Supplementary Information:

⁶Li MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li₂MnSiO₄ polymorphs

Gregor Mali, ^{†,*} Anton Meden[‡] and Robert Dominko[†]

[†]National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia. [‡]Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia. gregor.mali@ki.si

Hydrothermal synthesis was carried out using one equivalent of MnCl₂.H₂O (Aldrich), one equivalent of SiO₂ (Cab-osil[®] M-5, Riedel-de Haën) and four equivalents of LiOH.H₂O (Aldrich). Typically half a mol of SiO₂ was dispersed in 100 ml of oxygen-free mili-Q water in the ultra sound bath within one hour. Then subsequently LiOH and MnCl₂ solutions were added under vigorous stirring in argon atmosphere. The prepared slurry was sealed into Teflon-lined stainless-steel reactor (Berghof) under the overpressure of argon (10 bar) and left there for 6 hours at 180°C. After the synthesis was completed, the resulting powder was washed with LiOH solution and dried at 100°C in an argon atmosphere. As prepared sample, heated to 400°C in argon atmosphere, showed equal isotropic NMR shift as high pressure/high temperature treated sample in one of our previous studies [1]. Its X-ray diffraction pattern was also successfully fitted using $Pmn2_1$ space group (Fig. S1a). The other two samples were prepared by additional thermal treatment. Based on first principle calculations [1] and on the previous work [2] Li_2MnSiO_4 polymorph with a *Pmnb* space group could be prepared by slow cooling of the sample from 900°C (Fig. S1b). Thus one part of hydrothermally prepared sample was heated to 900°C in argon atmosphere, left there for 3 hours, and was then cooled down to room temperature with a rate of 1°C/min. The last sample in our study, γ -Li₂MnSiO₄ polymorph, whose X-ray diffraction pattern can be fitted using $P2_1/n$ space group, was obtained by thermal treatment of the hydrothermally prepared sample at 900°C for 6 hours, followed by quenching to room temperature in argon atmosphere (Fig. S1c).

X-ray diffraction patterns of the Li_2MnSiO_4 polymorphs were collected at room temperature using Siemens D5000 powder diffractometer in the 10-90°2 Θ range in steps of 0.04° (2 Θ) with the constant counting time of 16 s per step. The patterns were analyzed by Rietveld refinement as implemented in the Fullprof program [3]. Refined X-ray diffraction patterns are shown in Figure S1. All three Li_2MnSiO_4 samples used in our study contain small amount of impurities identified as Mn_2SiO_4 and/or Li_2SiO_3 . Cell parameters for each polymorph and the agreements of fits with measurements are given in Table S1.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Space group	a (Å)	b (Å)	<i>c</i> (Å)	β (°)	Rwp	χ^2
$Pmn2_1$	6.2762(9)	5.3355(8)	4.9614(9)	/	7.93%	2.27
Pmnb	6.3148(1)	10.7742(5)	5.0138(2)	/	11.5%	7.49
$P2_{l}/n$	6.3435(4)	10.9208(7)	5.0818(5)	90.982(2)	8.28%	4.15

Table S1: Refined cell parameters for the Li₂MnSiO₄ samples used in our study:

Figure S1: X-ray diffraction patterns refined using the Rietveld method considering a) Li_2MnSiO_4 crystallized in *Pmn2*₁ space group with Li_2SiO_3 as an impurity; b) Li_2MnSiO_4 crystallized in *Pmnb* space group with Li_2SiO_3 and Mn_2SiO_4 as impurities; c) Li_2MnSiO_4 crystallized in *P2*₁/*n* space group with Mn_2SiO_4 as an impurity.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Solid-state ⁶Li magic-angle spinning (MAS) NMR spectra were recorded on a 600 MHz Varian NMR system, operating at ⁶Li Larmor frequency of 88.274 MHz, with rotation synchronized Hahn-echo pulse sequence. Sample rotation frequency was 22.73 kHz, repetition delay between consecutive scans was 0.1 s and number of scans was 15 000. Frequency axis in ppm is reported relative to the lithium signal of 1M solution of LiCl. Spinning-sideband powder patterns were analyzed by Spinevolution simulation package [4]. In addition to electron-nucleus dipolar interaction, which is formally equivalent to chemical shift anisotropy, weak electric quadrupolar interaction was also considered when fitting the spectra of ⁶Li nuclei. Measured and best-fit spectra are shown in Figure S2.

Figure S2. Spinning-sideband powder patterns for four different lithium sites in Li_2MnSiO_4 polymorphs. The intensities of centerbands and spinning sidebands were first extracted from the measured spectra using 'dmfit' software [5]. The intensities were then used for comparison with simulated spectra during a Spinevolution fitting procedure.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

First-principles calculations were performed using density functional theory (DFT) in the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA PBE) [6] with plane wave basis and normconserving pseudopotentials. In the first step the structures of Li₂MnSiO₄ polymorphs, Li₂MnO₃, Li₆CoO₄, and LiMnPO₄ were relaxed and 'final' ground state energies were recalculated with the optimized geometries. In all calculations plane-wave cutoff energy was 1100 eV. The reciprocal-space sampling was performed with *k*-point grids of 2x4x4 points for LiMnPO₄, 4x4x4 points for Li₂MnSiO₄ polymorphs and for Li₂MnO₃, and 6x6x4 points for Li₆CoO₄. All-electron information was reconstructed using the Projector Augmented Wave (PAW) method [7] as implemented in Quantum Espresso's GIPAW module [8]. The module yielded hyperfine coupling constants, which were then used for quantitative prediction of isotropic shifts.

References

[1] M. E. Arroyo-DeDompablo, R. Dominko, J. M. Gallardo-Amores, L. Dupont, G. Mali, H. Ehrenberg, J. Jamnik, E. Moran, *Chem. Mater.* 2008, **20**, 5574.

[2] R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, *Electrochemistry Commun.* 2006, **8**, 217.

[3] J. R. Carvajal, See a report in CPD of IUCr, Newsletter 26, (2001) 12; available at http://www.iucr.org/iucr-top/comm/cpd/Newsletters. 1993, 55.

[4] M. Veshtort, R. G. Griffin, J. Magn. Reson. 2006, 178, 248

[5] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J. O. Durand, B. Bujoli, Z. H. Gan, G. Hoatson, *Magn. Reson. Chem.* 2002, 40, 70.

[6] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1999, 77, 3865.

[7] P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[8] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, *Journal of Physics: Condensed Matter* 2009, **21**, 395502. (http://www.quantum-espresso.org)