Elusive ethynyl azides:

trapping by 1,3-dipolar cycloaddition and decomposition to cyanocarbenes

Klaus Banert,*^a Manfred Hagedorn,^a Jens Wutke,^a Petra Ecorchard,^b Dieter Schaarschmidt^b and Heinrich Lang^b

- ^a Chemnitz University of Technology, Organic Chemistry, Strasse der Nationen 62, 09111 Chemnitz, Germany. Fax: 0049 371 531 21229; e-mail: <u>klaus.banert@chemie.tu-</u> <u>chemnitz.de</u>.
- ^b Chemnitz University of Technology, Inorganic Chemistry, Strasse der Nationen 62, 09111 Chemnitz, Germany. (single crystal X-ray diffraction analysis)

SUPPLEMENTARY INFORMATION

TABLE OF CONTENTS

GENERAL	2
EXPERIMENTAL PROCEDURES	3
CHARACTERISATION DATA	16
REFERENCES	37
COPIES OF ¹ H/ ¹³ C NMR SPECTRA OF ALL NEW COMPOUNDS	38

GENERAL

Safety

Azides should always be handled with care. Organic azides, particularly those of low molecular weight or with high nitrogen content, are potentially explosive.^[S1] Heat, light and pressure can cause decomposition under loss of dinitrogen. Furthermore, the azide ion is toxic and the use of gloves is highly recommended when working with ionic azides (NaN₃, LiN₃).

Equipment

IR spectra have been measured using a BRUKER FT-IR spectrometer IFS 28 or a machine PERKIN ELMER "Spektrum 1000", respectively. The intensity of the peaks is given in brackets using the following abbreviations: br = broad, vs = very strong, s = strong, m = medium, w = weak and vw = very weak.

NMR spectra have been recorded using a VARIAN UNITY INOVA 400 spectrometer. The measuring frequency was 399.93 MHz (¹H NMR measurements) or 100.56 MHz (¹³C NMR measurements), respectively. Chemical shift values are reported in ppm with the solvent resonance as internal standard (CDCl₃: 7.26 ppm for ¹H and 77.0 ppm for ¹³C, DMSO-d₆: 2.50 ppm for ¹H and 39.50 ppm for ¹³C, CD₂Cl₂: 5.30 ppm for ¹H and 53.73 ppm for ¹³C). The multiplicity is described using the following abbreviations and their combination: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet and m = multiplet. The prefix *pseudo* indicates coupling patterns resulting from highly coupled spin systems which are apparently evaluatable as first order multiplicities. The ¹³C NMR data comprise the information from the DEPT experiment. As long as nothing else is mentioned, all spectra were recorded at ambient temperature.

Elemental analyses have been performed using a machine Elementanalysator VARIO EL of ELEMENTAR ANALYSENSYSTEME GmbH Hanau or with a machine VARIO MICRO CUBE of ELEMENTAR, respectively.

Mass spectra have been recorded using a APPLIED BIOSYSTEMS spectrometer MARINER 5229 or a Bruker micrOTOF-QII spectrometer, respectively. For both spectrometers ionisation was realized by electrospray ionisation (ESI). The m/z values of the high resolution (HR) mass spectra were determined by comparison with internal standards.

Melting points were measured with a Boetius apparatus of PENTAKON Dresden. The received values are not corrected.

Flash chromatography was performed using the method of Still^[S2] with silica gel 60 M (size 0.04–0.063 mm / 230–400 mesh ASTM for column chromatography) of the company Macherey-Nagel. TLC analyses were performed on Macherey-Nagel precoated silica gel Polygram Sil G/UV₂₅₄ plates and visualized by UV or oxidation (KMnO₄), respectively.

Single crystal X-ray diffraction analyses were made with a machine Oxford Gemini S at the Inorganic Chemistry at the Chemnitz University of Technology.

EXPERIMENTAL PROCEDURES

Synthesis of literature-known compounds
Reactions of vinyl azide 1
<i>Reaction of vinyl azide</i> 1 <i>under thermal conditions in DMSO (analogue to Hassner</i> ^[6b]) $[1 \rightarrow 6]$ 4
Reaction of vinyl azide 1 with cyclooctyne $[1 \rightarrow 2]$
<i>Reaction of vinyl azide</i> 1 <i>with aniline</i> $[1 \rightarrow 8]$
Photolysis of vinyl azide $1 [1 \rightarrow 5]$
Reaction of azirine 5 with aniline $[5 \rightarrow 8]$
Synthesis of the (chloroethynyl)arenes 10 and 19
Reaction of the (chloroethynyl)arenes with NaN_3/LiN_3 in DMSO [10/19 \rightarrow 14/20]
Control experiment to the formation of 14 starting from diazirine $16 [16 \rightarrow 14]$
<i>Reaction of (chloroethynyl)benzene</i> (10) <i>with LiN</i> ₃ <i>and cyclooctyne in DMSO</i> $[10 \rightarrow 15 + 17]$ 8
<i>Reaction of (chloroethynyl)benzene</i> (10) <i>with LiN</i> ³ <i>and cyclooctyne in DMF</i> $[10 \rightarrow 15 + 17]$
<i>Reaction of (chloroethynyl)benzene</i> (10) <i>with</i> NaN_3 <i>and cyclooctyne in HMPTA</i> [10 \rightarrow 15 + 17] 10
Control experiments to the formation of 17 11
<i>Reaction of (chloroethynyl)benzene</i> (10) <i>with</i> NaN_3 <i>and tolane in</i> DMF [10 \rightarrow 18]
<i>Reaction of vinyl azide</i> 13 <i>with cyclooctyne</i> $[13 \rightarrow 15]$
Reaction of (chloroethynyl) biphenyl (19b) with LiN_3 and cyclooctyne in DMF
Intramolecular trapping of ethynyl azides
<i>Reaction of (chloroethynyl)benzyl alcohol (</i> 19h <i>) with</i> NaN_3 <i>in sulfolane</i> [19h \rightarrow 23]13
Synthesis of heterocycle 23 from aldehyde 24 and hydrogen cyanide $[24 \rightarrow 23]$
Reactions of (chloroethynyl) propyl thioether (25b)
Synthesis of 25b
Attempt to reproduce the described ^[18] reaction starting from $25b$ and NaN_3
<i>Reaction of</i> 25b <i>with</i> NaN_3 <i>and cyclooctyne in</i> DMF [25b \rightarrow 26b]

Synthesis of literature-known compounds

The literature-known compounds have been synthesized according to the literature given in the following table and obtained in the mentioned yields.

Compound	Literature	Yield (%)
1	[6b]	45 %
16	analogue to [S3]	3.4 % (over 2 steps)
24	[S4]	49 %

Reactions of vinyl azide 1

Reaction of vinyl azide 1 under thermal conditions in DMSO (analogue to Hassner^[6b])

Dimethyl sulfoxide (20 mL, 22 g, 282 mmol, 60 °C) was heated to 150 °C and vinyl azide **1** (1.65 g, 4.7 mmol, 1 eq) was added dropwise over about three minutes. The reaction mixture was stirred for another two minutes at the same temperature, then the hot mixture was poured into chilled aqueous sodium thiosulfate (2 % m/V, 3.00 g Na₂S₂O₃ diluted into 100 mL of water and top up to 150 mL with ice). After extraction with methylene chloride (3x 50 mL) the combined organic layers were dried over magnesium sulfate and the solvent was removed with a rotary evaporator at room temperature. Thereafter, the DMSO was removed *in vacuo* at 10^{-3} Torr and the residue (500 mg) was chromatographed on silica gel. Using a mixture chloroform/*n*-hexane = 1:1 as eluent, 149 mg of (*E*)-6 (27 %) and, after solvent change to diethyl ether, 118 mg of (*Z*)-6 (22 %) could be isolated but no sulfoxonium ylide **14** was observed.

Reaction of vinyl azide 1 with cyclooctyne

Vinyl azide **1** (1.00 g, 2.86 mmol, 1 eq) was diluted in anhydrous tetrahydrofuran (5 mL) and cyclooctyne (467 mg, 4.32 mmol, 1.5 eq) was added dropwise under vigorously stirring. The mixture was reacted for 5 hours at room temperature. After removing of the cyclooctyne excess and the solvent in vaccum (10^{-2} mbar, 30 °C), the residue was purified by flash chromatography on silica gel (4x 20 cm, eluent: Et₂O/*n*-hexane = 2:1) to yield 1.20 g of cyclooctatriazole **2** (100 %).

Reaction of vinyl azide 1 with aniline

Vinyl azide **1** (103 mg, 0.294 mmol, 1 eq) was placed in CDCl₃ (0.5 mL) in an NMR tube and 1,4-dioxane (20 mg, 0.227 mmol, 0.8 eq) was added as internal standard. Freshly distilled aniline (69 mg, 0.741 mmol, 2.5 eq) was given to the solution in a single portion and the closed tube was heated to 40 °C for 15½ hours. The formed solid was filtered off, washed with chloroform and dried in vacuum to give aniline hydrobromide (17 mg, 33 %). The filtrate was evaporated using a rotary evaporator (ambient temperature) and the residue (52 mg, orange-brown oil) was purified by chromatography on silica gel (2x 31 cm, eluent: CHCl₃) to give 16 mg of **1** ($R_f = 0.94$, 16%) and 19 mg of **8** ($R_f = 0.77$, 32%).

Photolysis of vinyl azide 1

Photolysis was performed using a 150 W mercury high pressure burner of Quarzlampengesellschaft Hanau. Cooling of lamp and photolysis sample was realized with ethanol using a machine Ultra-Kryomat® of MGW Lauda.

Freshly purified (chromatography on silica gel) vinyl azide **1** (30 mg, 0.086 mmol, 1 eq) was placed in CD_2Cl_2 (0.8 mL, 99.6 %) in an NMR tube. The mixture was frozen using liquid nitrogen and the tube was melted down. Then, the solution was photolysed at -70 °C over 2 hours, carried at -65 °C to the NMR spectrometer and measured at ambient temperature. Using the solvent signal as internal standard, 2*H*-azirine **5** was obtained in 90 % yield.

Subsequently, the sample was stored for 17 hours at room temperature in which azirine **5** decomposed completely to give a complex mixture. Thereafter, the NMR tube was heated to 85 °C until no significant changes could be observed anymore. After 4 days the mixture was converted completely into the dicyanostilbenes **6** (*cis*-**6** / *trans*-**6** = 1:2.4). The *E* isomer was obtained in 77 % yield (using the solvent signal as internal standard), the *Z* isomer could not be determined exactly (about 30 %) caused by overlapping of the proton signals.

Reaction of azirine 5 with aniline

Vinyl azide **1** (93 mg, 0.266 mmol, 1 eq) was placed in CDCl₃ (0.5 mL) in an NMR tube and 1,4-dioxane (14 mg, 0.159 mmol, 0.6 eq) was added as internal standard. The resulting mixture was photolysed at -50 °C over 2 hours to yield 66 % 2*H*-azirine **5** as shown by low temperature ¹H NMR measurement (-50 °C). Freshly distilled aniline (62 mg, 0.666 mmol, 2.5 eq) was added and the sealed NMR tube was heated to 40 °C for 15½ hours. The formed solid was filtered off, washed with chloroform and dried in vacuum to give aniline hydrobromide (40 mg, 87 %). The filtrate was evaporated using a rotary evaporator (ambient temperature) and the residue (70 mg, orange-red viscous oil) was purified by chromatography on silica gel (3x 22 cm, eluent: CHCl₃) to give 9 mg of **1** ($R_f = 0.93$, 9%) and 9 mg of **8** ($R_f = 0.82$, 16%).

Synthesis of the (chloroethynyl)arenes 10 and 19

The alkyne precursor **S1** (1 eq) was dissolved in anhydrous THF in an inert nitrogen atmosphere which was maintained throughout the reaction. The mixture was cooled down (see Table 1) and a solution of 2.5 M *n*-butyllithium (in anhydrous *n*-hexane), diluted by THF in some cases (see Table 1), was added dropwise over 15-30 minutes maintaining the temperature. After vigorously stirring for 15-30 minutes, benzenesulfonyl chloride (diluted by THF or pure) was added at the same temperature over 15-30 minutes. The reaction mixture was allowed to warm up to room temperature under vigorously stirring, still maintaining the inert atmosphere. Then, water (about the same amount as THF) was added dropwise and the mixture was extracted with an organic solvent. The combined organic layers were dried over magnesium sulfate and evaporated to dryness using a rotary evaporator (room temperature). Purification of the crude product was realized by vacuum distillation or column chromatography, respectively.

Isolated yields and the exact reaction parameters can be found in Table 1.

Table 1. Reaction conditions for the conversion $S1 \rightarrow 19$.

¹ the temperature ± 10 °C was maintained throughout the complete addition of *n*BuLi and PhSO₂Cl

- 2 means the volume of tetrahydrofuran in which the alkyne precursor **S1** is placed
- ³ means the volume of tetrahydrofuran in which the nBuLi or the PhSO₂Cl is dissolved
- ⁴ reaction time in which the reaction mixture is allowed to warm up to room temperature

⁵ the workup contains the solvent used for extraction and the purification method: *a*) vacuum distillation, *b*) flash-chromatography on silica gel, the eluent as well as the $R_{\rm f}$ value is given at the substance characterisation

⁶ **S1i** fits to phenylacetylene, in all other cases the small formula letter is in accordance with scheme 3 of the communication article

Starting material		Temperature ¹ / V(THF) ²	<i>n-</i> BuLi / V(THF) ³	PhSO ₂ Cl / V(THF) ³	Time ⁴ / Workup ⁵	Product
S1i ⁶	245 mmol	-40 °C / 200 mL	1.02 eq / without solvent	1.02 eq / 60 mL	26 h / <i>n</i> -pentane, <i>a</i>	58 % 10
S1a	10 mmol	-30 °C / 15 mL	1.05 eq / without solvent	1.2 eq / without solvent	overnight / <i>n</i> -pentane, <i>a</i>	89 % 19a
S1b	20 mmol	-60 °C / 35 mL	1.02 eq / 20 mL	1.02 eq / without solvent	45 h / Et ₂ O, <i>b</i>	26 % 19b +37% S1b
S1c	3.7 mmol	-60 °C / 5 mL	1.02 eq / 3 mL	1.02 eq / without solvent	47 h / Et ₂ O, <i>b</i>	63 % 19c
S1d	7.1 mmol	–60 °C / 10 mL	1.7 eq / 5 mL	1.2 eq / 10 mL	22 h / Et ₂ O, <i>b</i>	45 % 19d +31% S2d
S1e	12 mmol	-85 °C / 20 mL	1.5 eq / 6 mL	1.5 eq / without solvent	45 h / Et ₂ O, <i>b</i>	61 % 19e
S1g	3.2 mmol	–50 °C / 10 mL	1.5 eq / without solvent	1.2 eq / 5 mL	overnight / Et ₂ O, <i>b</i>	45 % 19g

The alcohol **19h** was prepared from the tetrahydropyran **19g** using a modified literature procedure^[S5] as follows:

1.44 mL concentrated sulfuric acid (96 %) was carefully diluted in methanol (25 mL) and the tetrahydropyran derivative **19g** was added dropwise at ambient temperature. After stirring overnight, aqueous sodium hydroxide was slowly added until the *p*H indicated complete neutralisation of the acid. Water was added and the mixture was extracted with diethyl ether. The combined organic layers were washed twice with water, twice with brine and dried over magnesium sulfate. After evaporation of the solvent at room temperature, the residue was chromatographed using a silica gel column (eluent: methylene chloride). Because **19h** was prepared in a three-step synthesis starting from commercially available alcohol **S1h** \rightarrow **S1g** \rightarrow **19g** \rightarrow **19h**, no exact yield for the last step can be given. Starting with 1.00 g 2-ethynylbenzyl alcohol (S1h), yields of 31–69 % over all three steps could be obtained for **19h**.

The chloroacetylene **19f** was prepared from the alcohol **19h** in an esterification reaction as follows:

The alcohol **19h** (250 mg, 1.5 mmol, 1 eq) and triethylamine (304 mg, 3.0 mmol, 2 eq) were placed in methylene chloride (5 mL), cooled down to 0 °C and acryloyl chloride (2 eq) was added dropwise within one minute. The mixture was allowed to warm up to room temperature over $17\frac{1}{2}$ hours, the solvent was removed using a rotary evaporator (ambient temperature) and the residue was purified by column chromatography on silica gel (eluent: Et₂O/*n*-hexane = 1:10). The ester **19f** was obtained in 90 % yield (298 mg).

For reasons of completeness the synthesis of $\mathbf{S1g}^{[S6]}$ should be described on this spot. $\mathbf{S1g}$ was prepared analogous to a literature procedure starting from propargyl alcohol^[S7] with a modified workup:

Dihydropyran (1.73 mL, 1.6 g, 19 mmol, 2.5 eq) was heated to 60 °C, some crystals of p-toluenesulfonic acid were added and 2-ethynylbenzyl alcohol (**S1h**) (1.00 g, 7.6 mmol, 1 eq), dissolved in dest. methylene chloride (10 mL), was added dropwise over 15 minutes. After complete addition, the mixture was refluxed for 45 minutes and thereafter allowed to cool down for another 45 minutes. Sodium bicarbonate (0.5 g, 6 mmol) was added and the mixture was stirred for an additional hour. The solid was separated by filtration, washed with methylene chloride and the filtrate was dried over magnesium sulfate. The solvent was evaporated at room temperature and the residue (**S1g**, orange oil) was supposed to be pure enough for further conversion to **19g** as described above.

