

Table 3. Bond lengths [Å] and angles [°] for **3**.

Si(1)-C(1)	1.8268(11)	O(2)-Li(1)	2.041(2)
Si(1)-C(3)	1.8825(12)	O(3)-C(16)	1.4255(14)
Si(1)-C(4)	1.8856(12)	O(3)-C(15)	1.4258(14)
Si(1)-C(2)	1.8908(12)	O(3)-Li(2)	1.9944(19)
Si(2)-C(5)	1.8215(11)	O(4)-C(18)	1.4264(14)
Si(2)-C(6)	1.8819(12)	O(4)-C(17)	1.4265(13)
Si(2)-C(7)	1.8844(12)	O(4)-Li(2)	2.128(2)
Si(2)-C(8)	1.8941(12)	O(5)-C(31)	1.4236(14)
Si(3)-C(21)	1.8202(11)	O(5)-C(32)	1.4293(14)
Si(3)-C(22)	1.8837(11)	O(5)-Li(3)	2.0726(19)
Si(3)-C(23)	1.8870(12)	O(6)-C(34)	1.4275(15)
Si(3)-C(24)	1.8960(11)	O(6)-C(33)	1.4279(14)
O(1)-C(11)	1.4175(15)	O(6)-Li(3)	2.034(2)
O(1)-C(12)	1.4261(14)	Li(1)-C(1)	2.196(2)
O(1)-Li(1)	2.0374(19)	Li(1)-C(5)	2.226(2)
O(2)-C(13)	1.4209(13)	Li(1)-C(13)	2.781(2)
O(2)-C(14)	1.4296(14)	Li(2)-C(5)	2.213(2)

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Li(2)-C(1)	2.261(2)	C(17)-O(4)-Li(2)	103.38(8)
Li(3)-C(21)	2.180(2)	C(31)-O(5)-C(32)	112.45(9)
Li(3)-C(21)#1	2.256(2)	C(31)-O(5)-Li(3)	128.23(9)
Li(3)-Li(3)#1	2.461(3)	C(32)-O(5)-Li(3)	110.80(8)
C(12)-C(13)	1.4927(17)	C(34)-O(6)-C(33)	112.16(9)
C(16)-C(17)	1.4932(17)	C(34)-O(6)-Li(3)	121.31(9)
C(21)-Li(3)#1	2.256(2)	C(33)-O(6)-Li(3)	108.02(8)
C(32)-C(33)	1.4940(17)	O(1)-Li(1)-O(2)	82.37(7)
C(1)-Si(1)-C(3)	111.56(5)	O(1)-Li(1)-C(1)	120.54(9)
C(1)-Si(1)-C(4)	111.69(5)	O(2)-Li(1)-C(1)	110.87(9)
C(3)-Si(1)-C(4)	106.81(6)	O(1)-Li(1)-C(5)	109.18(9)
C(1)-Si(1)-C(2)	116.25(5)	O(2)-Li(1)-C(5)	114.30(9)
C(3)-Si(1)-C(2)	104.41(6)	C(1)-Li(1)-C(5)	115.40(9)
C(4)-Si(1)-C(2)	105.41(6)	O(1)-Li(1)-C(13)	55.55(5)
C(5)-Si(2)-C(6)	111.11(5)	O(2)-Li(1)-C(13)	29.50(4)
C(5)-Si(2)-C(7)	110.08(5)	C(1)-Li(1)-C(13)	111.52(8)
C(6)-Si(2)-C(7)	108.22(6)	C(5)-Li(1)-C(13)	130.47(9)
C(5)-Si(2)-C(8)	117.89(5)	O(3)-Li(2)-O(4)	80.82(7)
C(6)-Si(2)-C(8)	105.46(6)	O(3)-Li(2)-C(5)	114.37(9)
C(7)-Si(2)-C(8)	103.47(6)	O(4)-Li(2)-C(5)	125.98(9)
C(21)-Si(3)-C(22)	111.51(5)	O(3)-Li(2)-C(1)	115.19(9)
C(21)-Si(3)-C(23)	110.90(5)	O(4)-Li(2)-C(1)	103.45(8)
C(22)-Si(3)-C(23)	107.94(5)	C(5)-Li(2)-C(1)	113.33(9)
C(21)-Si(3)-C(24)	116.20(5)	O(6)-Li(3)-O(5)	80.78(7)
C(22)-Si(3)-C(24)	105.18(5)	O(6)-Li(3)-C(21)	113.13(9)
C(23)-Si(3)-C(24)	104.52(5)	O(5)-Li(3)-C(21)	130.23(9)
C(11)-O(1)-C(12)	112.60(10)	O(6)-Li(3)-C(21)#1	111.83(9)
C(11)-O(1)-Li(1)	124.64(9)	O(5)-Li(3)-C(21)#1	104.13(8)
C(12)-O(1)-Li(1)	108.93(8)	C(21)-Li(3)-C(21)#1	112.61(8)
C(13)-O(2)-C(14)	111.90(9)	O(6)-Li(3)-Li(3)#1	133.52(13)
C(13)-O(2)-Li(1)	105.49(8)	O(5)-Li(3)-Li(3)#1	142.72(13)
C(14)-O(2)-Li(1)	121.24(9)	C(21)-Li(3)-Li(3)#1	57.78(8)
C(16)-O(3)-C(15)	112.32(9)	C(21)#1-Li(3)-Li(3)#1	54.83(7)
C(16)-O(3)-Li(2)	113.32(8)	Si(1)-C(1)-Li(1)	114.29(7)
C(15)-O(3)-Li(2)	124.20(9)	Si(1)-C(1)-Li(2)	119.74(7)
C(18)-O(4)-C(17)	111.23(9)	Li(1)-C(1)-Li(2)	65.13(7)
C(18)-O(4)-Li(2)	123.55(8)	Si(2)-C(5)-Li(2)	106.29(7)

