Supporting Information

Organocatalyzed Enantioselective Michael Additions of Nitroalkanes to Enones by Using Primary–Secondary Diamine Catalysts

Ying-Quan Yang, ^[a] Xin-Kuan Chen, ^[b] Hua Xiao, ^[a] Wen Liu, ^[a] Gang Zhao^{*[a, b]}

[a] Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China;

[b] Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China.

<u>zhaog@mail.sioc.ac.cn</u>

General Information: Unless otherwise indicated, all compounds and reagents were purchased from commercial suppliers and used without further purification. Proton nuclear magnetic resonance spectra are recorded at 300 MHz. All chemical shifts (δ) are given in ppm. NMR spectra were recorded on Varian EM-360A, Varian EM90 or Brucker AMX-300 NMR spectrometer. IR spectra were recorded on a Perkin-Elmer 983G instrument. MS or HRMS was recorded on a HP-5989A spectrometer. Melting points were determined on a METTLER-TOLEDO FP62 melting point apparatus and are uncorrected. HPLC analysis was carried out on WATERS equipment.

All Catalysts were prepared from our reported literature.¹⁻³

General procedure for the Michael reaction.

To a mixture of enone **2** (0.5 mmol), catalyst **3i** (0.1mmol) and 4-nitrophenol (0.1 mmol) in CH_2Cl_2 (1.0 mL) was added nitroalkne (1.0 mL) at ambient temperature. After 24 h of stirring, the reaction mixture was quenched with 1 M aqueous HCl solution, extracted with EtOAc. The combined organic layer was dried over Na_2SO_4 , filtered, and concentrated to afford the corresponding Michael adduct **4** after flash column chromatography on silica gel (petroleum ether/Et₂O as eluant).

4aa: (S)-5-methyl-5-nitro-4-phenylhexan-2-one ⁴

White solid; $[\alpha]_D^{22}$ -30.9 (*c* 1.0, CHCl₃); m.p. 92-94°C; ¹H NMR (300MHz, CDCl₃) δ 1.45 (s, 3H), 1.53 (s, 3H), 1.99 (s, 3H), 2.68 (dd, J = 3.6, 17.1 Hz, 1H), 3.09 (dd, J = 10.2, 17.1 Hz, 1H), 3.92 (dd, J =

3.3, 10.5 Hz, 1H), 7.17-7.31 (m, 5H); Enantiomeric excess: 88%, determined by HPLC (Chiralpak OD column, hexane/*i*-PrOH 95:5, flow rate 0.7 mL/min, $t_{major} = 31.4$ min, $t_{minor} = 33.3$ min, $\lambda = 214$ nm).

4ab: (S)-4-(4-fluorophenyl)-5-methyl-5-nitrohexan-2-one

Colorless oil; $[\alpha]_D^{22}$ -32.7 (*c* 1.0, CHCl₃); ¹H NMR (300MHz, CDCl₃) δ 1.44 (s, 3H), 1.51 (s, 3H), 2.00 (s, 3H), 2.70 (dd, *J* = 3.3, 17.1 Hz, 1H), 3.03 (dd, *J* = 10.5, 17.1 Hz, 1H), 3.89 (dd, *J* = 2.7, 10.2 Hz, 1H),

6.93-6.99 (m, 2H) , 7.12-7.17 (m, 2H); $^{13}\mathrm{C}$ NMR (CDCl₃, 100MHz) δ

22.9, 25.5, 30.5, 44.2, 48.2, 91.1, 115.7 (d, ${}^{2}J_{CF} = 21.0Hz$), 130.9(d, ${}^{3}J_{CF} = 8.1Hz$), 133.7 (d, ${}^{4}J_{CF} = 3.6Hz$), 162.4 (d, ${}^{1}J_{CF} = 245.8Hz$), 205.2; IR (neat): 3046, 2995, 2950, 1720, 1605, 1535, 1511, 1229, 1163, 848, 819 cm⁻¹; HRMS calc. C₁₃H₁₆O₃NF (M⁺): 253.1114. Found: 253.1115. Enantiomeric excess: 91%, determined by HPLC (Chiralpak AD column, hexane/*i*-PrOH 100:1, flow rate 1.00 mL/min, t_{major} = 34.5min, t_{minor} = 32.0 min, $\lambda = 254$ nm).