Reaction of the (chloroethynyl)arenes with NaN₃/LiN₃ in DMSO

Scheme 3. The Z configuration of S3 was confirmed using nOe experiments.

The (chloroethynyl)arene **10** or **19**, respectively, was dissolved in DMSO and the azide was added to the vigorously stirred solution in portions over about 3-5 minutes. The mixture was stirred for about three days, and after addition of water it was extracted with an organic

solvent, or the DMSO and all volatile compounds were removed in vacuum $(10^{-3} \text{ Torr}, \text{ room} \text{ temperature})$, respectively. In the first case, the combined organic layers were washed with water, dried over magnesium sulfate and evaporated to dryness at room temperature. In both cases, the residue was purified using column chromatography on silica gel. First of all, unreacted starting material **19** and the vinyl azides **S3** were isolated using *n*-hexane as eluent. Then, the sulfoxonium ylide **20** was eluated with ethanol or ethyl acetate, respectively. For the reaction of **19h**, the chromatography was performed with the eluents methylene chloride, Et₂O/*n*-hexane = 1:3 and ethyl acetate in the given order. The *R*_f values as well as the used solvent are given at the substance characterisation. Isolated yields and reaction conditions can be found in Table 2.

E	duct	Azide	time / V(DMSO) / extraction	Yield of 14 / 20	Yield of 13 / S3	re-isola- ted Educt
10	14.6 mmol	NaN ₃ (1.5 eq)	3 d / 20 mL / see note ¹	10 % 14	13 % 13	<1 % 10
10	7.3 mmol	LiN_3 (1 eq)	73 h / 5 mL / chloroform	9 % 14	15 % 13	18 % 10
19a	8.0 mmol	NaN ₃ (1.05 eq)	3 d / 35 mL / see note ¹	4.2 % 20a	16 % S3a	-
19b	2.4 mmol	NaN ₃ (1.05 eq)	69 h / 15 mL / vacuum	12 % 20b	11 % S3b	19 % 19b
19c	2.9 mmol	NaN ₃ (1.5 eq)	75 h / 15 mL / vacuum	17 % 20c	6.4 % S3c	-
19d	3.0 mmol	LiN ₃ (2 eq)	71 h / 5 mL / chloroform	14 % 20d	-	-
19e	3.6 mmol	NaN ₃ (1.5 eq)	69 h / 15 mL / chloroform	19 % 20e	-	-
19f	0.54 mmol	NaN ₃ (1.5 eq)	4 d / 5 mL / chloroform	18 % 20f	-	-
19g	1.8 mmol	NaN ₃ (1.5 eq)	71 h / 15 mL / vacuum	25 % 20g	-	20 % 19g
19h	2.4 mmol	NaN ₃ (1.5 eq)	66 h / 15 mL / vacuum	3.9 % 20h	1.8 % S3h	22 % 19h +0.9 % 23

Table 2. Reaction parameters for the reaction of (chloroethynyl)arenes with LiN₃/NaN₃ in DMSO ¹ The reaction mixture was extracted with *n*-pentane, diethyl ether and benzene in the given order and each extract was worked up by chromatography separately.

Control experiment to the formation of 14 starting from diazirine 16

Diazirine **16** (80 mg, 0.41 mmol, 1 eq) was placed in dimethyl sulfoxide (5 mL) and tetrabutylammonium cyanide (220 mg, 0.82 mmol, 2 eq) was added under vigorously stirring. The colour of the previously colourless mixture changed into yellow but no gas evolution was observed. Another 2 mL of DMSO (total: 7 mL, 7.7 g, 99 mmol, 241 eq) were added and the mixture was stirred for 47 hours at ambient temperature. After addition of water (20 mL), the

mixture was saturated with sodium chloride and extracted with benzene (5x 20 mL). The combined organic layers were washed with water (2x 30 mL), dried over magnesium sulfate and the solvent was evaporated at room temperature. The residue (orange-brown oil, 48 mg) was chromatographed on silica gel to yield 11 mg of **14** (14 %) and, after flushing of the column with ethanol, 21 mg of tetrabutylammonium bromide (16 %).

Reaction of (chloroethynyl)benzene (10) with LiN₃ and cyclooctyne in DMSO

Lithium azide (810 mg, 16.5 mmol, 1.5 eq) was given to DMSO (2.4 mL) under vigorously stirring and cyclooctyne (3.57 g, 33 mmol, 3 eq) was added in a single portion. (Chloroethynyl)benzene (10) (1.50 g, 11 mmol, 1 eq) was added dropwise over 2 minutes and the mixture was stirred at ambient temperature for 72 hours. Thereafter, water (15 mL) was added and the mixture was extracted with chloroform (3x 50 mL). The combined organic layers were washed with water (2x 200 mL), dried over magnesium sulfate and the solvent was evaporated using a rotary evaporator (room temperature). The residue (3.41 g, yellow liquid) still contained a higher amount of DMSO. Thereupon, the DMSO was removed in vacuum (10^{-3} Torr) at room temperature. 52 % of unreacted starting material 10 were also recondensed with the DMSO as shown by ¹H NMR spectrum of the condensate. The new residue was purified by column chromatography on silica gel (eluent: ethyl acetate/*n*-hexane = 1:3) to give 55 mg of 17 (2.0 %) and 92 mg of 15 (2.9 %).

Reaction of (chloroethynyl)benzene (10) with LiN₃ and cyclooctyne in DMF

Scheme 5. We have been able to show the α -oxo amide **S5i** also to be a product resulting from carbene **4** and we have been able to obtain such α -oxo amides in significantly higher yields in other experiments. Because this result is more difficult to explain, it will be published separately, soon.^[S8]

Lithium azide (0.49 g, 10 mmol, 1.5 eq) was placed in dry dimethylformamide (15 mL) and dissolved completely under vigorously stirring. Immediately following each other, cyclooctyne (3.56 g, 33 mmol, 5 eq) and (chloroethynyl)benzene (10) (0.9 g, 6.6 mmol, 1 eq), diluted in anhydrous dimethylformamide (5 mL), were added in single portions to the azide solution. After stirring for three days in an inert atmosphere, the mixture was given to ice/water (50 mL) and extracted with *n*-pentane, diethyl ether and methylene chloride in the given order. Each extract was washed with water thoroughly, dried over magnesium sulfate and the solvent was removed using a rotary evaporator (room temperature). The respective residue was chromatographed on silica gel as described below.

The *n*-pentane extract (3.27 g) still contained a higher amount of DMSO. Thereupon, the DMSO was removed in vacuum (10^{-3} Torr) at room temperature. 19 % of unreacted starting material **10** have also been re-condensed with the DMSO as determined from ¹H NMR spectrum of the condensate. The remaining residue was pre-fractionized by column chromatography (eluent: ethyl acetate/*n*-hexane = 3:1) to give two mixture fractions. From the first fraction 129 mg crude cyclooctatriazole **17** was isolated using a mixture EtOAc/*n*-hexane = 2:1 as eluent. Purification of **17** could be realized with additional chromatography (eluent: ethyl acetate/*n*-hexane = 1:3) and washing of the product with a small amount of cold diethyl ether to give 106 mg of pure **17** (6.4 %). Additional 228 mg of **15** (12 %), 123 mg of a mixture of **17** and **15** as well as another multi-compound-fraction (370 mg) could be obtained from the silica gel column. The mixture was separated using diethyl ether/*n*-hexane = 5:1 as eluent to give 6 mg of **17** (0.34 %) and 100 mg of **15** (5.3 %). From the multi-component-fraction 36 mg of **15** (1.9 %) and 308 mg of **S4i** (15 %) were isolated by flash chromatography (eluent: Et₂O/*n*-hexane = 5:1). The second of the previously mentioned mixture fractions (83 mg) contained mainly the alkene **S6i**.

The diethyl ether extract (0.25 g) could be separated by chromatography into 9 mg of 17 (0.53 %, $\Sigma = 7.3$ %), 46 mg of 15 (2.4 %), 5 mg of S5i (2.4 %) and 64 mg of an impure fraction using an Et₂O/*n*-hexane = 3:1 solvent mixture. Last-named fraction was taken in *n*-hexane and treated in an ultrasonic bath until a white solid precipitated. The solid was filtered off, washed with *n*-hexane and a small amount of cold diethyl ether and identified as S4i (26 mg, 1.3 %). From the previously mentioned column 47 mg of crude alkene S6i were isolated after changing the chromatography solvent to pure diethyl ether. These 47 mg were combined with the 83 mg of S6i for purification reasons. Silica chromatography with diethyl ether as eluent gave 106 mg of pure S6i (5.3 %).

Last of all, the methylene chloride extract (27 mg) was worked-up by chromatography with an eluent mixture ethyl acetate/*n*-hexane = 3:1 to give 6 mg of **15** (0.32 %, $\Sigma = 22$ %) as the only pure isolable compound. Consequently, the last extraction with methylene chloride is not necessary when repeating the experiment.

Reaction of (chloroethynyl)benzene (10) with NaN₃ and cyclooctyne in HMPTA

Note: Hexamethylphosphoric triamide (HMPTA) is highly carcinogenic! The usage of gloves is highly recommended when working with this compound!

(Chloroethynyl)benzene (10) (1.00 g, 7.32 mmol, 1 eq) was placed in HMPTA (5 mL), cooled down to 0 °C and sodium azide (714 mg, 11 mmol, 1.5 eq) was added in portions to the vigorously stirred solution. The resulting suspension was stirred at 0 °C for 30 minutes, distilled water (0.5 mL) was added and the mixture was stirred for another 90 minutes at the same temperature. Afterwards, cyclooctyne (1.60 g, 14.6 mmol, 2 eq) was added and the

mixture was allowed to warm up to room temperature over 20 hours. After addition of chloroform (100 mL), the mixture was washed with brine (5x 50 mL, removal of NaN₃), diluted aqueous hydrochloric acid (3.7 %, 2x 50 mL) and water (1x 50 mL) in the given order. Unreacted starting material **10** (70 % as determined by ¹H NMR) and cyclooctyne were recondensed *in vacuo* (10⁻³ Torr) at ambient temperature and the residue (brown viscous oil, 889 mg) was chromatographed on silica gel (4x 36 cm, eluent: diethyl ether/*n*-hexane = 3:1) to give 212 mg of **17** (12 %, $R_f = 0.64$), 215 mg of **15** (10 %, $R_f = 0.52$) and 165 mg of **S4i** (5.6 %, $R_f = 0.32$).

Control experiments to the formation of 17

Several control experiments have been realized to exclude possible reaction mechanism with formation of **17** without involving an ethynyl azide. These experiments were realized on NMR scale and without any chromatographic workup. It was only examined whether compound **17** was formed or not using the known NMR data of this structure. For that reason, we are able to summarize the received results in Scheme 6 without giving further experimental details.

Scheme 6. Both reaction of 10 with 4,5,6,7,8,9-hexahyrocycloocta-1*H*-1,2,3-triazole and Fritsch-Buttenberg-Wiechell-rearrangement-like reaction starting from 15 could be excluded as reaction pathways to 17.

Reaction of (chloroethynyl)benzene (10) with NaN₃ and tolane in DMF

Sodium azide (1.90 g, 29 mmol, 2 eq) was placed in dry dimethylformamide (20 mL) in an inert argon atmosphere and stirred at ambient temperature for 30 minutes. Tolane (5.21 g, 29 mmol, 2 eq) was added in a single portion and immediately afterwards (chloroethynyl)benzene (**10**) (2.00 g, 15 mmol, 1 eq) was given to the vigorously stirred mixture, which was stirred at room temperature for 122 hours (5 days) maintaining the inert atmosphere. The mixture was poured into ice/water (50 mL) and extracted with methylene chloride (5x 50 mL). From the aqueous layer, 182 mg of α -oxo amide **S5i** (7.0 %) could be isolated after evaporating the solvent and removal of all chloroform-insoluble components. The combined organic layers were washed with water (5x 50 mL), dried over magnesium sulfate and the solvent was removed using a rotary evaporator (room temperature). All volatile compounds were removed *in vacuo* (10⁻³ Torr) at ambient temperature and the remaining residue was chromatographed on silica gel (6x 12 cm). Starting with *n*-hexane as eluent unreacted tolane (5.05 g, $R_f = 0.21$, contained small impurities, about 97 % of the used amount) was recovered.

After solvent change to diethyl ether another 362 mg of **S5i** (14 %, $R_f = 0.45$) and a mixture (266 mg, $R_f = 0.75-0.91$, brown oil, almond-like smell) were isolated. The mixture was purified by flash-chromatography (eluent: Et₂O/*n*-hexane = 1:3) to give 50 mg of cyclopropene **18** (1.2 %).

Reaction of vinyl azide 13 with cyclooctyne

Vinyl azide **13** (15 mg, 0.084 mmol, 1 eq) was dissolved in CDCl₃ (0.75 mL) and placed in an NMR tube. Using a syringe cyclooctyne (10 mg, 0.092 mmol, 1.1 eq) was added at ambient temperature and the components were mixed thoroughly. The tube was stored at room temperature and the reaction was observed by NMR spectroscopy until complete conversion. After $4\frac{1}{2}$ hours the solvent was removed using a rotary evaporator and the excess of cyclooctyne was re-condensed *in vacuo* (10⁻³ Torr) to give pure **15** (100%) quantitatively.

Reaction of (chloroethynyl)biphenyl (19b) with LiN₃ and cyclooctyne in DMF

Scheme 7. The formation of S4b was only supposed based on an obtained mixture fraction, but the compound could be isolated in a pure form in a later experiment using HMPTA instead of DMF as solvent. For S5b see also the comment given at Scheme 5.

Sodium azide (160 mg, 2.5 mmol, 1.05 eq) was placed in dimethylformamide (10 mL) and a mixture of cyclooctyne (508 mg, 4.7 mmol, 2 eq) and (chloroethynyl)biphenyl (**19b**) (0.5 g, 2.4 mmol, 1 eq) in dimethylformamide (10 mL) was added dropwise over 25 minutes under vigorously stirring. Another 5 mL of DMF were added and the mixture was stirred for 69 hours at room temperature. Then, the solvent was evaporated at 40 °C and the residue was worked up by chromatography on silica gel using diethyl ether/*n*-hexane = 1:6, diethyl ether/*n*-hexane = 1:1 and ethyl acetate as eluents in the given order.

From the 1:6 eluent mixture 102 mg of starting material **19b** (20 %) and a mixture were obtained which gave 2 mg of **S7b** (0.28 %) using a second column chromatography (eluent: chloroform/*n*-hexane = 1:2). From the 1:1 eluent mixture 34 mg of crude **17b**, 190 mg of **15b** (22 %) and 194 mg of a mixture of **S5b** and **S4b** were isolated. **17b** was purified by chromatography (eluent: methylene chloride/diethyl ether = 10:1) yielding 20 mg pure compound (2.6 %). The mixture was separated into 85 mg of **S4b** (14 %) and 65 mg of **S5b**

(11 %) using an eluent mixture chloroform/diethyl ether = 1:1 (impurities were previously flushed through the column with pure diethyl ether). From the ethyl acetate a mixture (51 mg, $R_f = 0.73$) was obtained which was subjected to another flash chromatography (eluent: diethyl ether/*n*-hexane = 5:1) to give 28 mg of an oil ($R_f = 0.17$). Treatment of this oil in *n*-hexane with ultrasonic gave a solid which was suspected to be (still impure) **S6b**, what was confirmed later on (see comment to Scheme 7).

Intramolecular trapping of a cyanocarbene*

Reaction of (chloroethynyl)benzyl alcohol (19h) with NaN₃ in sulfolane

To a vigorously stirred suspension of sodium azide (3.00 g, 46 mmol, 29 eq) in sulfolane (150 mL) (chloroethynyl)benzyl alcohol (19h) (265 mg, 1.6 mmol, 1 eq) was added dropwise and the dropping funnel was flushed with another 50 mL of sulfolane after complete addition. To avoid solidification of the sulfolane (mp 20–26 °C) the reaction flask was placed into a metal tin closed with aluminium foil which was able to keep the waste heat of the stirring motor. The mixture was stirred at 25–30 °C for 68 hours, then chloroform (200 mL) was added and the mixture was washed thoroughly with water (20x 100 mL). The organic layer was dried over magnesium sulfate and the chloroform was evaporated at room temperature. Because the residue still contained about 25 mL sulfolane, it was dissolved in chloroform (50mL) and washed another time with water (10x 350 mL). The organic layer was dried again (MgSO₄) and the chloroform was removed with a rotary evaporator at ambient temperature. The residue (272 mg) was purified by flash chromatography on silica gel (eluent: diethyl ether/*n*-hexane = 1:1) to give 11 mg of **23** (4.8 %) and 96 mg of starting material **19h** (36 %).

Synthesis of heterocycle 23 from aldehyde 24 and hydrogen cyanide

Sodium cyanide (634 mg, 12.9 mmol, 10 eq) was placed in DMSO (90 mL) and the aldehyde **24** (200 mg, 1.3 mmol, 1 eq) was added under vigorously stirring. After addition of further 10 mL of DMSO, the mixture was heated to 60 °C and concentrated sulfuric acid (634 mg, 96 %, 6.2 mmol, 4.8 eq) was added dropwise through a septum using a syringe. The reaction flask was directly connected to a cooling finger (about -100 °C) to avoid the HCN leaving the reaction vessel. After complete addition the mixture was heated further 30 minutes and allowed to cool down to room temperature overnight (after removal of the cooling trap). Chloroform (150 mL) was added and the mixture was washed thoroughly with water (5x 250 mL). The organic layer was dried over magnesium sulfate and the solvent was evaporated at ambient temperature. The residue (197 mg) was purified by flash chromatography on silica gel (eluent: methylene chloride) to yield 97 mg of **23** (52 %).

