Electronic Supplementary Information

Triptycene-derived oxacalixarene with expanded cavity: synthesis, structure and its complexation with fullerenes C₆₀ and C₇₀

Shu-Zhen Hu and Chuan-Feng Chen*

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

E-mail: cchen@iccas.ac.cn

Content

1. Synthesis and characterization data of macrocycle 1	-S2
2. Variable-temperature ¹ H NMR experiments of macrocycle 1	-S3
3. Job plot for the complex $1 \cdot C_{60}$	-S3
4. Fluorescence titration spectra of 1 with C ₇₀	-S4
5. Copies of ¹ H NMR and ¹³ C NMR spectra of macrocycle 1	S5
6. Crystal structure of 1	-S6

1. Synthesis and characterization data of macrocycle 1

Under an argon atmosphere, a mixture of 2,7-dihydroxytriptycene (143 mg, 0.5 mmol), 2,7-Dichloro-1,8-naphthyridine (100 mg, 0.5 mmol), Cs₂CO₃ (488 mg, 1.5 mmol) in dry 1,4-dioxane (250 ml, 0.002 M) was stirred at reflux temperature for 48 h. The mixture was cooled down to room temperature and the solvent was completely removed. The crude residue was redissolved in a mixture of CH₂Cl₂ and water. The organic fraction was separated, washed with water, brine, dried over Na₂SO₄, filtered and evaporated to dryness. Purification by column chromatography over silica gel (200-300 mesh) (eluent: 1:100 ethyl acetate/CH₂Cl₂) afford **1** (76 mg, 37%) as a white solid. Mp: > 300 °C. ¹H NMR (300 MHz, CDCl₃): δ 5.23 (s, 2H), 5.41 (s, 2H), 6.94-7.00 (m, 16H), 7.30-7.37 (m, 8H), 8.00 (d, *J* = 8.7 Hz, 4H). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 163.5, 153.3, 150.6, 146.6, 145.8, 145.1, 141.3, 140.9, 125.1, 124.9, 124.3, 123.7, 123.4, 117.2, 116.6, 116.1, 112.2, 52.1, 51.4.

MALDI-TOF MS: *m/z* 825.5 [M+H]⁺, 847.5 [M+Na]⁺, 863.4 [M+K]⁺. Anal. Calcd for C₅₆H₃₂N₄O₄·2CH₂Cl₂·0.5H₂O: C 69.40, H 3.72, N 5.58; found C 69.66, H 3.81, N 5.59.

S2

2. Variable-temperature ¹H NMR experiments of macrocycle 1

Fig. S1 Partial ¹H NMR spectra of **1** (DMSO- d_6 , 300 MHz) at various temperatures.

3. Job plot for the complex 1•C₆₀

Fig. S2 Left: the Job plot for the complex $1 \cdot C_{60}$ in toluene solution ([1]+[C_{60}]= 2×10^{-5} mol dm⁻³). Right: the variation of fluorescence intensity F_0/F_{cal} of 1 with increasing C_{60} concentration.

4. Fluorescence titration spectra of 1 with C_{70}

Fig. S3 Emission spectra ($\lambda_{ex} = 330 \text{ nm}$) of **1** (2×10⁻⁵ mol dm⁻³) in the presence of C₇₀ (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 equiv.) in toluene.

Fig. S4 Left: the Job plot for the complex $1 \cdot C_{70}$ in toluene solution ([1]+[C_{70}]= 2×10^{-5} mol dm⁻³). Right: the variation of fluorescence intensity F_0/F_{cal} of 1 with increasing C_{70} concentration.

5. Copies of ¹H NMR and ¹³C NMR spectra of macrocycle 1

Fig. S5 1 H NMR spectrum (300 MHz, CDCl₃) of **1**.

Fig. S6 13 C NMR spectrum (75 MHz, DMSO- d_6) of **1**.

6. Crystal structure of 1

X-ray structural analysis was performed on a Rigaku MM007HF + CCD (Saturn 724+) diffractometer. Data collection: CrystalClear (Rigaku Inc., 2008). Structure solution and structure refinement: SHELX-97 (Sheldrick, 1997). SQUEEZE in PLATON was used to remove disordered solvents.

Fig. S7 Crystal structures (a, c) top view and (b, d) side view of **1** that adopts a distorted 1,3-alternate conformation. Solvent molecules and hydrogen atoms are omitted for clarity.