4ac: (S)-4-(4-chlorophenyl)-5-methyl-5-nitrohexan-2-one⁴

Colorless oil; $[\alpha]_D^{18}$ -35.2 (*c* 1.0, CHCl₃); ¹H NMR (300MHz, CDCl₃) δ 1.48 (s, 3H), 1.54 (s, 3H), 2.05 (s, 3H), 2.74 (dd, *J* = 3.3, 17.1 Hz, 1H), 3.04 (dd, *J* = 10.5, 17.1 Hz, 1H), 3.90 (dd, *J* = 3.6, 10.8 Hz, 1H), 7.13 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 9.3 Hz, 2H); Enantiomeric excess: 90%, determined by HPLC (Chiralpak AD column,

CI excess: 90%, determined by HPLC (Chiralpak AD column, hexane/*i*-PrOH 90:10, flow rate 1.00 mL/min, $t_{major} = 11.8$ min, $t_{minor} = 10.7$ min, $\lambda = 254$ nm).

4ad: (S)-4-(3-chlorophenyl)-5-methyl-5-nitrohexan-2-one

NO₂ Colorless oil; $[\alpha]_D$ ¹⁸ -33.1 (*c* 1.0, CHCl₃); ¹H NMR (300MHz, CDCl₃) δ 1.45 (s, 3H), 1.52 (s, 3H), 2.02 (s, 3H), 2.70 (dd, *J* = 3.3, 17.7 Hz, 1H), 3.05 (dd, *J* = 10.5, 17.4 Hz, 1H), 3.89 (dd, *J* = 2.7, 10.8 Hz, 1H), 7.05-7.08 (m, 1H), 7.16 (s, 1H), 7.20-7.22 (m, 2H); ¹³C NMR (CDCl₃, 100MHz) δ 22.9, 25.7, 30.6, 44.0, 48.5, 91.0, 127.7, 128.3, 129.4, 130.0, 134.5, 140.2, 204.9; IR (neat): 3651, 3422, 2994, 2951, 1715, 1596, 1537, 1471, 1373, 1164, 1084, 851, 780, 700 cm⁻¹; HRMS calc. C₁₃H₁₆O₃NCl (M⁺): 269.0819. Found: 269.0818. Enantiomeric excess: 87%, determined by HPLC (Chiralpak AD column, hexane/*i*-PrOH 100:1, flow rate 1.00 mL/min, t_{major} = 24.8 min, t_{minor} = 22.2 min, λ = 254 nm).

4ae: (S)-4-(2-chlorophenyl)-5-methyl-5-nitrohexan-2-one

NO₂
Colorless oil;
$$[\alpha]_D^{22}$$
 -42.0 (c 1.0, CHCl₃); ¹H NMR (300MHz,

CDCl₃) δ 1.52 (s, 3H), 1.54 (s, 3H), 2.00 (s, 3H), 2.81 (dd, J = 3.6, 17.1 Hz, 1H), 3.02 (dd, J = 10.8, 17.1 Hz, 1H), 4.62 (dd, J = 3.3, 10.5 Hz, 1H), 7.08-7.11 (m, 1H), 7.16-7.20 (m, 2H), 7.37-7.40 (m, 1H); ¹³C NMR (CDCl₃, 100MHz) δ 22.2, 26.3, 30.2, 43.3, 44.9, 91.5, 127.3, 128.4, 129.1, 130.4, 136.2, 136.3, 205.2; IR (neat): 3067, 2994, 2950, 2870, 1714, 1571, 1536, 1472, 1438, 1164, 1036, 850, 757, 685 cm⁻¹; HRMS calc. C₁₃H₁₆O₃NCl (M⁺): 269.0819. Found: 269.0824. Enantiomeric excess: 86%, determined by HPLC (Chiralpak AD column, hexane/*i*-PrOH 90:1 0, flow rate 1.00 mL/min, t_{major} = 8.0 min, t_{minor} = 8.4 min, λ = 254 nm).

4af: (S)-4-(4-methoxyphenyl)-5-methyl-5-nitrohexan-2-one

Colorless oil; $[\alpha]_D^{22}$ -22.7 (*c* 1.0, CHCl₃); ¹H NMR (300MHz, CDCl₃) δ 1.43 (s, 3H), 1.51 (s, 3H), 1.98 (s, 3H), 2.63 (dd, *J* = 3.3, 17.1 Hz, 1H), 3.02 (dd, *J* = 10.5, 16.5 Hz, 1H), 3.73 (s, 3H), 3.85 (dd, *J* = 3.6, 10.8 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 100MHz) δ 22.6, 25.7, 30.5, 44.2, 48.4, 55.4, 91.5,

114.1, 129.6, 130.4, 159.3, 205.7; IR (neat): 3668, 3647, 3420, 3038, 2996, 2955, 2839, 1705, 1612, 1583, 1538, 1515, 1470, 1241, 834 cm⁻¹; HRMS calc. $C_{14}H_{19}O_4N$ (M⁺): 265.1314. Found: 265.1311. Enantiomeric excess: 91%, determined by HPLC (Chiralpak AD column, hexane/*i*-PrOH 100:1, flow rate 1.00 mL/min, $t_{major} = 61.5$ min, $t_{minor} = 75.3$ min, $\lambda = 254$ nm).