^{*}We started also to prepare (2-chloroethynyl)benzenes bearing an appropriate group in the *ortho* position to trap intramolecularly the corresponding ethynyl azides instead of the cyanocarbenes. But the synthesis of such compounds will require a sequence of several steps.

Reactions of (chloroethynyl) propyl thioether (25b)

Cot = 4,5,6,7,8,9-hexahydrocycloocta-1*H*-1,2,3-triazole-1-yl

Scheme 8. Summary of the realized reactions starting with 25b.

Synthesis of 25b

The acetylene **25b** was prepared of the commercially available trichloroethylene (**S7**) as follows:

Trichloroethylene (200 mL, 292 g, 2.22 mol, 8 eq) was brought to a three-necked reaction vessel with an inside placed photolysis lamp, degassed with nitrogen (2x 15 minutes) and propane-1-thiol (25 mL, 21 g, 276 mmol, 1 eq) was added. The mixture was photolysed at ambient temperature for 9 hours and stirred overnight subsequently. Then, it was photolysed again at 60 °C for 18 hours and the reaction was observed by analytical gas chromatography (GC). All volatile compounds have been removed with a rotary evaporator (room temperature) and the residue was re-condensed at 70 °C *in vacuo* (10^{-3} Torr) to give 22.81 g of **S8** (48 %). A second synthesis was performed using a fractionated vacuum distillation of the crude product instead of condensation to yield 41 % of **S8** (13 mbar, 78–81 °C).

Potassium hydroxide (3.27 g, 58 mmol, 1.9 eq) was dissolved in water (3 mL), cooled down to about 10 °C and benzyltriethylammonium chloride (TEBAC) (0.66 g, 29 mmol, 0.97 eq) was added. Maintaining the temperature, compound **S8** (5.10 g, 30 mmol, 1 eq) was added under vigorously stirring. The mixture was allowed to warm up to room temperature over 16 hours, then poured into water (20 mL) and extracted with diethyl ether. The combined organic layers were dried over magnesium sulfate and the solvent was evaporated at ambient temperature to yield 3.68 g of **25b** (92 %). Several identically performed experiments with modified amounts of **S8** led to **25b** in 56–62 % yield.

Attempt to reproduce the described^[18] reaction starting from 25b and NaN_3

The reaction of **25b** (1.00 g) with sodium azide (1.1 eq) was performed following exactly the procedure given in literature^[18b] and was worked up in similar manner. Unfortunately, neither the diethyl ether extract nor the chloroform extract led to the declared products but to complex mixtures which have been worked up as followed.

The ether extract (392 mg) was pre-separated by chromatography on silica gel using ethyl acetate/*n*-hexane = 10:1 as eluent to give two main fractions. From the first fraction (241 mg, $R_{\rm f} = 0.97$) **S12** (31 mg, 4.1 %) was obtained by chromatography with a mixture diethyl ether/ *n*-hexane =1:4 as eluent. The second fraction (23 mg, $R_{\rm f} = 0.41$) contained mainly **S15** but the attempt to purify the compound by chromatography failed what might be caused by decomposition of the compound on the column.

The chloroform extract (229 mg) was chromatographed on silica gel using ethyl acetate/ *n*-hexane = 1:2 as eluent to give 35 mg of **S14** (2.8 %) and, after changing the solvent to acetone, another 70 mg of crude **S14** ($R_f = 0.90$). Purification was performed using flash chromatography (eluent: ethyl acetate) to yield 35 mg of pure **S14** (2.8 %, $\Sigma = 5.6$ %).

Other products, explicitly **S9** or **S10**, have not been isolated.

Reaction of 25b *with* NaN₃ *and cyclooctyne in* DMF

In an inert argon atmosphere sodium azide (809 mg, 12.4 mmol, 1.7 eq) was stirred into anhydrous dimethylformamide (10 mL) and cyclooctyne (1.35 g, 12.4 mmol, 1.7 eq) was added in a single portion. After complete addition, chloroalkyne **25b** (1.00 g, 7.4 mmol, 1 eq) was added in portions over 25 minutes maintaining the temperature at 20–25 °C (exothermic reaction, gas evolution observable). The mixture was reacted at ambient temperature for 4 days and then poured into ice/water (30 mL), stirred over 20 minutes and extracted with diethyl ether (5x 50 mL). The combined organic layers were washed with water (3x 50 mL), dried over magnesium sulfate and the solvent was evaporated at ambient temperature to yield 1.22 g of a brown oil. This crude product was purified by flash-chromatography on silica gel.

First, a pre-separation was performed using chloroform as eluent to get four main fractions (fraction 1: 328 mg, $R_f = 0.95-0.98$; fraction 2: 21 mg, $R_f = 0.80-0.90$; fraction 3: 75 mg, $R_f = 0.68-0.75$; fraction 4 after solvent change to ethyl acetate: 294 mg, $R_f = 0.83-0.93$). Fraction 3 was chromatographically separated (diethyl ether/*n*-hexane = 1:3) into 6 mg of **S12** (0.8%), 37 mg of **26b** (2.3 %) and an otherwise pure mixture of **S12** and **26b** (25 mg). Fraction 4 was chromatographed as well (diethyl ether/*n*-hexane = 3:1) to give 19 mg of **S13** (0.93 %) and 54 mg of crude **S11**. The cyclooctatriazole **S11** was purified using a silica gel column and diethyl ether as eluent to yield 2.3 % pure compound (48 mg).

CHARACTERISATION DATA

COMPOUNDS MENTIONED IN THE COMMUNICATION

Characterisation of vinyl azide 1 and the corresponding cyclooctatriazole 2
Characterisation of 2H-azirine 5
Characterisation of the stilbenes 6
Characterisation of nitrile 8
Characterisation of the (chloroethynyl)arenes 10, 19 and the alkylsulfanylethyne 25b
Characterisation of vinyl azide 13 and the corresponding cyclooctatriazole 15
Characterisation of the sulfoxonium ylides 14 and 20
Characterisation of diazirine 16
Characterisation of the cyclooctatriazoles 17
Characterisation of cyclopropene 1827
Characterisation of heterocycle 23
Characterisation of aldehyde 24
Characterisation of cyclopropene 26b

COMPOUNDS ONLY MENTIONED IN THIS SUPPLEMENT

Characterisation of cyclooctatriazole 15b	. 29
Characterisation of side-product S2d	. 29
Characterisation of the vinyl azides S3	. 30
Characterisation of the bis(cyclooctatriazoles) S4 and S6	. 31
Characterisation of the α -oxo amides S5	. 33
Characterisation of cyclopropene S7	. 34
Characterisation of the thiopropyl compounds S8–S15	. 34

1. Characterisation of vinyl azide 1 and the corresponding cyclooctatriazole 2

(*E*)-(1-Azido-2-bromo-2-iodovinyl)benzene (1):^[6a] orange-yellow oil, darkened at standing. – ¹H NMR (CDCl₃): δ = 7.34–7.36 (m, 2 H, *o*-Ph), 7.47–7.52 (m, 3 H, *m*-Ph, *p*-Ph). – ¹³C NMR (CDCl₃): δ = 41.23 (s, =C(I)Br), 128.65 (d, *o*-Ph), 129.14 (d, *m*-Ph), 130.16 (d, *p*-Ph), 134.96 (s, *i*-Ph), 143.19 (s, =CN₃). – IR (CCl₄): $\tilde{\nu}$ = 704 cm⁻¹ (m), 1214 (w), 1292 (m), 2120 (vs, N₃). – *R*_f (*n*-pentane): 0.29.

ORTEP plot of 2, H atoms are omitted for clarity.

(E) - 1 - (2- Brom o - 2- i o o - 1- phenylvinyl) - 4, 5, 6, 7, 8, 9- hexahydr o - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) - 1H- cycloocta[d) - 1H- cycloocta[d][1, 2, 3] tria- (d) cycloacta[d][1, 2, 3] tria- (d) cycloacta[d][1, 3, 3] tria- (d) cycloacta

zole (2): yellow solid. – **mp:** 129–133 °C. – ¹**H NMR** (**CDCl**₃): $\delta = 1.39$ (m, 4 H, H-6, H-7), 1.52 (m, 2 H, H-8), 1.72 (*pseudo* quint, J = 6.0 Hz, 2 H, H-5), 2.59 (*pseudo* t, J = 6.4 Hz, 2 H, H-9), 2.88 (*pseudo* t, J = 6.4 Hz, 2 H, H-4), 7.32–7.39 (m, 3 H, *m*-Ph, *p*-Ph), 7.45–7.51 (m, 2 H, *o*-Ph). – ¹³**C NMR** (**CDCl**₃): $\delta = 21.68$ (t, C-9), 24.20 (t, C-4), 24.73 (t, C-6 or C-7), 25.68 (t, C-6 or C-7 or C-8), 25.83 (t, C-6 or C-7 or C-8), 27.72 (t, C-5), 61.99 (s, =C(I)Br), 128.59 (d, *m*-Ph), 128.95 (d, *o*-Ph), 129.96 (d, *p*-Ph), 133.46 (s, C-9a), 135.96 (s, *i*-Ph), 142.22 (s, =C(Ph)Cot), 144.31 (s, C-3a). – **IR** (**CCl**₄): $\tilde{\nu} = 602$ cm⁻¹ (w), 696 (s), 1053 (w), 1243 (w), 1444 (s), 1456 (m), 2856 (s), 2933 (vs). – C₁₆H₁₇BrIN₃ (458.14 g/mol): calc. (%): C 41.95, H 3.74, N 9.17; found (%): C 42.21, H 3.68, N 9.24. – *R*_f (**Et**₂O/*n*-hexane=2:1): 0.52. – **Crystal data:** C₁₆H₁₇BrIN₃, *MW* = 458.14, *T* = 105 K, $\lambda = 0.71073$ Å, orthorombic, space group P2(1)2(1)2(1), *a* = 7.4385(3) Å, *b* = 11.2805(4) Å, *c* = 19.1852(8) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 1609.83(11) Å³, Z = 4, D = 1.890 Mg/m³, $\mu = 4.468$ mm⁻¹, *F*(000) = 888. Crystallographic data for structure **2** have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766228.

2. Characterisation of 2H-azirine 5

2-Bromo-2-iodo-3-phenyl-2*H***-azirine (5)**: The compound decomposes rapidly at standing in solution at room temperature. – ¹H NMR (CD₂Cl₂, –55 °C): δ = 7.67 (*pseudo* t, *J* = 7.6 Hz, 2 H, *m*-Ph), 7.80 (*pseudo* t, *J* = 7.6 Hz, 1 H, *p*-Ph), 8.01 (*pseudo* d, *J* = 7.2 Hz, 2 H, *o*-Ph). – ¹³C NMR (CD₂Cl₂, –55 °C): δ = –24.18 (s, C(I)Br), 119.08 (s, *i*-Ph), 129.58 (d, *o*-Ph oder *m*-Ph), 130.30 (d, *o*-Ph oder *m*-Ph), 135.81 (d, *p*-Ph), 178.67 (s, PhC=N).

3. Characterisation of the stilbenes 6

trans-Dicyanostilbene (*E*)-6:^[S9] pale yellow solid. – mp: 156–157.5 °C (ref.^[S9]: 156 °C). – ¹H NMR (CDCl₃): δ = 7.52–7.58 (m, 6 H, *m*-Ph, *p*-Ph), 7.82–7.87 (m, 4 H, *o*-Ph). – ¹³C NMR (CDCl₃): δ = 116.66 (s, CN), 125.58 (s, CCN), 128.68 (d, *o*-Ph), 129.28 (d, *m*-Ph), 131.70 (d, *p*-Ph), 131.97 (s, *i*-Ph). – IR (CCl₄): $\tilde{\nu}$ = 692 cm⁻¹ (s), 1447 (m), 2222 (w, CN), 3065 (w). –MS (ESI): *m*/*z* (100): 231.1 [M+H⁺], 303.2 (100). – C₁₆H₁₀N₂ (230.27 g/mol): calc. (%): C 83.46, H 4.38, N 12.17; found (%): C 82.70, H 4.28, N 12.29. – *R*_f (CHCl₃/*n*-hexane = 1:1): 0.23. – *R*_f (*n*-hexane/CH₂Cl₂=1:1): 0.50.

cis-Dicyanostilbene (Z)-6:^[S10] pale yellow solid. – mp: 129–131 °C (ref.^[S10]: 132–133 °C). – ¹H NMR (CDCl₃): δ = 7.29–7.35 (m, 8 H, *o*-Ph, *m*-Ph), 7.38–7.43 (m, 2 H, *p*-Ph). – ¹³C NMR (CDCl₃): δ = 116.78 (s, CN), 125.97 (s, =CCN), 129.13 (d, *m*-Ph oder *o*-Ph), 129.28 (d, *m*-Ph oder *o*-Ph), 130.46 (s, *i*-Ph), 131.12 (*p*-Ph). – IR (CCl₄): $\tilde{\nu}$ = 694 cm⁻¹ (vs), 1303 (m), 1447 (m), 1491 (w), 2222 (w, CN), 3065 (w). – *R*_f (*n*-hexane/CH₂Cl₂=1:1): 0.35.

4. Characterisation of nitrile 8

2-Phenyl-2-(phenylimino)acetonitrile (8)^[S11]: yellow solid. – **mp:** 57–59 °C. – ¹**H NMR** (**CDCl₃**): δ = 7.20 (*pseudo* d, *J* = 8.0 Hz, 2 H, *o*-Ph-N), 7.33 (*pseudo* t, *J* = 7.6 Hz, 1 H, *p*-Ph-N), 7.49 (*pseudo* t, *J* = 7.6 Hz, 2 H, *m*- Ph-N), 7.55 (*pseudo* t, *J* = 7.6 Hz, 2 H, *m*- Ph-C), 7.61 (*pseudo* t, *J* = 7.6 Hz, 1 H, *p*- Ph-C), 8.17 (*pseudo* d, *J* = 7.6 Hz, 2 H, *o*-Ph-C). – ¹³**C NMR** (**CDCl₃**): δ = 110.83 (s, CN), 120.30 (d, *o*-Ph-N), 127.30 (d, *p*-Ph-N), 128.21 (d, *o*-Ph-C), 129.03 (d, *m*-Ph-C), 129.27 (d, *m*-Ph-N), 132.86 (d, *p*-Ph-C), 133.57 (s, *i*-Ph-C), 139.79 (s, *C*(CN)Ph), 149.08 (s, *i*-Ph-N). No significant nOe effects between the phenyl substituents have been found irradiating at the *ortho*-protons. Consequently, the *Z* isomer may be supposed. – **IR** (**CCl₄**): $\tilde{\nu} = 689 \text{ cm}^{-1}$ (vs), 720 (w), 1007 (m), 1201 (m), 1273 (m), 1451 (m), 1485 (m), 1576 (m), 1589 (m), 1606 (m), 2220 (vw, CN), 3069 (vw, arom. CH). – **C_{14H10N2} (206.25 g/mol):** ber. (%): C 81.53, H 4.89, N 13.58; gef. (%): C 81.41, H 4.88, N 13.32. – **MS** (**EI**): *m/z* (%): 206 [M⁺], 180, 77 (100), 51. – **R_f (CHCl₃):** 0.73.

5. Characterisation of the (chloroethynyl)arenes 10, 19 and the alkylsulfanylethyne 25b

(Chloroethynyl)benzene (10):^[S12] colourless liquid, darkened at standing. – ¹H NMR (CDCl₃): δ = 7.29–7.36 (m, 3 H, Ph), 7.44–7.47 (m, 2 H, Ph). – ¹³C NMR (CDCl₃): δ = 67.99 (s, =C), 69.34 (s, =C), 122.12 (s, *i*-Ph), 128.35 (d), 128.57 (d), 131.95 (d). – IR (CCl₄): $\tilde{\nu} = 689 \text{ cm}^{-1}$ (s), 1489 (m), 2225 (m, C=C), 3084 (w). – MS (ESI): *m/z* (%): 137.08 [M+H⁺], 207.09 (100), 272.06 [2M⁺]. – C₈H₅Cl (136.58 g/mol): ber. (%): C 70.35, H 3.69; gef. (%): C 69.12, H 3.66. – *R*_f (*n*-hexane): 0.62.

2-(4-Methylphenyl)chloroacetylene (19a):^{JS15]} colourless liquid. – ¹H NMR (CDCl₃): δ = 2.35 (s, 3 H, Me), 7.12 (*pseudo* d, *J* = 8.0 Hz, 2 H, Ar), 7.33 (*pseudo* d, *J* = 8.0 Hz, 2 H, Ar). – ¹³C NMR (CDCl₃): δ = 21.40 (q, Me), 67.11 (s, =C), 69.47 (s, =C), 118.99 (s, =CC), 129.06 (d, CH), 131.79 (d, CH), 138.69 (s, CMe). – IR (CCl₄): $\tilde{\nu}$ = 889 cm⁻¹ (s), 1040 (m), 1451 (m), 1508 (s), 1903 (m), 2222 (s, C=C), 2868 (m), 2923 (s), 3031 (m). – C₉H₇Cl (150.61 g/mol): ber. (%): C 71.78, H 4.68; gef. (%): C 70.61, H 4.87. – **R**_f(*n*-hexane): 0.51.