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Supplementary Material

Si(2)-C(5)-Li(1)	131.61(8)
Li(2)-C(5)-Li(1)	65.43(7)
O(1)-C(12)-C(13)	106.55(9)
O(2)-C(13)-C(12)	107.09(9)
O(2)-C(13)-Li(1)	45.01(6)
C(12)-C(13)-Li(1)	76.83(7)
O(3)-C(16)-C(17)	107.87(9)
O(4)-C(17)-C(16)	107.59(9)
Si(3)-C(21)-Li(3)	109.16(7)
Si(3)-C(21)-Li(3)#1	148.04(8)
Li(3)-C(21)-Li(3)#1	67.39(8)
O(5)-C(32)-C(33)	107.54(9)
O(6)-C(33)-C(32)	107.51(9)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Final Energy:	1: -2292.2441095 a.u.	H32	-0.643787	2.806411	-3.337031
	2 : -2370.880678 a.u.	C33	3.135100	2.795235	-1.909790
	3 : -1530.29689 a.u.	H34	3.687980	3.120196	-1.021740
		H35	3.550945	3.339665	-2.763893
	_	H36	3.363566	1.735213	-2.062074
Final Geometry	1:	C37	-1.553509	-0.517131	-1.652836
Li1 1.209606	5 0.287585 0.984151	C38	-2.549479	-3.428345	-2.147266
Li2 -1.299998	8 0.760385 0.192880	H39	-1.963831	-3.521086	-3.067747
Li3 -0.270047	7 -1.496710 -0.070253	H40	-3.433423	-4.064063	-2.265723
Li4 0.534726	5 0.226287 -1.458171	H41	-1.953321	-3.863646	-1.339220
Si5 -0.482805	5 -2.238699 2.823078	C42	-4.138377	-1.602429	-0.263624
Si6 1.271452	2 3.117808 -1.718630	H43	-3.603609	-1.970722	0.617488
Si7 2.481801	-2.231287 -2.116214	H44	-5.025186	-2.232517	-0.390286
Si8 -3.053392	2 -1.625338 -1.826470	H45	-4.492279	-0.594532	-0.024004
C9 1.439262	2 2.312818 3.631351	C46	-4.192801	-1.126731	-3.268969
H10 0.81110	1 2.620754 2.793181	H47	-4.580990	-0.109064	-3.147355
H11 1.53415	9 3.167688 4.306909	H48	-5.057969	-1.792815	-3.362392
H12 0.93634	6 1.507454 4.170336	H49	-3.658439	-1.150778	-4.224547
C13 2.81769	8 1.884270 3.167399	C50	-0.664910	-0.613464	1.918220
H14 3.43179	7 1.595421 4.029427	C51	1.245023	-2.430681	3.587192
H15 3.32560	0 2.710158 2.657631	H52	2.035764	-2.427384	2.831078
016 2.72833	8 0.757208 2.280012	H53	1.327651	-3.374700	4.135924
C17 3.95804	1 0.012274 2.175981	H54	1.466514	-1.624966	4.294734
H18 3.70135	3 -0.884992 1.614265	C55	-0.722569	-3.705443	1.624847
H19 4.25676	4 -0.297883 3.184815	H56	-1.712562	-3.704122	1.156476
C20 5.08156	0 0.767577 1.480721	H57	-0.636531	-4.657349	2.159113
H21 4.77426	4 1.103352 0.487793	H58	0.027678	-3.748833	0.824369
H22 5.94276	1 0.104419 1.359330	C59	1.895036	-1.274011	-0.622634
H23 5.41574	8 1.637407 2.051133	C60	4.343718	-2.627332	-2.092808
C24 0.56647	6 2.098681 -0.316640	H61	4.948079	-1.714365	-2.053191
C25 1.06014	9 4.997197 -1.502414	H62	4.660152	-3.187238	-2.980006
H26 0.00352	0 5.281465 -1.449848	H63	4.610847	-3.228597	-1.216961
H27 1.50643	2 5.561695 -2.328743	C64	1.569913	-3.888209	-2.267802
H28 1.53095	6 5.345816 -0.576951	H65	1.731761	-4.519301	-1.387009
C29 0.44378	3 2.683130 -3.379817	H66	1.924458	-4.455614	-3.134715
H30 0.63320	3 1.655055 -3.711207	H67	0.489459	-3.765216	-2.386567
H31 0.80808	7 3.333899 -4.181899	C68	2.171875	-1.250939	-3.720649