4ag: (S)-5-methyl-5-nitro-4-(4-nitrophenyl)hexan-2-one⁴

White solid; $[\alpha]_D^{22}$ -43.0 (*c* 1.0, CHCl₃); m.p. 89-91°C; ¹H NMR (300MHz, CDCl₃) δ 1.48 (s, 3H), 1.55 (s, 3H), 2.05 (s, 3H), 2.84 (dd, J = 3.0, 17.7 Hz, 1H), 3.13 (dd, J = 10.8, 18.0 Hz, 1H), 4.01 (dd, J =3.0, 10.8 Hz, 1H), 7.37 (d, J = 9.0 Hz, 2H), 8.12 (d, J = 8.4 Hz, 2H); Enantiomeric excess: 91%, determined by HPLC (Chiralpak AD

NO₂ Enantiomeric excess: 91%, determined by HPLC (Chiralpak AD column, hexane/*i*-PrOH 90:10, flow rate 1.00 mL/min, $t_{major} = 53.2$ min, $t_{minor} = 34.3$ min, $\lambda = 254$ nm).

4ah: (*R*)-4-(furan-2-yl)-5-methyl-5-nitrohexan-2-one⁴

Colorless oil; $[\alpha]_D^{22}$ -28.3 (*c* 1.0, CHCl₃); ¹H NMR (300MHz, CDCl₃) δ 1.47 (s, 3H), 1.54 (s, 3H), 2.05 (s, 3H), 2.50 (dd, *J* = 2.7, 16.8 Hz, 1H), 3.07 (dd, *J* = 11.4, 17.1 Hz, 1H), 4.09 (dd, *J* = 3.0, 10.8 Hz, 1H), 6.15 (d, *J* = 3.0 Hz, 1H), 6.26-6.27 (m, 1H), 7.29-7.30 (m, 1H);

Enantiomeric excess: 88%, determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 80:20, flow rate 0.60 mL/min, $t_{major} = 9.1 min$, $t_{minor} = 8.8 min$, $\lambda = 254 mm$).

4ai: (S)-6-methyl-6-nitro-5-phenylheptan-3-one⁴

Colorless oil; $[\alpha]_D^{22}$ -17.7 (*c* 1.0, CHCl₃); ¹H NMR (300MHz, CDCl₃) δ 0.87 (t, *J* = 7.2 Hz), 1.45 (s, 3H), 1.54 (s, 3H), 2.14-2.43 (m, 2H), 2.65 (dd, *J* = 2.4, 17.1 Hz, 1H), 3.08 (dd, *J* = 10.5, 16.5 Hz, 1H), 3.92-3.96 (m, 1H), 7.16-7.27 (m, 5H); Enantiomeric excess: 90%, determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 80:20, flow rate 0.60 mL/min, t_{major} =8.6 min, t_{minor} = 9.1 min, λ = 220 nm).

4aj: (*R*)-4-(2-nitropropan-2-yl)octan-2-one⁴

Colorless oil; $[\alpha]_D^{26}$ -20.7 (*c* 1.0, CHCl₃); ¹H NMR (300MHz, CDCl₃) δ 0.82 (t, *J* = 6.9 Hz, 3H), 0.99-1.31 (m, 6H), 1.47 (s, 3H), 1.49 (s, 3H), 2.14 (s, 3H), 2.27-2.52 (m, 2H), 2.68-2.76 (m, 1H); Enantiomeric excess: 91%, determined by HPLC (Chiralpak AS-H column,

hexane/*i*-PrOH 90:10, flow rate 0.70 mL/min, $t_{major} = 9.5 \text{ min}$, $t_{minor} = 8.8 \text{ min}$, $\lambda = 220 \text{ nm}$).

4ak: (*R*)-3-(2-nitropropan-2-yl)cyclohexanone⁴

White solid; $[\alpha]_D^{26}$ -13.7 (*c* 1.0, CHCl₃); m.p. 61-63°C; ¹H NMR (300MHz, CDCl₃) δ 1.30-1.45 (m, 1H), 1.50 (s, 3H), 1.52 (s, 3H), 1.55-1.64 (m, 1H), 1.72-1.77 (m, 1H), 2.02-2.40 (m, 6H); Enantiomeric excess: 60%, determined by GC (HP chiral 20% Permethylated B-Cyclodextrin, flow rate 2.0 mL/min, 10°C/min from 110°C to 200°C t_{major} = 149.9 min, t_{minor} = 154.6 min).