4-(Chloroethynyl)biphenyl (19b):^[S14] white solid. – mp: 85–87 °C. – ¹H NMR (CDCl₃): $\delta = 7.37$ (pseudo t, J = 7.2 Hz, 1 H, H-4'), 7.46 (pseudo t, J = 7.2 Hz, 2 H, H-3'), 7.52 (pseudo d, J = 8.4 Hz, 2 H, H-3), 7.56 (pseudo d, J = 8.4 Hz, 2 H, H-2), 7.59 (pseudo d, J = 8.4 Hz, 2 H, H-3)

7.2 Hz, 2 H, H-2'). $-{}^{13}$ C NMR (CDCl₃): $\delta = 68.57$ (s, \equiv CCl), 69.26 (s, \equiv CAr), 120.98 (s, C-4), 127.00 (d, C-2'), 127.01 (d, C-2), 127.70 (d, C-4'), 128.85 (d, C-3'), 132.36 (d, C-3), 140.17 (s, C-1'), 141.32 (s, C-1). - IR (CCl₄): $\tilde{\nu} = 555$ cm⁻¹ (m), 696 (s), 840 (s), 890 (m), 1487 (s), 2222 (m, C \equiv C), 3033 (m) und 3062 (w, CH_{Ar}). - MS (ESI): m/z (%): 212.9 [M⁺], 370.9. - C₁₄H₉Cl (212.68 g/mol): calc. (%): C 79.07, H 4.27; found (%): C 78.95, H 4.25. - R_f (*n*-hexane): 0.50.

1-Chloro-4-(chloroethynyl)benzene (19c):^[S13] white solid, prominent, medicine-like odour. – mp: 70–71 °C. – ¹H NMR (CDCl₃): δ = 7.29 (*pseudo* d, *J* = 8.8 Hz, 2 H, ClCCH), 7.36 (*pseudo* d, *J* = 8.8 Hz, 2 H, ClCCHCH). – ¹³C NMR (CDCl₃): δ = 68.31 (s, ≡CCl), 69.12 (s, ≡CAr), 120.58 (s, ≡CC), 128.71 (d, ClCCH), 133.17 (d, ClCCHCH), 134.67 (s, CCl). – IR (CCl₄): $\tilde{\nu}$ = 494 cm⁻¹ (m), 829 (m), 887 (m), 1093 (m), 1488 (s), 2224 (m, C≡C). – MS (ESI): *m*/*z* (%): 169.9, 171.9 [M⁺]. – C₈H₄Cl₂ (171.03 g/mol): calc. (%): C 56.18, H 2.36; found (%): C 56.22, H 2.40. – *R*_f (*n*-hexane): 0.71.

1,3-Dichloro-2-(chloroethynyl)benzene (19d): white solid. – **mp:** 41–44 °C. – ¹**H NMR** (**CDCl**₃): δ = 7.16 (t, ³*J* = 7.6 Hz, 1 H, CHCHCCl), 7.30 (d, ³*J* = 7.6 Hz, 2 H, CHCCl). – ¹³**C NMR (CDCl**₃): δ = 63.83 (s, ≡CAr), 78.56 (s, ≡CCl), 122.15 (s, ≡CC), 127.46 (d, CHCCl), 129.26 (d, CHCHCCl), 137.82 (s, C_{Ar}Cl). – **IR (CCl**₄): $\tilde{\nu}$ = 718 cm⁻¹ (m), 896 (m), 1108 (m), 1195 (m), 1432 (s), 1446 (m), 2226 (s, C≡C). – **C**₈**H**₃**Cl**₃ (205.47 g/mol): calc. (%): C 46.76, H 1.47; found (%): C 45.07, H 2.01. The compound still contained traces of impurities but was further converted, notwithstanding. – **MS (EI):** *m*/*z* (%): 206.1 (11) [M+H⁺], 49.0 (50), 47.0 (61), 37.0 (85), 35.0 (100), 26.1 (50). – **R**_f (*n*-hexane): 0.63.

(Chloro)-2-pyridylacetylene (19e):^[S15] brown oil. $-{}^{1}$ H NMR (CDCl₃): $\delta = 7.44$ (ddd, ${}^{3}J = 7.6$ Hz, 5.2 Hz, ${}^{4}J = 1.2$ Hz, 1 H, H-5), 7.62 (*pseudo* dt, J = 8.0 Hz, 1.2 Hz, 1 H, H-3), 7.84 (*pseudo* dd, J = 8.0 Hz, 1.6 Hz, 1 H, H-4), 8.76 (*pseudo* dq, J = 4.8 Hz, 0.8 Hz, 1 H, H-6). $-{}^{13}$ C NMR (CDCl₃): $\delta = 68.84$ (s, \equiv C), 69.01 (s, \equiv C), 123.19 (d, C-5), 127.30 (d, C-3), 136.20 (d, C-4), 142.24 (s, C-2), 150.02 (d, C-6). - IR (CCl₄): $\tilde{\nu} = 679$ cm⁻¹ (m), 905 (m), 991 (m), 1428 (s), 1464 (vs), 1566 (m), 1583 (s), 2231 (vs, C \equiv C), 3010 (w), 3056 (w). - MS (ESI): m/z (%): 138.0 [M+H⁺]. - R_{f} (EtOAc/*n*-hexane = 1:4): 0.31.

2-(2-Chloroethynyl)benzyl acrylate (19f): pale yellow liquid. – ¹H NMR (CDCl₃): $\delta = 5.35$ (s, 2 H, OCH₂), 5.88 (dd, ³J_{cis} = 10.4 Hz, ²J = 1.6 Hz, 1 H, H^B), 6.20 (dd, ³J_{trans} = 17.6 Hz, ³J_{cis} = 10.4 Hz, 1 H, H^C), 6.48 (dd, ³J_{trans} = 17.6 Hz, ²J = 1.6 Hz, 1 H, H^A), 7.28 (*pseudo* td, J = 7.6 Hz, 1.6 Hz, 1 H, H-4), 7.35 (*pseudo* td, J = 7.6 Hz, 1.6 Hz, 1 H, H-5), 7.41 (*pseudo* d, J = 7.6 Hz, 1 H, H-6), 7.48 (*pseudo* dd, J = 7.6 Hz, 0.8 Hz, 1 H, H-3). – ¹³C NMR (CDCl₃): $\delta = 64.46$ (t, OCH₂), 66.75 (s, \equiv CAr), 72.78 (s, \equiv CCl), 121.42 (s, C-2), 128.07 (d, C-4 or C(O)CH), 128.12 (d, C-4 or C(O)CH), 128.23 (d, C-6), 128.78 (d, C-5), 131.28 (t, =CH₂), 132.79 (d, C-3), 138.08 (s, C-1), 165.88 (s, C=O). – IR (CCl₄): $\tilde{\nu} = 654$ cm⁻¹ (m), 896 (m), 949 (m), 967 (s), 985 (s), 1023 (m), 1050 (s), 1185 (s), 1269 (s), 1295 (s), 1371 (m), 1407 (m), 1452 (m), 1487 (m), 1635 (m), 1739 (vs, C=O), 1926 (w), 1956 (w), 2220 (s, C=C), 2893

(w), 2961 (w), 3033 (w, =CH), 3070 (w, =CH). $- C_{12}H_9ClO_2$ (220.66 g/mol): calc. (%): C 65.32, H 4.11; found (%): C 64.90, H 4.12. $- R_f$ (Et₂O/*n*-hexane=1:10): 0.41.

2-[2-(Chloroethynyl)benzyloxy]tetrahydro-2*H***-pyran (19g): viscous yellow oil. -{}^{1}H NMR (CDCl₃): \delta = 1.52-1.65 (m, 3 H, H-4, H-5), 1.67–1.73 (m, 1 H, H-3, diastereotope protons), 1.74–1.82 (m, 1 H, H-3, diastereotope protons), 1.85–1.95 (m, 1 H, H-5, diastereotope protons), 3.59 (m, 1 H, H-6, diastereotope protons), 3.95 (m, 1 H, H-6, diastereotope protons), 4.65 (d, {}^{2}J = 12.8 Hz, 1 H, ArCH₂, diastereotope protons), 4.78 (***pseudo* **t, J = 3.2 Hz, 1 H, H-2), 4.90 (d, {}^{2}J = 12.8 Hz, 1 H, ArCH₂, diastereotope protons), 7.23 (***pseudo* **t, J = 7.6 Hz, 1 H, H-4'), 7.35 (***pseudo* **td, J = 7.6 Hz, J = 1.2 Hz, 1 H, H-5'), 7.45 (***pseudo* **dd, J = 7.6 Hz, J = 1.2 Hz, 1 H, H-3'), 7.49 (***pseudo* **d, J = 7.6 Hz, 1 H, H-6'). – {}^{13}C NMR (CDCl₃): \delta = 19.30 (t, C-5), 25.46 (t, C-4), 30.52 (t, C-3), 62.06 (t, C-6), 67.28 (t, ArCH₂), 67.30 (s, \equivCAr), 72.04 (s, \equivCCl), 98.48 (d, C-2), 120.66 (s, C-2'), 127.20 (d, C-4'), 127.58 (d, C-6'), 128.73 (d, C-5'), 132.57 (d, C-3'), 140.96 (s, C-1'). – IR (CCl₄): \tilde{\nu} = 871 cm⁻¹ (w), 908 (m), 976 (w), 1035 (s), 1060 (m), 1201 (w), 1350 (w), 1453 (w), 2219 (w, C=C), 2851 (w), 2873 (m), 2944 (s). – C₁₄H₁₅ClO₂ (250.72 g/mol): calc. (%): C 67.07, H 6.03; found (%): C 66.68, H 6.00. –** *R***_f (CHCl₃): 0.50–0.57.**

2-(Chloroethynyl)benzyl alcohol (19h): white solid. – **mp:** 76–82 °C. – ¹**H NMR (CDCl₃):** $\delta = 1.92$ (s, 1 H, OH), 4.82 (s, 2 H, CH₂OH), 7.25 (*pseudo* t, J = 7.6 Hz, 1 H, H-4), 7.36 (*pseudo* t, J = 7.6 Hz, 1 H, H-5), 7.45–7.47 (m, 2 H, H-2, H-3, H-6). – ¹³**C NMR (CDCl₃):** $\delta = 63.60$ (t, CH₂OH), 67.04 (s, \equiv CAr), 72.37 (s, \equiv CCl), 120.17 (s, C-2), 127.20 (d, C-6), 127.45 (d, C-4), 129.00 (d, C-5), 132.73 (d, C-3), 143.09 (s, C-1). – **IR (CCl₄):** $\tilde{\nu} = 655$ cm⁻¹ (m), 947 (m), 1015 (s), 1040 (vs), 1191 (m), 1378 (m), 1450 (m), 1484 (m), 2218 (s, C \equiv C), 2878 (w), 2929 (w), 3071 (w), 3458 (br.), 3616 (m). – **MS (ESI):** m/z: 167.0 [M+H⁺]. – **C₉H₇ClO (166.61 g/mol):** calc. (%): C 64.89, H 4.23; found (%): C 65.28, H 4.43. – **R_f (CHCl₃):** 0.19.

(Chloroethynyl) propyl thioether (25b):^[S16] colourless liquid, darkened rapidly at standing (room temperature). – ¹H NMR (CDCl₃): $\delta = 1.02$ (*pseudo* t, J = 7.2 Hz, 3 H, Me), 1.76 (*pseudo* qt, $J_{Me,CH2} = 7.2$ Hz, J = 7.2 Hz, 2 H, CH₃CH₂), 2.69 (*pseudo* t, J = 7.2 Hz, 2 H, SCH₂). – ¹H NMR (DMSO-d₆): $\delta = 0.97$ (*pseudo* t, J = 7.2 Hz, 3 H, Me), 1.68 (*pseudo* sext, J = 7.2 Hz, 2 H, MeCH₂), 2.77 (*pseudo* t, J = 7.2 Hz, 2 H, SCH₂). – ¹³C NMR (CDCl₃): $\delta = 12.82$ (q, Me), 22.70 (t, MeCH₂), 37.01 (t, SCH₂), 59.83 (s, =C), 68.94 (s, =C). – ¹³C NMR (DMSO-d₆): $\delta = 12.43$ (q, Me), 22.25 (t, MeCH₂), 36.13 (t, SCH₂), 60.34 (s, =C), 68.61 (s, =C). – IR (CCl₄): $\tilde{\nu} = 897$ cm⁻¹ (m), 911 (m), 952 (m), 1236 (s), 1292 (s), 1333 (s), 1379 (m), 1461 (s), 2147 (s, C=C), 2875 (s), 2933 (s), 2963 (s). – C₅H₇ClS (134.63 g/mol): calc. (%): C 44.61, H 5.24, S 23.82; found (%): C 43.79, H 5.18, S 24.66.

6. Characterisation of vinyl azide 13 and the corresponding cyclooctatriazole 15

ORTEP plot of 13, H atoms are omitted for clarity.

(Z)-(1-Azido-2-chloroethenyl)benzene (13):^[9] yellow solid. – mp: 23–26 °C. – ¹H NMR (CDCl₃): δ = 5.82 (s, 1 H, =C(Cl)H), 7.38–7.45 (m, 5 H, Ph). – ¹³C NMR (CDCl₃): δ = 105.94 (d, =C(Cl)H), 127.01 (d), 128.92 (d), 129.72 (d, *p*-Ph), 132.57 (s, *i*-Ph), 139.11 (s, <u>C</u>Ph). – IR (CCl₄): $\tilde{\nu}$ = 698 cm⁻¹ (s), 838 (s), 1322 (s), 1614 (w), 2119 (vs, N₃), 3093 (w). – MS (ESI): *m*/*z* (%): 152.05 [M–N₂+H⁺]. – C₈H₆ClN₃ (179.61 g/mol): calc. (%): C 53.50, H 3.37, N 23.40; found (%): C 53.38, H 3.32, N 23.08. – *R*_f (CHCl₃/*n*-hexane = 1:1): 0.82. – Crystal data: C₈H₆ClN₃, *MW* = 179.61, *T* = 100 K, λ = 1.54184 Å, orthorombic, space group Pbca, *a* = 9.13600(10) Å, *b* = 7.63310(10) Å, *c* = 23.2493(3) Å, α = 90 °, β = 90 °, γ = 90 °, *V* = 1621.31(3) Å³, *Z* = 8, *D* = 1.472 Mg/m³, μ = 3.692 mm⁻¹, *F*(000) = 736. Crystallographic data for structure 13 have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766233.

ORTEP plot of 15, H atoms are omitted for clarity.

(Z)-1-(2-Chloro-1-phenylvinyl)-4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*][1,2,3]triazole (15): white solid. – **mp:** 75–78. – ¹**H NMR** (CDCl₃): δ = 1.49 (m, 4 H, H-6, H-7), 1.62 (m, 2 H, H-8), 1.80 (m, 2 H, H-5), 2.58 (m, 2 H, H-9), 3.00 (m, 2 H, H-4), 7.03 (s, 1 H, =C(Cl)H), 7.09–7.13 (m, 2 H, *o*-Ph), 7.31–7.36 (m, 3 H, *p*-Ph, *m*-Ph). – ¹³**C NMR** (CDCl₃): δ = 21.54 (t, C-9), 24.32 (t, C-4), 24.84 (t, C-6 or C-7), 25.76 (t, C-6 or C-7), 26.05 (t, C-8), 27.92 (t, C-5), 119.21 (d, =C(Cl)H), 125.11 (d, *o*-Ph), 129.04 (d, *m*-Ph), 129.80 (d, *p*-Ph), 133.63 (s, *i*-Ph), 134.70 (s, C-9a), 137.77 (s, <u>C</u>=C(Cl)H), 144.50 (s, C-3a). – **IR** (CCl₄): $\tilde{\nu}$ = 1243 cm⁻¹ (m), 1456 (s), 1496 (m), 1619 (m), 2856 (s), 2933 (vs, CH₂), 3087. – **HR-MS** (ESI): *m/z*: 288.1221 [M+H⁺, calc.: 288.1262], 575.4 [2M+H]⁺. – C₁₆H₁₈N₃Cl (287.79 g/mol): calc. (%): C 66.78, H 6.30, N 14.60, Cl 12.32; found (%): C 67.16, H 6.34, N 14.48. – *R*_f (Et₂O): 0.74.

- **Crystal data** (Et₂O/*n*-pentane): C₁₆H₁₈ClN₃, *MW* = 287.78, *T* = 120 K, λ = 1.54184 Å, monoclinic, space group P2(1)/a, *a* = 11.51210(10) Å, *b* = 10.10690(10) Å, *c* = 12.42760(10) Å, α = 90°, β = 93.6380(10)°, γ = 90°, *V* = 1443.06(2) Å³, *Z* = 4, *D* = 1.325 Mg/m³, μ = 2.275 mm⁻¹, *F*(000) = 608. Crystallographic data for structure **15** have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766234.

7. Characterisation of the sulfoxonium ylides 14 and 20

ORTEP plot of 14, H atoms are omitted for clarity.