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Supplementary Material

H69	1.105463	-1.099915	-3.923370	Fina	l Geometry	2:	
H70	2.579001	-1.780566	-4.588414	Li	-1.379704	-0.648656	-0.122104
H71	2.650854	-0.265155	-3.706152	Li	1.299330	-0.499195	0.381168
C72	-1.740493	-2.503041	4.225944	Li	0.211613	0.765912	-1.530203
H73	-1.644398	-1.730884	4.996955	Li	-0.268280	1.503464	0.638418
H74	-1.613764	-3.473299	4.719252	0	-2.993928	-2.011971	-0.333580
H75	-2.770403	-2.460112	3.855452	С	-3.949066	-1.654904	-1.334356
C76	-4.151285	1.602168	2.772349	Η	-3.673710	-0.669220	-1.700251
H77	-5.131359	1.765271	2.317840	Η	-4.962444	-1.600462	-0.927824
H78	-4.210184	1.944162	3.810015	Η	-3.930517	-2.356119	-2.172044
H79	-3.950618	0.529429	2.780030	С	-3.291142	-3.233066	0.430004
C80	-3.044198	2.354897	2.048734	С	-3.694464	-4.378899	-0.505340
H81	-3.221339	3.435284	2.065015	Η	-2.946568	-4.526578	-1.288512
H82	-2.084433	2.174378	2.535229	Η	-4.665025	-4.215392	-0.977698
083	-2.865365	1.921455	0.686434	Η	-3.767372	-5.306693	0.066773
C84	-3.806935	2.465684	-0.257802	С	-4.393194	-2.931066	1.451022
H85	-4.811165	2.439431	0.176605	Η	-5.337772	-2.664539	0.971396
H86	-3.802961	1.773748	-1.100837	Н	-4.097179	-2.107160	2.103420
C87	-3.444972	3.870514	-0.718670	Η	-4.584146	-3.808232	2.074919
H88	-3.447451	4.590122	0.103517	С	-1.985637	-3.583100	1.139229
H89	-4.174391	4.214201	-1.458099	Η	-1.195426	-3.781548	0.411515
H90	-2.457488	3.888647	-1.183858	Η	-2.117404	-4.478277	1.751676
H91	-0.365976	2.625202	-0.040626	Η	-1.665238	-2.773402	1.796193
H92	1.240269	2.344500	0.525403	0	2.738383	-1.907710	1.025553
H93	-1.758710	-0.460037	1.861163	С	2.090459	-3.086423	1.503461
H94	-0.342222	0.149227	2.648364	Η	1.051699	-3.028543	1.185528
H95	2.038548	-1.967324	0.226618	Η	2.121473	-3.146646	2.594584
H96	2.679872	-0.509177	-0.466485	Н	2.526986	-3.991817	1.075625
H97	-1.955932	0.501774	-1.826794	С	4.207015	-1.904051	1.103677
H98	-1.000321	-0.702021	-2.595907	С	4.781009	-2.934161	0.122863
				Н	4.545747	-3.962469	0.405777
				Н	5.870374	-2.852489	0.092172
				Η	4.400137	-2.757852	-0.885323
				С	4.665285	-2.184895	2.538949