4al: (S)-4-methyl-4-nitro-1,3-diphenylpentan-1-one⁵

 O_2N

White solid; $[\alpha]_D^{24}$ -77.5 (*c* 1.0, CHCl₃); m.p. 147-149°C; ¹H NMR (400MHz, CDCl₃) δ 1.54 (s, 3H), 1.63 (s, 3H), 3.27 (dd, *J* = 3.2, 17.2 Hz, 1H), 3.68 (dd, *J* = 10.4, 17.6 Hz, 1H), 4.15 (dd, *J* = 3.2, 10.0 Hz, 1H), 7.22-7.27 (m, 5H), 7.42 (t, *J* = 8.0 Hz, 2H),

7.53 (t, J = 7.2 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2H); Enantiomeric excess: 92%, determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 90:10, flow rate 0.80 mL/min, t_{major} = 15.4 min, t_{minor} = 17.6 min, $\lambda = 254$ nm).

4ba: (S)-5-nitro-4-phenylpentan-2-one⁴

Ο

White solid; $[\alpha]_D{}^{18}$ 3.3 (*c* 1.0, CHCl₃); m.p. 109-111°C; ¹H NMR (300MHz, CDCl₃) δ 3.14 (s, 3H), 2.92 (d, *J* = 6.9 Hz, 2H), 3.96-4.06 (m, 1H), 4.57-4.73 (m, 2H), 7.20-7.36 (m, 5H);

Enantiomeric excess: 91%, determined by HPLC (Chiralpak AD column, hexane/*i*-PrOH 90:10, flow rate 1.0 mL/min, $t_{major} = 13.7$ min, $t_{minor} = 14.5$ min, $\lambda = 254$ nm).

References

1. Y.-Q. Yang and G. Zhao, Chem. Eur. J. 2008, 14, 10888.

2. Y.-Q. Yang, Z. Chai, H.-F. Wang, X.-K. Chen, H.-F. Cui, C.-W. Zheng, H. Xiao, P. Li and G. Zhao, *Chem. Eur. J.* 2009, **15**, 13295.

3. H.-F. Cui, Y.-Q. Yang, Z. Chai, P. Li, C.-W. Zheng, S.-Z. Zhu, and G. Zhao J. Org. Chem. 2010, **75**, 117.

4. N. Halland, R. G. Hazell and K. A. Jørgensen, J. Org. Chem. 2002, 67, 8331.

5. D. Y. Kim and S. C. Huh, Tetrahedron. 2001, 57, 8933.

200

0 PPM

4ae (¹³C NMR)

4ba (1 H NMR)

HPLC spectra for compounds 4

4aa

Software Version	: 6.3.1.0504	Date	: 2009-6-1 14:20:33	
Sample Name	: Y6-16-A+-	Data Acquisition Time	: 2009-6-1 13:40:27	
Instrument Name	: NCI901	Channel	: A	
Rack/Vial	: 0/0	Operator	: manager	
Sample Amount	: 1.000000	Dilution Factor	: 1.000000	
Cycle	: 1			

Result File : Sequence File : D:\200090601-.seq

HPLC REPORT

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	BL
		30 993	6575756.38	127246.97	48.989	BV
2		32.636	6825369.73	120799.93	50.849	W
3		34.833	20332.42	715.36	0.151	VB
4		36.061	801.18	91.63	0.006	BB
5		36.493	673.59	103.14	0.005	BB

1.34e+07 248957.03 1e+02

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Software Version : 6.3.1.0504 Sample Name : Y6-22-A Instrument Name : NCI901 Rack/Vial : 0/0 Sample Amount : 1.000000 Cvcle : 1	Date : 200 Data Acquisition Time : 200 Channel : A Operator : ma Dilution Factor : 1.0	09-6-1 14:58:23 09-6-1 14:19:26 nager 00000
--	--	--

Result File : Sequence File : D:\200090601-.seq

HPLC REPORT

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	BL
1		30.001	515.56	46.47	0.001	BV
2		30.145	129.89	32.73	3e-04	W
3		31.430	3.50e+07	571868.10	92.751	VE
4		33.264	2247075.10	41892.25	5.946	EV
5		35.470	490786.92	8289.21	1.299	VB
6		36.908	562.31	64.67	0.001	BB
7		37.101	356.44	55.24	9e-04	BB

3.78e+07 622248.67 1e+02

4ab

4ac

4ad

Peak No.	Peak ID	Ket 1 ime	Height	Area	Conc.
1		25.273	2237.406	133312.656	51.6640
2		33.770	1739.753	124725.125	48.3360
Total			3977.160	258037.781	100.0000

4ae

4af

Time(min)

4ag

4ah

4ai

4aj

4ak

*** End of Report ***

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

4al

4ba