Dimethylsulfoxonium- α -cyanobenzylide (14): orange solid. – mp: 97–99 °C. – ¹H NMR (CDCl₃): δ = 3.51 (s, 6 H, Me), 7.09 (m, 1 H, *p*-Ph), 7.27–7.32 (m, 4 H, *o*-Ph, *m*-Ph). – ¹³C NMR (CDCl₃): δ = 41.73 (q, Me), 51.24 (s, C=S), 119.96 (s, CN), 124.08 (d, *m*-Ph), 124.22 (d, *p*-Ph), 129.09 (d, *o*-Ph), 132.06 (s, *i*-Ph). – **IR** (CCl₄): $\tilde{\nu}$ = 1026 cm⁻¹ (m), 1200 (s, C=S), 1494 (m), 2163 (s, CN), 2915 (w), 2994 (w), 3009 (w). – **HR-MS** (ESI): *m/z*: 194.0658 [M+H⁺, calc.: 194.0634]. – C₁₀H₁₁NOS (193.27 g/mol): calc. (%): C 62.15, H 5.74, N 7.24, S 16.59, O 8.28; found (%): C 62.24, H 5.53, N 7.27, S 16.36. – *R*_f (EtOH): 0.64. – *R*_f (EtOAc): 0.50. – Crystal data: C₁₀H₁₂NOS, *MW* = 193.27, *T* = 100(2) K, λ = 0.71073 Å, orthorombic, space group Pbca, *a* = 10.1145(7) Å, *b* = 8.6150(7) Å, *c* = 22.2122(16) Å, α = 90 °, β = 90 °, γ = 90 °, *V* = 1935.5(2) Å³, *Z* = 8, *D* = 1.333 Mg/m³, μ = 0.292 mm⁻¹, *F*(000) = 824. Crystallographic data for structure 14 have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766236.

ORTEP plot of 20a, H atoms are omitted for clarity.

Dimethylsulfoxonium- α -cyano(4-methylphenyl)methylide (20a): yellow solid. – mp: 125–128 °C. – ¹H NMR (CDCl₃): δ = 2.31 (s, 3 H, C₆H₄CH₃), 3.48 (s, 6 H, SMe), 7.12 (*pseudo* d, J= 8.2 Hz, 2 H, MeCCH), 7.22 (*pseudo* d, J= 8.2 Hz, 2 H, MeCCHCH). – ¹³C NMR (CDCl₃): δ = 20.91 (q, C₆H₄CH₃), 41.67 (q, SCH₃), 50.50 (s, C=S), 120.22 (s, CN), 124.88 (d, MeCCHCH), 128.62 (s, MeCCHCHC), 129.80 (d, MeCCH), 134.35 (MeC). – IR (CCl₄):

 $\tilde{v} = 689 \text{ cm}^{-1}$ (m), 1024 (m), 1202 (s), 1296 (w), 1325 (w), 1356 (w), 1510 (m), 1613 (w), 1689 (s), 2168 (s, CN), 2927 (w), 3024 (w). – **HR-MS (ESI):** m/z: 208.0807 [M+H⁺, calc.: 208.0791]. – **C**₁₁**H**₁₃**NSO (207.29 g/mol):** calc. (%): C 63.74, H 6.32, N 6.75, S 15.47, O 7.72; found (%): C 63.47, H 6.67, N 6.77, S 15.41. – **R**_f (**EtOAc):** 0.34. – **Crystal data** (THF/*n*-hexane): C₁₁H₁₃NOS, MW = 207.28, T = 100 K, $\lambda = 1.54184$ Å, monoclinic, space group P 1 21/c 1, a = 10.1586(10) Å, b = 10.9459(8) Å, c = 10.0846(10) Å, $\alpha = 90^{\circ}$, $\beta =$ 108.164(11) °, $\gamma = 90^{\circ}$, V = 1065.48(17) Å³, Z = 4, D = 1.292 Mg/m³, $\mu = 2.419$ mm⁻¹, F(000) = 440. Crystallographic data for structure **20a** have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766224.

ORTEP plot of 20b, H atoms are omitted for clarity.

Dimethylsulfoxonium- α -cyano(4-biphenylyl)methylide (20b): yellow solid, prominent sweet odour. – mp: 164–167 °C. – ¹H NMR (CDCl₃): δ = 3.55 (s, 6 H, Me), 7.33 (*pseudo* t, J = 7.6 Hz, 1 H, H-4'), 7.39 (*pseudo* d, J = 8.4 Hz, 2 H, H-3), 7.43 (*pseudo* t, J = 7.6 Hz, 2 H, H-3'), 7.55 (*pseudo* d, J = 8.4 Hz, 2 H, H-2), 7.57 (*pseudo* d, J = 7.6 Hz, 2 H, H-2'). – ¹³C NMR (CDCl₃): δ = 41.88 (q, Me), 51.28 (s, C=S), 119.84 (s, CN), 124.35 (d, C-3), 126.68 (d, C-2'), 127.09 (d, C-4'), 127.72 (d, C-2), 128.79 (d, C-3'), 131.21 (s, C-4), 137.00 (s, C-1), 140.45 (s, C-1'). – IR (CDCl₃): $\tilde{\nu}$ = 791 cm⁻¹ (s), 1018 (w), 1192 (m), 1311 (w), 1487 (m), 1605 (w), 2166 (s, CN), 2360 (w), 2930 (w), 3031 (w). – HR-MS (ESI): *m/z*: 270.0954 [M+H⁺, calc.: 270.0947]. – C₁₆H₁₅NSO (269.36 g/mol): calc. (%): C 71.35, H 5.61, N 5.20, S 11.90, O 5.94; found (%): C 71.17, H 5.70, N 5.44, S 11.23. – *R*_f (EtOAc): 0.48. – Crystal data (THF/*n*-hexane): C₁₆H₁₅NOS, *MW* = 269.35, *T* = 100 K, λ = 1.54184 Å, monoclinic, space group P 1 21/c 1, *a* = 8.2481(5) Å, *b* = 5.3260(2) Å, *c* = 30.6598(13) Å, α = 90 °, β = 94.469(5) °, γ = 90 °, *V* = 1342.77(11) Å³, *Z* = 4, *D* = 1.332 Mg/m³, μ = 2.054 mm⁻¹, *F*(000) = 568. Crystallographic data for structure 20b have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766223.

ORTEP plot of 20c, H atoms are omitted for clarity.

Dimethylsulfoxonium- α -cyano(4-chlorophenyl)methylide (20c): yellow solid. – mp: 129– 133 °C. – ¹H NMR (CDCl₃): δ = 3.51 (s, 6 H, Me), 7.23–7.28 (m, 4 H, Ph). – ¹³C NMR (CDCl₃): δ = 41.77 (q, Me), 50.83 (s, C=S), 119.54 (s, CN), 125.19 (d, ClCCHCH), 129.17 (s, ClCCH), 129.73 (s, CCl or $C_{Ar}C=S$), 130.68 (s, CCl or $C_{Ar}C=S$). – IR (CHCl₃): $\tilde{\nu}$ = 546 cm⁻¹ (w), 826 (m), 1020 (s), 1184 (w), 1295 (m), 1313 (m), 1326 (m), 1492 (s), 1711 (w), 2167 (vs, CN), 2343 (w), 2934 (w), 3006 (w). – HR-MS (ESI): m/z: 228.0222 [M+H⁺, calc.: 228.0244]. – C₁₀H₁₀CINSO (227.71 g/mol): calc. (%): C 52.74, H 4.43, N 6.15, S 14.08; found (%): C 52.61, H 4.48, N 6.20, S 14.02. – R_f (EtOAc): 0.57. – Crystal data (slow evaporation of CHCl₃/CCl₄): C₁₀H₁₀CINOS, MW = 227.70, T = 100 K, λ = 1.54184 Å, monoclinic, space group P 1 21/c 1, a = 12.6494(2) Å, b = 8.25640(10) Å, c = 10.09780(10) Å, α = 90 °, β = 98.4520(10) °, γ = 90 °, V = 1043.15(2) Å³, Z = 4, D = 1.450 Mg/m³, μ = 4.829 mm⁻¹, F(000) = 472. Crystallographic data for structure 20c have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766231.

ORTEP plot of 20d, H atoms are omitted for clarity.

Dimethylsulfoxonium-*α***-cyano(2,6-dichlorophenyl)methylide (20d)**: white solid. – **mp:** 183–185 °C. – ¹**H NMR (CDCl₃):** δ = 3.40 (s, 6 H, CH₃), 7.25 (t, ³*J* = 8.0 Hz, 1 H, *p*-Ph), 7.41 (d, ³*J* = 8.0 Hz, 2 H, *m*-Ph). – ¹³**C NMR (CDCl₃):** δ = 41.65 (q, CH₃), 43.81 (s, C=S), 119.07 (br. s, CN), 126.82 (s, *i*-Ph), 128.62 (d, *m*-Ph), 131.01 (d, *p*-Ph), 141.43 (s, CCl). – **IR** (**CHCl₃):** $\tilde{\nu}$ = 554 cm⁻¹ (m), 1022 (s), 1190 (m), 1428 (s), 1440 (m), 1556 (m), 2166 (vs, CN), 2930 (w, CH₃), 3005 (m, arom. CH). – **HR-MS (ESI):** *m/z*: 261.9841 [M⁺, calc.: 261.9855]. – **C**₁₀**H**₉**Cl**₂**NSO (262.16 g/mol):** calc. (%): C 45.82, H 3.46, N 5.34, S 12.23; found (%): C 45.70, H 3.50, N 5.43, S 11.57. – *R*_f (**EtOAc):** 0.48. – **Crystal data** (THF/*n*-hexane): C₁₀H₉**Cl**₂NOS, *MW* = 262.14, *T* = 110(2) K, λ = 0.71073 Å, orthorhombic, space group Pbca, *a* = 10.0743(2) Å, *b* = 10.8754(2) Å, *c* = 20.7109(3) Å, *α* = 90 °, β = 90 °, γ = 90 °, *V* = 2269.13(7) Å³, *Z* = 8, *D* = 1.535 Mg/m³, μ = 0.727 mm⁻¹, *F*(000) = 1072. Crystallographic data for structure **20d** have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766230.

ORTEP plot of 20e, H atoms are omitted for clarity.

Dimethylsulfoxonium- α -cyano(2-pyridyl)methylide (20e): red-orange solid. – mp: 122–125 °C. – ¹H NMR (CDCl₃): δ = 3.70 (s, 6 H, Me), 6.78 (*pseudo* t, *J* = 6.4 Hz, 1 H, H-5), 7.04 (*pseudo* dd, *J* = 8.0 Hz, 1.2 Hz, 1 H, H-3), 7.50 (*pseudo* td, *J* = 7.2 Hz, 1.2 Hz, 1 H, H-4), 8.26 (*pseudo* dt, *J* = 4.8 Hz, 0.8 Hz, 1 H, H-6). – ¹³C NMR (CDCl₃): δ = 42.80 (q, Me), 56.61 (s, C=S), 116.18 (d, C-3), 116.47 (d, C-5), 118.60 (s, CN), 136.77 (d, C-4), 147.77 (d, C-6), 154.61 (s, C-2). – IR (CHCl₃): $\tilde{\nu}$ = 533 cm⁻¹ (m), 1024 (s), 1052 (m), 1291 (s), 1335 (s), 1428 (m), 1471 (s), 1560 (m), 1591 (s), 2172 (vs, CN), 2931 (w, CH₃), 3004 (w, arom. CH). – HR-MS (ESI): *m/z*: 195.0681 [M+H⁺, calc.: 195.0587]. – C₉H₁₀N₂OS (194.25 g/mol): calc. (%): C 55.65, H 5.19, N 14.42, S 16.50; found (%): C 55.62, H 5.21, N 14.17, S 16.18. – *R*f (EtOAc): 0.46. – Crystal data (THF/*n*-hexane): C₉H₁₀N₂OS, *MW* = 194.25, *T* = 100 K, λ = 0.71073 Å, monoclinic, space group P 1 21 1, *a* = 6.9633(2) Å, *b* = 5.10970(10) Å, *c* = 13.5723(4) Å, α = 90 °, β = 104.691(3) °, γ = 90 °, *V* = 467.12(2) Å³, *Z* = 2, *D* = 1.381 Mg/m³, μ = 0.305 mm⁻¹, *F*(000) = 204. Crystallographic data for structure 20e have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766225.

Dimethylsulfoxonium- α -cyano[2-(ethenyloxo)oxymethyl]benzylide (20f): yellow oil. – ¹H NMR (CDCl₃): δ = 3.40 (s, 6 H, Me), 5.29 (s, 2 H, OCH₂), 5.84 (dd, ³J_{cis} = 10.4 Hz, ²J = 1.6 Hz, 1 H, H^B), 6.14 (dd, ³J_{trans} = 17.2 Hz, ³J_{cis} = 10.4 Hz, 1 H, H^A), 6.41 (dd, ³J_{trans} = 17.2 Hz, ²J = 1.6 Hz, 1 H, H^C), 7.30 (symm. m, 2 H, H-4, H-5), 7.43 (dd, ³J = 7.2 Hz, ⁴J = 2.0 Hz, 1 H, H-3), 7.47 (dd, ³J = 6.8 Hz, ⁴J = 2.4 Hz, 1 H, H-6). – ¹³C NMR (CDCl₃): δ = 41.14 (q, Me), 46.70 (s, C=S), 63.70 (t, OCH₂), 119.98 (s, CN), 128.07 (d, =C(H)CO), 128.17 (s, C-1), 128.33 (d, C-4 or C-5), 128.57 (d, C-4 or C-5), 128.84 (d, C-3), 131.26 (t, =CH₂), 132.19 (d, C-6), 137.41 (s, C-2), 165.79 (s, C=O). – IR (CHCl₃): $\tilde{\nu}$ = 553 cm⁻¹ (m), 877 (m), 984 (m), 1024 (s), 1047 (s), 1178 (m), 1267 (s), 1297 (s), 1372 (m), 1408 (m), 1450 (m), 1487 (m), 1724 (vs, C=O), 2162 (vs, CN), 2895 (m), 2931 (m), 2975 (m, CH₂), 3621 (m). – HR-MS (ESI): m/z: 278.0863 [M+H⁺, calc.: 278.0845]. – R_f (EtOAc): 0.30.

ORTEP plot of 20g, H atoms are omitted for clarity.

Dimethylsulfoxonium- α -cyano[2-(tetrahydro-2*H*-pyran-2-yl)oxymethyl]benzylide (20g): yellow solid. – mp: 90–94 °C. – ¹H NMR (CDCl₃): δ = 1.48–1.60 (m, 4 H, H-3', H-4', H-4') H-5'), 1.69-1.77 (m, 1 H, H-3', diastereotope protons), 1.80-1.86 (m, 1 H, H-5', diastereotope protons), 3.33 (s, 3 H, Me), 3.38 (s, 3 H, Me), 3.49–3.55 (m, 1 H, H-6'), 3.89 (m, 1 H, H-6²), 4.59 (d, ${}^{2}J$ = 12 Hz, 1 H, ArCH₂, diastereotope protons), 4.69 (m, 1 H, H-2²), 4.85 (d, ${}^{2}J$ = 12 Hz, 1 H, ArCH₂, diastereotope protons), 7.26 (*pseudo* td, J = 7.6 Hz, J = 1.2 Hz, 1 H, H-5), 7.32 (pseudo td, J = 7.6 Hz, J = 1.2 Hz, 1 H, H-4), 7.43 (pseudo dd, J = 7.6 Hz, J = 1.2 Hz, 1 H, H-6), 7.50 (pseudo dd, J = 7.6 Hz, J = 1.2 Hz, 1 H, H-3). $-{}^{13}$ C NMR (CDCl₃): $\delta = 19.73$ (t, C-5'), 25.29 (t, C-4'), 30.68 (t, C-3'), 40.89 (q, Me), 41.09 (q, Me), 46.73 (s, C=S), 62.74 (t, C-6'), 66.89 (t, ArCH₂), 98.58 (d, C-2'), 120.07 (s, CN), 127.83 (s, C-1), 128.13 (d, C-5), 128.41 (d, C-4), 129.41 (d, C-3), 132.67 (d, C-6), 139.66 (s, C-2). - IR (CCl₄): $\tilde{\nu} = 552 \text{ cm}^{-1}$ (m), 870 (m), 907 (m), 976 (m), 1028 (s), 1059 (m), 1077 (m), 1129 (m), 1191 (s), 1312 (m), 1350 (m), 1453 (m), 1485 (m), 2158 (s, CN), 2871 (m), 2944 (s). – **HR-MS (ESI):** m/z: 308.1305 [M+H⁺, calc.: 308.1315]. – C₁₆H₂₁NO₃S (307.41 g/mol): calc. (%): C 62.51, H 6.89, N 4.56, S 10.43; found (%): C 62.46, H 6.69, N 5.02, S 10.23. - $R_{\rm f}$ (EtOAc): 0.20. – Crystal data (CH₂Cl₂/*n*-pentane): C₁₆H₂₁NO₃S, *MW* = 307.40, *T* = 100 K, $\lambda = 1.54184$ Å, monoclinic, space group P1 21/c 1, a = 16.2018(4) Å, b = 8.2340(2) Å, c = 12.3791(3) Å, $\alpha = 90^{\circ}$, $\beta = 108.596(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 1565.22(7) Å³, Z = 4, $D = 100^{\circ}$ 1.304 Mg/m³, $\mu = 1.918$ mm⁻¹, F(000) = 656. Crystallographic data for structure **20g** have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766226.