H4.197010-1.4892483.238665H5.748095-2.0591572.612863

4.437744 -3.204541 2.858080

Н

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Supplementary Material

С	4.620734	-0.497692	0.683528	Si 2.091876 3.351791	-1.080404
Н	4.183966	0.255523	1.341160	C 3.936067 3.820492	-1.134899
Н	4.306856	-0.284276	-0.339285	Н 4.099869 4.800507	-1.597035
Н	5.707453	-0.396005	0.727735	Н 4.519506 3.090564	-1.706588
С	-1.818702	1.459905	-0.980629	Н 4.367056 3.858821	-0.128705
Si	-3.330693	2.360552	-0.338028	C 1.205772 4.743974	-0.142272
С	-4.694789	2.579842	-1.649752	Н 1.403030 5.717900	-0.602590
Н	-5.559515	3.126172	-1.256446	Н 1.545976 4.809949	0.897017
Н	-5.064155	1.617333	-2.021366	Н 0.119516 4.615019	-0.123191
Н	-4.324698	3.135798	-2.517470	C 1.488577 3.393301	-2.887419
С	-2.884105	4.107090	0.258043	Н 1.737127 4.349358	-3.360139
Н	-2.144420	4.115603	1.064186	Н 0.402778 3.275342	-2.977333
Н	-3.770961	4.626421	0.636578	Н 1.958513 2.613058	-3.497096
Н	-2.481056	4.715607	-0.558069	C 0.321727 -1.419667	-1.542117
С	-4.147929	1.454430	1.122857	Н -0.614038 -2.007819	-1.503628
Н	-3.473921	1.361013	1.980225	Н 1.049571 -2.084944	-1.042514
Н	-4.467909	0.442184	0.855253	Si 0.826789 -1.506585	-3.341016
Н	-5.038523	1.989816	1.469174	C 0.565116 -3.211088	-4.145833
С	-0.388987	-0.251623	1.956713	Н -0.489549 -3.506451	-4.120242
Н	-1.481153	-0.427051	2.002048	Н 1.129138 -3.989152	-3.620377
Н	0.032334	-1.245867	2.180714	Н 0.882488 -3.228450	-5.194476
Si	-0.023655	0.739739	3.500205	C 2.665368 -1.070650	-3.550573
С	-1.038214	0.220449	5.022599	Н 2.964060 -1.087913	-4.603846
Н	-0.851178	-0.826133	5.286162	Н 3.307725 -1.784253	-3.023349
Н	-2.113607	0.317580	4.839154	Н 2.906063 -0.074320	-3.164894
Н	-0.803043	0.826483	5.904693	C -0.169680 -0.267841	-4.394226
С	1.808319	0.607917	3.982365	Н -1.248837 -0.429248	-4.298766
Н	2.091876	-0.428221	4.194210	Н 0.075843 -0.370517	-5.456619
Н	2.023019	1.192133	4.883089	Н 0.019554 0.782266	-4.139895
Н	2.471455	0.975166	3.193059	Н -2.214192 0.719742	-1.701526
С	-0.392836	2.592592	3.233811	Н -1.361512 2.209231	-1.657519
Н	-1.444414	2.778723	2.991860		
Н	0.218673	3.060412	2.451336		
Н	-0.182631	3.158810	4.147262		
С	1.755130	1.688423	-0.298186		
Н	2.504256	1.022324	-0.766116		