Dimethylsulfoxonium- α -cyano(2-hydroxymethyl)benzylide (20h): highly viscous yellow oil. – ¹H NMR (CDCl₃): δ = 3.00–6.00 (br. s, 1 H, OH), 3.38 (s, 6 H, CH₃), 4.75 (s, 2 H, CH₂OH), 7.28 (*pseudo* td, J = 7.6 Hz, J = 1.6 Hz, 1 H, H-5), 7.34 (*pseudo* td, J = 7.6 Hz, J = 1.6 Hz, 1 H, H-4), 7.41 (*pseudo* dd, J = 7.6 Hz, J = 1.6 Hz, 1 H, H-6), 7.49 (*pseudo* d, J = 7.6 Hz, 1 H, H-3). – ¹³C NMR (CDCl₃): δ = 41.16 (q, CH₃), 46.37 (s, C=S), 62.87 (t, CH₂OH), 120.63 (s, CN), 127.04 (s, C-1), 128.35 (d, C-5), 128.88 (d, C-4), 129.59 (d, C-3), 132.99 (d, C-6), 142.55 (s, C-2). – IR (CHCl₃): $\tilde{\nu}$ = 552 cm⁻¹ (m), 806 (m), 1005 (s), 1022 (s), 1181 (m), 1312 (w), 1382 (w), 1452 (w), 1485 (w), 1565 (w), 2162 (vs, CN), 2930 (w), 3004 (w). – HR-MS (ESI): m/z: 224.0725 [M+H⁺, calc.: 224.0740]. – R_f (EtOH): 0.60.

8. Characterisation of diazirine 16

3-Bromo-3-phenyl-3*H***-diazirine** (16):^[S17] yellow liquid. $-{}^{1}H$ NMR (CDCl₃): $\delta = 7.12-7.17$ (m, 2 H, *o*-Ph), 7.35–7.41 (m, 3 H, *m*-Ph, *p*-Ph). $-{}^{13}C$ NMR (CDCl₃): $\delta = 37.99$ (s, CBr), 126.65 (d, *o*-Ph), 128.48 (d, *m*-Ph), 129.37 (d, *p*-Ph), 136.65 (s, *i*-Ph). $-R_{f}$ (*n*-hexane): 0.70.

9. Characterisation of the cyclooctatriazoles 17

ORTEP plot of 17, H atoms are omitted for clarity.

1-(2-Phenylethynyl)-4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*][1,2,3]triazole (17): white solid. – **mp:** 54–60 °C. – ¹**H NMR (CDCl₃):** δ = 1.47–1.60 (m, 4 H, H-6 and H-7), 1.80 (m, 2 H, H-5), 1.90 (m, 2 H, H-8), 2.96 (m, 4 H, H-4 and H-9), 7.36–7.44 (m, 3 H, m-Ph, p-Ph), 7.54–7.59 (m, 2 H, o-Ph). – ¹H NMR (DMSO-d₆): δ = 1.40–1.51 (m, 4 H), 1.70 (m, 2 H), 1.83 (m, 2 H), 2.89 (m, 2 H), 2.96 (m, 2 H), 7.47-7.54 (m, 3 H, m-Ph, p-Ph), 7.65-7.69 (m, 2 H. o-Ph). – ¹³C NMR (CDCl₃): δ = 22.10 (t, C-9), 24.28 (t, C-4), 24.72 (t, C-6 or C-7), 25.69 (t, C-8), 25.93 (t, C-6 or C-7), 27.57 (t, C-5), 76.11 (s, Ph–C=C), 78.54 (s, Ph–C=C), 120.55 (s, *i*-Ph), 128.56 (d, *m*-Ph), 129.45 (d, *p*-Ph), 131.81 (d, *o*-Ph), 137.46 (s, C-9a), 142.82 (s, C-3a). Numbering appropriate to IUPAC. – ¹³C NMR (DMSO-d₆): δ = 21.35 (t). 23.50 (t), 24.16 (t), 25.11 (t), 25.52 (t), 27.34 (t), 75.94 (s), 78.10 (s), 119.53 (s), 129.00 (d), 130.03 (d, *p*-Ph), 131.76 (d), 137.95 (s), 142.27 (s). – **IR** (**CCl**₄): $\tilde{\nu} = 689 \text{ cm}^{-1}$ (s), 1023 (s), 1264 (s), 1273 (s), 1445 (s), 1456 (m), 2259 (m, −C≡C−), 2857 (m), 2935 (s, CH₂), 3063 (w). - HR-MS (ESI): m/z: 252.1490 [M+H⁺, calc.: 252.1495]. - C₁₆H₁₇N₃ (251.33 g/mol): calc. (%): C 76.46, H 6.82, N 16.72; found (%): C 76.30, H 6.52, N 16.63. - R_f (Et₂O): 0.88. -**Crystal data:** $C_{16}H_{17}N_3$, MW = 251.33, T = 100 K, $\lambda = 1.54184$ Å, orthorhombic, space group Pbcn, a = 14.44590(10) Å, b = 7.55580(10) Å, c = 24.0084(2) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma =$ 90°, V = 2620.52(4) Å³, Z = 8, D = 1.274 Mg/m³, $\mu = 0.601$ mm⁻¹, F(000) = 1072. Crystallographic data for structure 17 have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766232.

1-[2-(4-Biphenylyl)ethynyl]-4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*][**1,2,3**]triazole (17b):

Colourless oil. – ¹H NMR (CDCl₃): δ = 1.49–1.60 (m, 4 H, H-6, H-7), 1.81 (m, 2 H, H-5), 1.91 (m, 2 H, H-8), 2.97 (m, 4 H, H-4, H-9), 7.38 (*pseudo* t, *J* = 7.2 Hz, 1 H, H-4''), 7.47 (*pseudo* t, *J* = 7.2 Hz, 2 H, H-3''), 7.61 (*pseudo* d, *J* = 7.2 Hz, 2 H, H-2''), 7.63 (*pseudo* s, 4 H, H-2', H-3'). – ¹³C NMR (CDCl₃): δ = 22.09 (t, C-9), 24.25 (t, C-4), 24.66 (t, C-6 or C-7), 25.65 (t, C-8), 25.90 (t, C-6 or C-7), 27.54 (t, C-5), 76.62 (s, ≡C–N), 78.48 (s, ≡C–Ar), 119.28 (s, C-4'), 127.03 (d, C-2' or C-3' or C-2''), 127.20 (d, C-2' or C-3' or C-2''), 127.90 (d, C-4''), 128.90 (d, C-3''), 132.21 (d, C-2' oder C-3'), 137.47 (s, C-9a), 139.94 (s, C-1''), 142.20 (s, C-1'), 142.80 (s, C-3a). – HR-MS (ESI): *m*/*z*: 328.1821 [M+H⁺, calc.: 328.1808]. – *R*_f (CH₂Cl₂/Et₂O = 10:1): 0.83.

10. Characterisation of cyclopropene 18

ORTEP plot of 18, H atoms are omitted for clarity.

3-Cyano-1,2,3-triphenylcycloprop-1-ene (18):^[7b] orange-yellow solid. – mp: 123–126 °C (ref.^[7b]: 145–146 °C). – ¹H NMR (CDCl₃): δ = 7.26 (*pseudo* t, *J* = 7.2 Hz, 1 H, *p*-Ph'), 7.33 (*pseudo* t, *J* = 7.2 Hz, 2 H, *m*-Ph'), 7.45 (*pseudo* d, *J* = 6.8 Hz, 2 H, *o*-Ph'), 7.47 (*pseudo* t, *J* = 6.8 Hz, 2 H, *p*-Ph), 7.50 (*pseudo* t, *J* = 6.8 Hz, 4 H, *m*-Ph), 7.72 (*pseudo* d, *J* = 6.8 Hz, 4 H, *o*-Ph). Determination of the signal pattern at 7.44–7.52 ppm was realized using irridiation

experiments (HOMODEC pulse sequence). – ¹³C NMR (CDCl₃): δ = 21.46 (s, CCN), 107.79 (s, =C_{Dreiring}), 121.28 (s, CN), 124.39 (s, *i*-Ph), 125.41 (d, *o*-Ph'), 127.15 (d, *p*-Ph'), 128.68 (d, *m*-Ph'), 129.25 (d, *m*-Ph), 129.97 (d, *o*-Ph), 130.38 (d, *p*-Ph), 136.98 (s, *i*-Ph'). – **IR** (CCl₄): $\tilde{v} = 687 \text{ cm}^{-1}$ (vs), 698 (s), 935 (w), 1310 (w), 1448 (m), 1495 (m), 2226 (w, C=N), 3031 (w), 3065 (w) und 3085 (w, 3x arom. C–H). – **C**₂₂**H**₁₅N (293.37 g/mol): calc. (%): C 90.07, H 5.15, N 4.78; found (%): C 88.67, H 5.15, N 5.08. – **MS** (EI): *m/z* (%): 293.3 (30.7) [M⁺], 77.1 (54.8) [Ph⁺], 51.1 (98.2), 39.1 (56.4), 27.1 (100) [HCN]. – **R**_f (Et₂**O/n-hexane = 1:3):** 0.41. – **Crystal data** (slow evaporation of CDCl₃): C₂₂H₁₅N, *MW* = 293.35, *T* = 105 K, λ = 1.54184 Å, monoclinic, space group C 1 2/c 1, *a* = 15.2276(5) Å, *b* = 11.8186(4) Å, *c* = 19.2336(7) Å, α = 90°, β = 110.067(4)°, γ = 90°, V = 3251.31(19) Å³, *Z* = 8, *D* = 1.199 Mg/m³, μ = 0.532 mm⁻¹, *F*(000) = 1232. Crystallographic data for structure **18** have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766227.

11. Characterisation of heterocycle 23

1,3-Dihydroisobenzofuran-1-carbonitrile (23): orange-yellow solid. – **mp:** $31-32 \,^{\circ}\text{C.} - {}^{1}\text{H}$ **NMR (CDCl₃):** $\delta = 5.18$ (*pseudo* d, $J = 12.4 \,\text{Hz}$, 1 H, H-3, diastereotope protons), 5.30 (*pseudo* dd, $J = 12.4 \,\text{Hz}$, $J = 2.4 \,\text{Hz}$, 1 H, H-3, diastereotope protons), 5.92 (m, 1 H, H-1), 7.31 (*pseudo* d, $J = 8.0 \,\text{Hz}$, 1 H, H-4), 7.38–7.45 (m, 3 H, H-5, H-6, H-7). – ${}^{13}\text{C}$ **NMR (CDCl₃):** $\delta = 71.28$ (d, C-1), 74.22 (t, C-3), 117.51 (s, CN), 121.48 (d, C-4), 121.81 (d), 128.49 (d), 129.66 (d), 134.01 (s), 138.53 (s). – **IR (CCl₄):** $\tilde{\nu} = 915 \,\text{cm}^{-1}$ (m), 1048 (s), 1248 (w), 1356 (w), 1463 (m), 1640 (w), 2214 (w, CN), 2359 (w), 2871 (w, CH₂), 2957 (w), 3084 (w). – **C**₉**H**₇**NO (145.16 g/mol):** calc. (%): C 74.47, H 4.86, N 9.65; found (%): C 74.53, H 4.92, N 9.58. – **R**_f (**CH₂Cl₂):** 0.55.

12. Characterisation of aldehyde 24

2-(Chloromethyl)benzaldehyde (24):^[16] pale yellow liquid. – ¹H NMR (CDCl₃): δ = 5.05 (s, 2 H, CH₂Cl), 7.53 (*pseudo* td, J = 7.2 Hz, J = 1.6 Hz, 1 H, H-4 or H-5), 7.56–7.58 (m, 1 H, H-3), 7.61 (*pseudo* td, J = 7.2 Hz, J = 1.2 Hz, 1 H, H-4 or H-5), 7.85 (*pseudo* dd, J = 7.2 Hz, J = 1.6 Hz, 1 H, H-6), 10.22 (s, 1 H, CHO). – ¹³C NMR (CDCl₃): δ = 42.95 (t, CH₂Cl), 128.93 (d, C-4 or C-5), 130.73 (d, C-3), 133.25 (s, C-1 or C-2), 133.68 (d, C-6), 134.00 (d, C-4 oder C-5), 138.63 (s, C-1 oder C-2), 192.19 (d, CHO). – IR (CCl₄): $\tilde{\nu}$ = 682 cm⁻¹ (m), 865 (m), 1195 (m), 1265 (m), 1288 (s), 1308 (m), 1453 (w), 1578 (w), 1601 (m), 1704 (vs, CO), 2738 (m), 2834 (m, CH₂), 3074 (w).

13. Characterisation of cyclopropene 26b

9-(Propylthio)bicyclo[6.1.0]non-1(8)-en-9-carbonitrile (26b): viscous yellow oil. $-{}^{1}$ H **NMR** (**CDCl**₃): $\delta = 1.01$ (*pseudo* t, J = 7.2 Hz, 3 H, Me), 1.61 (m, 4 H, CCH₂CH₂CH₂), 1.66 (*pseudo* qt, $J_{Me,CH2} = 7.2$ Hz, $J_{CH2,CH2} = 7.2$ Hz, 2 H, CH₂CH₃), 1.77 (m, 4 H, CCH₂CH₂CH₂), 2.44 (m, 4 H, CCH₂CH₂CH₂), 2.73 (*pseudo* t, J = 7.2 Hz, 2 H, SCH₂). $-{}^{13}$ C **NMR** (**CDCl**₃): $\delta = 13.39$ (q, Me), 21.82 (s, PrSC), 23.24 (t, CH₂CH₃), 23.93 (t, CCH₂CH₂CH₂), 24.56 (t, CCH₂CH₂CH₂), 26.86 (t, CCH₂CH₂CH₂), 34.16 (t, SCH₂), 118.37 (s, =C), 121.24 (s, CN). − **IR** (**CCl**₄): $\tilde{\nu} = 1426$ cm⁻¹ (m), 1460 (m), 1890 (w), 2218 (m, CN), 2873 (m), 2934 (s, CH₂), 2964 (m). − **HR-MS** (**ESI**): m/z: 222.1314 [M+H⁺, calc.: 222.1311]. − **MS**: m/z (%): 222.1 [M+H]⁺ (≅1), 195.1 [M−CN]⁺ (≅4), 146.1 [M−PrS]⁺ (100 %). − **C**₁₃**H**₁₉**NS** (**221.37** g/mol): calc. (%): C 70.54, H 8.65, N 6.33, S 14.48; found (%): C 70.05, H 8.20, N 6.07, S 14.54. − **R**_f (**Et₂O/***n***-hexane=1:3): 0.51**.

14. Characterisation of cyclooctatriazole 15b

(Z)-1-[1-(4-Biphenylyl)-2-chlorovinyl]-4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*][1,2,3]triazole (15b): orange solid. – mp: 94–95 °C. – ¹H NMR (CDCl₃): δ = 1.50 (m, 4 H, H-6, H-7), 1.67 (m, 2 H, H-8), 1.83 (m, 2 H, H-5), 2.61 (m, 2 H, H-9), 3.02 (m, 2 H, H-4), 7.09 (s, 1 H, CH_{alkene}), 7.17 (*pseudo* dt, *J* = 8.4 Hz, *J* = 2.0 Hz, 2 H, H-3'), 7.35 (*pseudo* t, *J* = 7.2 Hz, 1 H, H-4''), 7.43 (*pseudo* t, *J* = 7.2 Hz, 2 H, H-3''), 7.54–7.57 (m, 4 H, H-2', H-2''). – ¹³C NMR (CDCl₃): δ = 21.57 (t, C-9), 24.31 (t, C-4), 24.84 (t, C-6 or C-7), 25.78 (t, C-6 or C-7), 26.06 (t, C-8), 27.90 (t, C-5), 119.04 (d, =CCl), 125.48 (d, C-3''), 126.88 (d, C-2' or C-2''), 127.60 (d, C-2' or C-2''), 127.84 (d, C-4''), 128.83 (d, C-3''), 132.46 (s, C-4'), 134.75 (s, C-9a), 137.46 (s, =CAr), 139.64 (s, C-1''), 142.50 (s, C-1'), 144.47 (s, C-3a). – IR (CCl₄): $\tilde{\nu}$ = 696 cm⁻¹ (s), 840 (m), 1242 (m), 1446 (m), 1456 (m), 1488 (m), 1615 (m), 2361 (w), 2856 (s) and 2933 (vs, CH₂), 3033 (w) and 3084 (w, =C-H). – HR-MS (ESI): *m*/*z*: 364.1594 [M+H⁺, calc.: 364.1575]. – C₂₂H₂₂N₃Cl (363.89 g/mol): calc. (%): C 72.62, H 6.09, N 11.55; found (%): C 72.74, H 6.15, N 11.44. – *R*_f (Et₂O/*n*-Hexan = 1:1): 0.33.

15. Characterisation of side-product S2d

ORTEP plot of S2d, H atoms are omitted for clarity.

1,4-Bis(2,6-dichlorophenyl)-buta-1,3-diyne (S2d): Pale yellow solid. – **mp:** 191–195 °C. – ¹**H NMR (CDCl₃):** δ = 7.23 (t, ³*J* = 8.0 Hz, 1 H, CHCHCCl), 7.35 (d, ³*J* = 8.0 Hz, 2 H, CHCCl). – ¹³**C NMR (CDCl₃):** δ = 77.76 (s, Ar*C*=), 82.90 (s, =C), 121.96 (s, =CC), 127.67 (d, CHCCl), 130.10 (d, CHCHCCl), 138.55 (s, CCl). – **IR (CHCl₃):** $\tilde{\nu}$ = 877 cm⁻¹ (m), 1046 (s), 1431 (s), 1553 (m), 2156 (w, C=C). – **C₁₆H₆Cl₄ (340.04 g/mol):** calc. (%): C 56.52, H 1.78; found (%): C 56.43, H 2.02. – *R*_f (*n*-hexane): 0.30. – **Crystal data:** C₁₆H₆C₁₄, *MW* = 340.01, *T* = 110 K, λ = 0.71073 Å, monoclinic, space group P1 21/n 1, *a* = 8.0811(2) Å, *b* = 13.0846(4) Å, *c* = 13.8754(4) Å, α = 90 °, β = 103.347(3) °, γ = 90 °, *V* = 1427.53(7) Å³, *Z* = 4, *D* = 1.582 Mg/m³, μ = 0.813 mm⁻¹, *F*(000) = 680. Crystallographic data for structure **S2d** have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766229.

16. Characterisation of the vinyl azides S3

(Z)-1-(1-Azido-2-chlorovinyl)-4-methylbenzene (S3a): yellow liquid. – ¹H NMR (CDCl₃): δ = 2.39 (s, 3 H, Me), 5.75 (s, 1 H, =C(Cl)H), 7.23 (*pseudo* d, *J* = 8.4 Hz, 2 H, MeCCH), 7.28 (*pseudo* d, *J* = 8.4 Hz, 2 H, MeCCHCH). – ¹³C NMR (CDCl₃): δ = 21.22 (q, Me), 105.15 (d, =C(Cl)H), 126.93 (d, MeCCHCH), 129.57 (d, MeCCH), 129.64 (s, CMe), 139.11 (s, =C(N₃)C_{Ar}), 139.37 (s, =C(Ar)N₃). – IR (CDCl₃): $\tilde{\nu}$ = 512 cm⁻¹ (w), 797 (m), 813 (s), 847 (m), 1211 (m), 1225 (m), 1241 (m), 1280 (w), 1320 (s), 1510 (m), 1609 (m), 2130 (vs, N₃), 2925 (w, CH₃), 3032 (vw), 3095 (vw). – C₉H₈ClN₃ (193.64 g/mol): calc. (%): C 55.83, H 4.16, N 21.70; found (%): C 56.15, H 4.23, N 21.76. – MS (EI): *m*/*z* (%): 165 [M⁺–N₂] (87), 130 (69), 103 (100), 91 (52), 65 (56), 51 (58).

(Z)-1-(4-Biphenyl)-2-chlorovinyl azide (S3b): white solid. – mp: 97–99 °C. – ¹H NMR (CDCl₃): $\delta = 5.89$ (s, 1 H, =C(Cl)H), 7.39 (*pseudo* t, J = 7.2 Hz, 1 H, H-4'), 7.47 (*pseudo* d, J = 8.4 Hz, 2 H, H-3), overlaying 7.47 (m, 2 H, H-3'), 7.61 (*pseudo* d, J = 7.2 Hz, 2 H, H-2'), 7.65 (*pseudo* d, J = 8.4 Hz, 2 H, H-2). – ¹³C NMR (CDCl₃): $\delta = 106.07$ (d, =C(Cl)H), 127.05 (d, C-2'), 127.38 (d, C-3 or C-3'), 127.59 (d, C-2), 127.86 (d, C-4'), 128.90 (d, C-3 or C-3'), 131.45 (s, C-4), 138.82 (s, =CN₃), 139.91 (s, C-1'), 142.58 (s, C-1). – IR (CCl₄): $\tilde{\nu} = 696$ cm⁻¹ (m), 857 (m), 1225 (w), 1323 (s), 1487 (m), 1606 (w), 2120 (vs, N₃), 3033 (w) and 3091 (w, =C-H). – C₁₄H₁₀ClN₃ (255.71 g/mol): calc. (%): C 65.76, H 3.94, N 16.43; found (%): C 66.14, H 4.08, N 16.10. – *R*_f (*n*-hexane): 0.17.

(Z)-1-(4-Chlorphenyl)-2-chlorvinyl azide (S3c): Pale yellow liquid. – ¹H NMR (CDCl₃): $\delta = 5.87$ (s, 1 H, vinyl-H), 7.34 (*pseudo* d, J = 8.8 Hz, 2 H, ClCCHCH), 7.40 (*pseudo* d, J = 8.8 Hz, 2 H, ClCCH), 7.40 (*pseudo* d, J = 8.8 Hz, 2 H, ClCCHC), 1³³C NMR (CDCl₃): $\delta = 106.77$ (d, =C(Cl)H), 128.22 (d, ClCCHCH), 129.23 (d, ClCCH), 131.14 (s, ClCCHCHC), 135.84 (s, ClC), 138.01 (s, CN₃). – IR (CCl₄): $\tilde{\nu} = 853$ cm⁻¹ (w), 1321 (m), 1490 (w), 2118 (s, N₃), 3089 (w). – R_f (*n*-hexane): 0.48.

2-(1-Azido-2-chlorovinyl)benzyl alcohol (S3h): colourless viscous oil. – ¹H NMR (CDCl₃): $\delta = 1.77$ (s, 1 H, OH), 4.74 (s, 2 H, CH₂OH), 5.58 (s, 1 H, =C(Cl)H), 7.30 (*pseudo* dd, J = 7.2 Hz, J = 1.6 Hz, 1 H, H-3), 7.39 (*pseudo* td, J = 7.2 Hz, J = 1.6 Hz, 1 H, H-4), 7.48 (*pseudo* td, J = 7.6 Hz, J = 1.2 Hz, 1 H, H-5), 7.58 (*pseudo* dm, J = 7.6 Hz, 1 H, H-6). – ¹³C NMR (CDCl₃): $\delta = 62.62$ (t, CH₂OH), 105.67 (d, =C(Cl)H), 128.21 (d, C-4), 128.79 (d, C-6), 129.98 (d, C-3), 130.47 (d, C-5), 130.94 (s, C-2), 137.62 (s, =CN₃), 139.45 (s, C-1). – R_f (Et₂O/*n*-Hexan=1:3): 0.10. The compound was significantly less stable compared to analogue structures and decomposed completely during the NMR measurement overnight (at room temperature). For that reason no complete characterisation data of this side-product can be given.

1,1-Bis(4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*]triazole-1-yl)-2-(4-biphenylyl)ethene (S4b): Colourless viscous oil. – ¹H NMR (CDCl₃): $\delta = 1.34-1.48$ (m. 10 H. H-6, H-6', H-7, H-7', H-8), 1.57 (m, 2 H, H-8'), 1.77 (m, 4 H, H-5, H-5'), 2.73 (m, 2 H, H-9), 2.83 (m, 2 H, H-9'), 2.92 (m, 2 H, H-4'), 2.97 (m, 2 H, H-4), 6.91 (pseudo d, J = 8.4 Hz, 2 H, H-3''), 7.24 (s, 1 H, =CH_{Alken}), 7.36 (*pseudo* t, J = 7.6 Hz, 1 H, H-4"), 7.43 (*pseudo* t, J = 7.6 Hz, 2 H, H-3"), 7.50 (pseudo d, J = 8.4 Hz, 2 H, H-2''), 7.54 (pseudo d, J = 7.6 Hz, 2 H, H-2'''). $-^{13}$ C NMR (CDCl₃): $\delta = 21.47$ (t, C-9), 21.58 (t, C-9'), 24.32 (t, C-4), 24.36 (t, C-4'), 24.75 (t, C-6 or C-6' or C-7 or C-7'), 24.95 (t, C-6 or C-6' or C-7 or C-7'), 25.62 (t, C-6 or C-6' or C-7 or C-7'), 25.65 (t, C-6 or C-6' or C-7 or C-7'), 25.79 (t, C-8), 26.45 (t, C-8'), 27.67 (t, C-5), 28.02 (t, C-5'), 124.49 (s, $=C(Cot)_2$), 126.96 (d, C-2'''), 127.54 (d, C-2''), 127.98 (d, C-4'''), 128.87 (d, C-3"), 129.42 (s, C-4"), 129.67 (d, C-3"), 131.28 (d, =CH_{Alken}), 135.33 (s, C-9a), 135.36 (s, C-9a'), 139.67 (s, C-1'''), 143.02 (s, C-1''), 145.23 (s, C-3a'), 145.54 (s, C-3a). Numbering according to IUPAC. Assignment is based on C-3a lying at lowest field.^[S18] – **IR** (CCl₄): $\tilde{\nu} = 696 \text{ cm}^{-1}$ (s), 928 (m), 1052 (m), 1247 (m), 1315 (m), 1397 (m), 1445 (s), 1457 (s), 1487 (m), 1606 (w), 2856 (s) und 2933 (vs, CH₂). - HR-MS (ESI): m/z: 479.2918 $[M+H^+, calc.: 479.2918]$. – R_f (CHCl₃/Et₂O = 1:1): 0.79. Several attempts to crystallise the compound failed.

ORTEP plot of S4i, H atoms are omitted for clarity.

1,1-Bis(4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*][**1,2,3**]triazole-1-yl)-2-phenylethene (S4i): white solid. – **mp:** 140–143 °C. – ¹**H NMR (CDCl₃):** δ = 1.35 (m, 4 H, H-6, H-7), 1.43 (m,

6 H, H-6', H-7', H-8), 1.57 (m, 2 H, H-8'), 1.76 (m, 4 H, H-5, H-5'), 2.70 (m, 2 H, H-9), 2.83 (m, 2 H, H-9'), 2.91 (m, 2 H, H-4'), 2.95 (m, 2 H, H-4), 6.84–6.87 (m, 2 H, o-Ph), 7.21 (s, 1 H, PhCH), 7.25–7.38 (m, 3 H, *m*-Ph, *p*-Ph). – ¹³C NMR (CDCl₃): δ = 21.47 (t, C-9), 21.60 (t, C-9'), 24.32 (t, C-4), 24.38 (t, C-4'), 24.75 (t, C-6 or C-7), 24.97 (t, C-6' or C-7'), 25.63 (t, C-6 or C-7), 25.67 (t, C-6' or C-7' or C-8), 25.78 (t, C-6' or C-7' or C-8), 26.47 (t, C-8'), 27.68 (t, C-5), 28.03 (t, C-5'), 124.76 (s, =C(Cot)₂), 129.01 (d, m-Ph), 129.18 (d, o-Ph), 130.38 (d, p-Ph), 130.57 (s, i-Ph), 131.69 (d, PhCH), 135.27 (s, C-9a'), 135.33 (s, C-9a), 145.23 (s, C-3a'), 145.48 (s, C-3a). – **IR** (**CCl**₄): $\tilde{\nu} = 690 \text{ cm}^{-1}$ (w), 1247 (w), 1457 (m), 2856 (m), 2933 (s). – **HR-MS (ESI):** m/z: 403.2587 [M+H⁺, calc.: 403.2605]. – C₂₄H₃₀N₆ (402.54 g/mol): calc. (%): C 71.61, H 7.51, N 20.88; found (%): C 71.68, H 7.14, N 20.81. - $R_{\rm f}$ (Et₂O/*n*-hexane=5:1): 0.45. – Crystal data (slow evaporation of CDCl₃ at ambient temperature): C₂₄H₃₀N₆, MW = 402.54, T = 100 K, $\lambda = 1.54184$ Å, triclinic, space group P-1, a =8.2407(19) Å, b = 9.125(2) Å, c = 14.745(5) Å, $\alpha = 94.66(2)^{\circ}$, $\beta = 103.07^{\circ}$, $\gamma = 95.21(2)^{\circ}$, V = 1069.6(5) Å³, Z = 2, D = 1.250 Mg/m³, $\mu = 0.601$ mm⁻¹, F(000) = 432. Crystallographic data for structure S4i have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 767175.

(Z)-1,2-Bis(4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*][1,2,3]triazole-1-yl)-1-(4-biphenylyl)ethene (S6b): orange solid. – mp: 73–76 °C. – ¹H NMR (CDCl₃): δ = 1.42 (m, 2 H, H-6'' or H-6'''), 1.48 (m, 6 H, H-7'', H-7''', H-6'' or H-6'''), 1.63 (m, 2 H, H-8''), 1.69 ("quint", J= 6.4 Hz, 2 H, H-5''), 1.76 ("quint", J = 6.4 Hz, 2 H, H-5'''), 1.85 ("quint", J = 6.4 Hz, 2 H, H-8'''), 2.60 ("t", J = 6.0 Hz, 2 H, H-9''), 2.81 ("t", J = 6.4 Hz, 2 H, H-9'''), 2.83 ("t", J = 6.4 Hz, 2 H, H-4''), 2.93 ("t", J = 6.4 Hz, 2 H, H-4'''), 7.29 ("d", J = 8.0 Hz, 2 H, H-3), 7.36 ("t", J = 7.6 Hz, 1 H, H-4'), 7.44 ("t", J = 7.6 Hz, 2 H, H-3'), 7.49 (s, 1 H, vinyl-H), 7.58 ("d", $J = 8.0 \text{ Hz}, 2 \text{ H}, \text{H-2'}), 7.62 ("d", J = 8.0 \text{ Hz}, 2 \text{ H}, \text{H-2}), - {}^{13}\text{C} \text{ NMR} (\text{CDCl}_3): \delta = 21.80 (t, t)$ C-9'''). 21.98 (t. C-9''). 24.19 (t. C-4''). 24.21 (t. C-4'''). 24.33 (t. C-6''). 24.39 (t. C-6'''). 25.48 (t, C-8"), 25.61 (t, C-8"), 25.97 (t, C-7"), 26.00 (t, C-7"), 27.75 (t, C-5"), 27.88 (t, C-5"), 118.70 (d, vinyl-CH), 126.35 (d, C-3), 126.94 (d, C-2'), 127.71 (d, C-2), 127.98 (d, C-4'), 128.88 (d, C-3'), 132.45 (s, C-4), 133.33 (s, =CBiphenyl), 134.80 (s, C-9a''), 136.13 (s, C-9a'''), 139.55 (s, C-1'), 143.20 (s, C-1), 143.92 (s, C-3a''), 144.55 (s, C-3a'''). - IR (CCl₄): $\tilde{\nu} = 696 \text{ cm}^{-1}$ (s), 909 (s), 1048 (m), 1243 (m), 1267 (m), 1379 (m), 1445 (s), 1457 (s), 1471 (m), 1488 (m), 2855 (s, CH₂), 2931 (vs, CH₂), 3033 (w, =CH), 3062 (w, =CH). -**HR-MS (ESI):** m/z: 479.2858 [M+H⁺, calc.: 479.2919]. – R_f (diethyl ether): 0.38.

1,2-Bis(4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazole-1-yl)-1-phenylethene (S6i): white fluffy solid. – mp: 64–66 °C. – ¹H NMR (CDCl₃): δ = 1.39–1.54 (m, 8 H, H-6, H-6', H-7, H-7'), 1.60 (m, 2 H, H-8), 1.70 (m, 2 H, H-5'), 1.75 (m, 2 H, H-5), 1.85 (m, 2 H, H-8'), 2.56 (m, 2 H, H-9), 2.81 (m, 2 H, H-9'), 2.84 (m, 2 H, H-4'), 2.91 (m, 2 H, H-4), 7.22-7.25 (m, 2 H, o-Ph), 7.39-7.47 (m, 4 H, m-Ph, p-Ph) overlaying 7.42 (s, 1 H, CH_{alkene}). - ¹³C NMR (CDCl₃): $\delta = 21.83$ (t, C-9'), 21.95 (t, C-9), 24.24 (t, C-4'), 24.26 (t, C-4), 24.37 (t, C-6 or C-6' or C-7 or C-7'), 24.44 (t, C-6 or C-6' or C-7 or C-7'), 25.52 (t, C-8), 25.65 (t, C-8'), 25.98 (t, C-6 or C-6' or C-7 or C-7'), 26.04 (t, C-6 or C-6' or C-7 or C-7'), 27.80 (t, C-5), 27.92 (t, C-5'), 118.97 (d, CH_{Alken}), 126.00 (d, o-Ph), 129.17 (d, m-Ph), 130.47 (d, p-Ph); 133.72 (s, *i*-Ph oder PhC), 133.88 (s, *i*-Ph oder PhC), 134.78 (s, C-9a'), 136.07 (s, C-9a), 143.97 (s, C-3a'), 144.58 (s, C-3a). Assignment of the methylene signals to the two eightmembered rings was realized by TOCSY spectrum and nOe irridiating experiments. - IR (CCl₄): $\tilde{\nu} = 692 \text{ cm}^{-1}$ (m), 1457 (m), 2855 (m), 2933 (s), 3066 (w). – HR-MS (ESI): m/z: 403.2592 [M+H⁺, calc.: 403.2605]. – $C_{24}H_{30}N_6$ (402.54 g/mol): calc. (%): C 71.61, H 7.51, N 20.88; found (%): C 70.01, H 7.01, N 19.96. The large differences between calculated and measured values might be caused by complexation of solvent molecules due to the cisconnected triazole rings. $-R_{\rm f}$ (Et₂O): 0.24.

18. Characterisation of the α -oxo amides S5

ORTEP plot of S5b, H atoms are omitted for clarity.