Н

2.129211 1.792342 0.737323

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Supplementary Material

Fina	al Geometry 3:		Н	4.910814	3.043657	-0.689471
Si	-3.050408 -1.384928	0.185864	Н	3.338104	3.704400	-1.141595
Si	3.050385 1.384915	-0.185828	C	-1.649004	2.169867	-2.696206
0	-1.782340 2.229573	-1.281259	Н	-2.474662	2.702032	-3.182466
0	-0.964281 2.635038	1.258088	Н	-1.684434	1.118407	-2.974399
0	0.964243 -2.635011	-1.258093	Н	-0.693995	2.598048	-3.019123
0	1.782362 -2.229583	1.281233	С	-1.776126	3.555379	-0.769552
Li	-0.649345 0.994720	0.020486	Н	-2.584540	4.145302	-1.222246
Li	0.649308 -0.994723	-0.020451	Н	-0.818834	4.041493	-1.000632
С	-1.400099 -0.890301	0.864476	С	-1.981518	3.473965	0.726274
Н	-1.571882 -0.427259	1.853952	Н	-1.916434	4.479739	1.163049
Н	-0.892565 -1.840902	1.116445	Н	-2.969726	3.055551	0.956184
С	-3.940038 -2.788208	1.130832	С	-1.010885	2.517273	2.674639
Н	-3.338172 -3.704359	1.141742	Н	-0.880321	3.498102	3.146214
Н	-4.910868 -3.043615	0.689574	Н	-0.190360	1.865490	2.965996
Н	-4.118320 -2.512024	2.176020	Н	-1.960217	2.078497	3.001282
С	-2.902864 -2.010590	-1.610222	С	1.010763	-2.517202	-2.674643
Н	-2.547522 -1.221354	-2.282241	Н	1.960051	-2.078360	-3.001324
Н	-3.860271 -2.368788	-2.004085	Н	0.190184	-1.865459	-2.965937
Н	-2.190180 -2.839803	-1.680777	Н	0.880231	-3.498024	-3.146239
С	-4.271674 0.077938	0.165575	С	1.981565	-3.473884	-0.726362
Н	-4.448218 0.462886	1.176915	Н	2.969733	-3.055396	-0.956309
Н	-5.246229 -0.215145	-0.239877	Н	1.916528	-4.479649	-1.163167
Н	-3.894380 0.904846	-0.442718	С	1.776255	-3.555369	0.769472
С	1.400065 0.890314	-0.864431	Н	0.819022	-4.041586	1.000581
Н	1.571818 0.427293	-1.853921	Н	2.584749	-4.145230	1.222105
Н	0.892530 1.840924	-1.116360	С	1.649114	-2.169960	2.696191
С	4.271673 -0.077935	-0.165654	Н	0.694172	-2.598258	3.019151
Н	3.894432 -0.904875	0.442629	Н	1.684452	-1.118510	2.974434
Н	5.246245 0.215152	0.239756	Н	2.474860	-2.702063	3.182371
Н	4.448168 -0.462841	-1.177019				
С	2.902857 2.010471	1.610296				
Н	2.190173 2.839680	1.680900				
Н	3.860262 2.368643	2.004185				
Н	2.547507 1.221195	2.282263				
С	3.939983 2.788257	-1.130733				

Η

4.118260 2.512126 -2.175936

Tanja Tatic^a, Kathrin Meindl^a, Julian Henn^a, Sushil Kumar Pandey^b, and Dietmar Stalke^{*a}

Supplementary Material

References:

- D. Stalke, *Chem. Soc. Rev.*, 1998, **27**, 171; T. Kottke and D. Stalke, *J. Appl. Crystallogr.*, 1993, **26**, 615.
- 2 T. Schulz, K. Meindl, D. Leusser, D. Stern, J. Graf, C. Michaelsen, M. Ruf, G. M. Sheldrick and D. Stalke, *J. Appl. Crystallogr.*, 2009, **42**, 885.
- G. M. Sheldrick, *Acta Crystallogr., Sect. A.*, 2008, 64, 112;
 G. M. Sheldrick, *Methods Enzymol.*, 1997, 277, 319;
 G. M. Sheldrick, *Acta Crystallogr., Sect. A.*, 1990, 46, 467.