N,*N*-Dimethyl-2-oxo-2-(4-biphenylyl)acetamide (S5b): white solid. – mp: 109–111 °C. – ¹H NMR (CDCl₃): δ = 2.99 (s, 3 H, Me), 3.14 (s, 3 H, Me), 7.42 (*pseudo* t, *J* = 7.2 Hz, 1 H, H-4''), 7.48 (*pseudo* t, *J* = 7.2 Hz, 2 H, H-3''), 7.63 (*pseudo* d, *J* = 7.2 Hz, 2 H, H-2''), 7.72 (*pseudo* d, *J* = 8.8 Hz, 2 H, H-2'), 8.02 (*pseudo* d, *J* = 8.8 Hz, 2 H, H-3'). – ¹³C NMR (CDCl₃): δ = 34.00 (q, Me), 37.07 (q, Me), 127.31 (d, C-2''), 127.61 (d, C-2'), 128.54 (d, C-4''), 128.99 (d, C-3''), 130.22 (d, C-3'), 131.72 (s, C-4'), 139.51 (s, C-1''), 147.39 (s, C-1'), 167.02 (s, C-1), 191.34 (s, C-2). – IR (CDCl₃): $\tilde{\nu}$ = 696 (m), 853 (m), 884 (m), 993 (m), 1145 (m), 1253 (m), 1275 (m), 1404 (m), 1604 (m), 1656 (s) und 1682 (s, C=O), 2934 (w), 3033 (w) and 3063 (w, =C-H), 3461 (br.). – HR-MS (ESI): *m*/*z*: 254.1242 [M+H⁺, calc.: 254.1176]. – C₁₆H₁₅NO₂ (253.30 g/mol): calc. (%): C 75.87, H 5.97, N 5.53, O 12.63; found (%): C 75.49, H 5.99, N 5.73. – *R*_f (CHCl₃/Et₂O = 1:1): 0.66. – Crystal data: C₁₆H₁₅NO₂,

MW = 253.29, *T* = 100 K, λ = 1.54184 Å, monoclinic, space group P2(1)/n, *a* = 6.14680(10) Å, *b* = 6.99200(10) Å, *c* = 30.0286(4) Å, α = 90 °, β = 91.2010(10) °, γ = 90 °, *V* = 1290.30(3) Å³, *Z* = 4, *D* = 1.304 Mg/m³, μ = 0.691 mm⁻¹, *F*(000) = 536. Crystallographic data for structure **S5b** have been deposited at the Cambridge Crystallographic Data Center under the number CCDC 766235.

N,N-Dimethyl-2-oxo-2-phenylacetamide (S5i):^[S19] Colourless viscous oil. – ¹H NMR (CDCl₃): $\delta = 2.97$ (s, 3 H, NMe), 3.13 (s, 3 H, NMe), 7.51 (*pseudo* t, J = 7.6 Hz, 2 H, *m*-Ph), 7.65 (*pseudo* t, J = 7.6 Hz, 1 H, *p*-Ph), 7.95 (*pseudo* d, J = 7.6 Hz, 2 H, *o*-Ph). – ¹³C NMR (CDCl₃): $\delta = 34.01$ (q, Me), 37.06 (q, Me), 129.00 (d, *m*-Ph), 129.66 (d, *o*-Ph), 133.05 (s, *i*-Ph), 134.71 (d, *p*-Ph), 167.02 (s, CONMe₂), 191.77 (s, COPh). – IR (CCl₄): $\tilde{\nu} = 1656$ (s), 1684 (m), 2932 (w). – MS (ESI): m/z (%): 178.1 [M+H⁺], 355.2 [2M+H⁺]. – $R_{f}(Et_{2}O/n-hexane=5:1)$: 0.36.

19. Characterisation of cyclopropene S7b

9-(4-Biphenylyl)bicyclo[6.1.0]non-1(8)-en-9-carbonitrile (15b): yellow viscous oil. $-{}^{1}$ **H NMR** (**CDCl**₃): $\delta = 1.76$ (m, 4 H, H-4, H-5 diastereotope protons), 1.88 (m, 4 H, H-3, H-6 diastereotope protons), 2.39–2.56 (m, 4 H, H-2, H-7 diastereotope protons), 7.32 (*pseudo* d, J = 8.4 Hz, 2 H, H-3'), 7.35 (*pseudo* t, J = 7.2 Hz, 1 H, H-4''), 7.44 (*pseudo* t, J = 7.2 Hz, 2 H, H-3''), 7.55–7.58 (m, 4 H, H-2', H-2''). $-{}^{13}$ **C NMR** (**CDCl**₃): $\delta = 22.86$ (t, C-2, C-7), 23.93 (s, *C*(CN)), 25.32 (t, C-3, C-6), 27.37 (t, C-4, C-5), 112.88 (s, =*C*CH₂), 122.73 (s, CN), 125.68 (d, C-3'), 127.01 (d, C-2' oder C-2''), 127.27 (d, C-2' oder C-2''), 127.31 (d, C-4''), 128.80 (d, C-3''), 138.20 (s, C-1' oder C-4'), 139.68 (s, C-1' oder C-4'), 140.54 (s, C-1''). Both the nitrile carbon as well as the sp³ carbon of the three-membered ring have proved to be very low in intensity. No significant nOe effects between the phenyl protons and the methylene protons have been found. – **IR** (**CCl**₄): $\tilde{\nu} = 696$ cm⁻¹ (m), 1487 (m), 1707 (w), 2224 (w), 2341 und 2359 (s, CN), 2934 (s). – **MS** (**ESI**): *m/z*: 301.1 [M+H⁺].– *R*_f (**CHCl**₃/*n*-hexane=1:2): 0.08.

20. Characterisation of the thiopropyl compounds S8–S15

2,2-Dichlorovinyl propyl thioether (S8):^[S20] Colourless liquid. – ¹³C NMR (CDCl₃): δ = 12.98 (q, Me), 23.72 (t, MeCH₂), 35.82 (t, SCH₂), 113.71 (s), 126.09 (s).

(*E*)-1-[2-Chloro-1-(propylthio)vinyl]-4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*][1,2,3]triazole (S11): foul-smelling orange viscous oil. – ¹H NMR (CDCl₃): δ = 0.95 (*pseudo* t, *J* = 7.2 Hz, 3 H, Me), 1.43–1.55 (m, 4 H, H-6, H-7), 1.64 (*pseudo* qt, $J_{Me,CH2}$ = 7.2 Hz, $J_{CH2,CH2}$ = 7.2 Hz, 2 H, CH₃CH₂), 1.76 (m, 2 H, H-5), 1.84 (m, 2 H, H-8), 2.68 (*pseudo* t, *J* = 7.2 Hz, 2 H, SCH₂), 2.77 (m, 2 H, H-9), 2.92 (m, 2 H, H-4), 6.74 (s, 1 H, =C(Cl)H). – ¹³C NMR (CDCl₃): δ = 12.85 (q, Me), 21.49 (t, C-9), 23.54 (t, MeCH₂), 24.21 (t, C-4), 24.79 (t, C-6), 25.75 (t, C-7), 26.16 (t, C-8), 27.76 (t, C-5), 36.14 (t, SCH₂), 114.61 (s, =CSProp), 131.39 (d, =C(Cl)H), 134.32 (s, C-9a), 144.28 (s, C-3a). – **IR** (**CCl**₄): $\tilde{\nu} = 918 \text{ cm}^{-1}$ (s), 1457 (m), 2856 (m), 2934 (s), 2965 (m). – **HR-MS** (**ESI**): m/z: 286.1105 [M+H⁺, calc.: 286.1139]. – R_f (**Et₂O/***n***-hexane = 6:1):** 0.69.

3,3-Bis(propylthio)acrylnitrile (S12): orange liquid. ${}^{-1}$ **H** NMR (CDCl₃): $\delta = 1.03$ (*pseudo* t, J = 7.2 Hz, 3 H, Z-Me), 1.65–1.76 (m, 4 H, E-CH₂CH₃, Z-CH₂CH₃), 2.86 (*pseudo* t, J = 7.2 Hz, 2 H, E-SCH₂), 3.01 (*pseudo* t, J = 7.2 Hz, 2 H, Z-SCH₂), 5.19 (s, 1 H, =CH). The geminal constitution of the propylthio-substituents was confirmed by ${}^{3}J$ coupling of the SCH₂ protons to the same alkene carbon (gHMBC pulse sequence). ${}^{-13}$ C NMR (CDCl₃): $\delta = 13.12$ (q, Z-Me), 13.42 (q, E-Me), 21.33 (t, E-CH₂CH₃), 23.03 (t, Z-CH₂CH₃), 35.82 (t, SCH₂), 35.97 (t, SCH₂), 90.60 (d, =CH), 116.45 (s, CN), 162.58 (s, =C(SPr)₂). – IR (CCl₄): $\tilde{\nu} = 1460$ cm⁻¹ (m), 1535 (m), 1643 (w), 2211 (s, CN), 2875 (w), 2934 (m), 2968 (s, CH₂). – HR-MS (ESI): m/z: 202.0727 [M+H⁺, calc.: 202.0719]. – C₉H₁₅NS₂ (201.34 g/mol): calc. (%): C 53.69, H 7.51, N 6.96, S 31.84; found (%): C 54.22, H 7.18, N 6.53, S 30.82. – *R*_f (Et₂O/*n*-hexane=1:3): 0.41.

(*E*)-1-[2-Cyano-1-(propylthio)vinyl]-4,5,6,7,8,9-hexahydro-1*H*-cycloocta[*d*][1,2,3]triazole (S13): orange-brown oil. – ¹H NMR (CDCl₃): δ = 1.02 (*pseudo* t, *J* = 7.2 Hz, 3 H, Me), 1.46–1.57 (m, 4 H, H-6, H-7), 1.73 (*pseudo* qt, *J*_{Me,CH2} = 7.2 Hz, *J*_{CH2,CH2} = 7.2 Hz, 2 H, MeCH₂), 1.79 (m, 2 H, H-5), 1.85 (m, 2 H, H-8), 2.70 (*pseudo* t, *J* = 7.2 Hz, 2 H, SCH₂), 2.84 (m, 2 H, H-9), 2.95 (m, 2 H, H-4), 5.59 (s, 1 H, =CH). – ¹³C NMR (CDCl₃): δ = 13.28 (q, Me), 21.48 (t, MeCH₂), 21.77 (t, C-9), 24.23 (t, C-4), 24.83 (t, C-6), 25.65 (C-7), 26.54 (C-8), 27.77 (C-5), 34.90 (SCH₂), 94.15 (d, =CH), 113.45 (s, CN), 134.55 (s, C-9a), 145.23 (s, C-3a), 154.90 (=*C*SPr). – **IR (CCl₄):** $\tilde{\nu}$ = 942 cm⁻¹ (m), 1382 (m), 1444 (m), 1453 (m), 1592 (m), 2221 (m, CN), 2857 (m), 2934 (s), 2966 (m). – **HR-MS (ESI):** *m/z*: 277.1515 [M+H⁺, calc.: 277.1481]. – *R*_f (**Et₂O/***n***-hexane = 3:1): 0.43.**

4-Cyano-5-propylthio-1*H***-1,2,3-triazole (S14):** brown foul-smelling oil. $-{}^{1}$ **H** NMR (CDCl₃): $\delta = 1.04$ (*pseudo* t, J = 7.2 Hz, 3 H, Me), 1.73 (*pseudo* qt, $J_{Me,CH2} = 7.2$ Hz, $J_{CH2,CH2} = 7.2$ Hz, 2 H, CH₃CH₂), 3.10 (*pseudo* t, J = 7.2 Hz, 2 H, SCH₂), 11.18 (br. s, 1 H, NH). $-{}^{13}$ C NMR (CDCl₃): $\delta = 12.99$ (q, Me), 22.82 (t, MeCH₂), 35.56 (t, SCH₂), 111.09 (s, CN), 121.59 (s, CCN), 147.10 (s, PropSC). - IR (CCl₄): $\tilde{\nu} = 978$ cm⁻¹ (m), 1107 (m), 1381 (m), 1432 (m), 1461 (m), 2248 (m, CN), 2875 (m), 2934 (s), 2969 (s), 3207 (br.), 3430 (m). - HR-MS (ESI): m/z: 169.0530 [M+H⁺, calc.: 169.0542]. $- R_{f}$ (EtOAc): 0.85. $- R_{f}$ (Et₂O/*n*-hexane = 1:2): 0.17.

Dimethylsulfoxonium- α -cyano(propylthio)methylide (S15): The compound was only identified from a mixture, attempts to isolate S15 failed. – ¹H NMR (CDCl₃): δ = 0.99 (*pseudo* t, *J* = 7.6 Hz, 3 H, CH₃CH₂), 1.70 (*pseudo* qt, *J*_{Me,CH2} = 7.6 Hz, *J*_{CH2,CH2} = 7.2 Hz, 2 H, MeCH₂), 2.57 (*pseudo* t, *J* = 7.2 Hz, 2 H, SCH₂), 3.45 (s, 6 H, =SMe). – ¹³C NMR (CDCl₃): δ = 13.15 (q, CH₃CH₂), 22.02 (t, CH₃CH₂), 36.87 (s, C=S), 40.98 (q, =SMe), 41.40 (t, SCH₂), 120.60 (s, CN). – HR-MS (ESI): *m*/*z*: 192.0530 [M+H⁺, calc.: 192.0511].
REFERENCES

- [S1] (a) S. Bräse, C. Gil, K. Knepper and V. Zimmermann, Angew. Chem., 2005, 117, 5320–5374; Angew. Chem. Int. Ed., 2005, 44, 5188–5240; (b) P. A. S. Smith, Open Chain Nitrogen Compounds, Bd. 2, Benjamin, New York, 1966, 211–256; (c) J. H. Boyer, R. Moriarty, B. de Darwent and P. A. S. Smith, Chem. Eng. News, 1964, 42, 6.
- [S2] W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923–2925.
- [S3] X. Creary and A. F. Sky, J. Am. Chem. Soc., 1990, 112, 368–374.
- [S4] N. Iqbal, C.-A. McEwen and E. E. Knaus, *Drug Dev. Res.*, 2000, **51**, 177–186.
- [S5] L. F. Tietze and Th. Eicher, Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium, 2. Aufl., Georg Thieme Verlag, Stuttgart, New York, 1991, 413.
- [S6] D. Sun, P. Lai, W. Xie, J. Deng and Y. Jiang, Synth. Commun., 2007, 37, 2989–2994.
- [S7] R. A. Earl and L. B. Townsend, Org. Synth., Coll., 1990, 7, 334; 1980, 60, 81.
- [S8] J. Wutke and K. Banert, Poster presentation within the 12th JCF-Frühjahrssymposium, Göttingen, 2010.
- [S9] L. Feng, A. Zhang and S. M. Kerwin, *Org. Lett.*, 2006, **8**, 1983–1986 (supporting information).
- [S10] M. V. Sargent and C. J. Timmons, J. Chem. Soc., 1964, 2222–2225.
- [S11] (a) Synthesis: Sh.-I. Marahashi, T. Naota and H. Taki, J. Chem. Soc., Chem. Commun., 1985, 613–614; (b) Spectral data: P. Fontaine, A. Chiaroni, G. Masson and J. Zhu, Org. Lett., 2008, 10, 1509–1512 (supporting information).
- [S12] M. A. P. Martins, D. J. Emmerich, C. M. P. Pereira, W. Cunico, M. Rossato, N. Zanatta and H. G. Bonacorso, *Tetrahedron Lett.*, 2004, **45**, 4935–4938.
- [S13] Sh.-T. Lin, Ch.-Ch. Lee and D. W. Liang, *Tetrahedron*, 2000, 56, 9619–9623.
- [S14] S. Huppe, H. Rezaei and S. Z. Zard, Chem. Commun., 2001, 1894–1895.
- [S15] (a) É. Abele, M. Fleisher, K. Rubina, R. Abele and E. Lukevics, J. Mol. Catal. A: Chemicals, 2001, 165, 121–126; (b) É. Abele, R. Abele, K. Rubina and E. Lukevics, Chem. Heterocycl. Comp., 1998, 34, 122–123.
- [S16] A. N. Mirskova, S. G. Seredkina, I. D. Kalikhman and M. G. Voronkov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Trans.), 1985, 34, 2614–2617.
- [S17] R. A. Thompson, J. S. Francisco and J. B. Grutzner, *Phys. Chem. Chem. Phys.*, 2004, 6, 756–765.
- [S18] K. Banert, M. Hagedorn, C. Liedtke, A. Melzer and C. Schöffler, *Eur. J. Org. Chem.*, 2000, 257–267.
- [S19] R. F. Cunico and J. Chen, J. Org. Chem., 2004, 69, 5509–5511.
- [S20] E. Nagashima, K. Suzuki and M. Sekiya, Chem. Pharm. Bull., 1981, 29, 1274–1279.

COPIES OF ${}^{1}\text{H}/{}^{13}\text{C}$ NMR spectra of all New compounds

COMPOUNDS MENTIONED IN THE COMMUNICATION

$^{1}H/^{13}C$ NMR spectra of compound 2
${}^{1}H/{}^{13}C$ NMR spectra of compound 5
${}^{1}H/{}^{13}C$ NMR spectra of compound 14
$^{1}H/^{13}C$ NMR spectra of compound 15
${}^{1}H/{}^{13}C$ NMR spectra of compound 17
¹ H/ ¹³ C NMR spectra of compound 17b 44
${}^{1}H/{}^{13}C$ NMR spectra of compound 19d 45
${}^{1}H/{}^{13}C$ NMR spectra of compound 19f
${}^{1}H/{}^{13}C$ NMR spectra of compound 19g
${}^{1}H/{}^{13}C$ NMR spectra of compound 19h

$^{1}H/^{13}C$ NMR spectra of compound 20a 49
$^{1}H/^{13}C$ NMR spectra of compound 20b 50
$^{1}H/^{13}C$ NMR spectra of compound 20c 51
$^{1}H/^{13}C$ NMR spectra of compound 20d 52
$^{1}H/^{13}C$ NMR spectra of compound 20e 53
$^{1}H/^{13}C$ NMR spectra of compound 20f 54
$^{1}H/^{13}C$ NMR spectra of compound 20g 55
$^{1}H/^{13}C$ NMR spectra of compound 20h 56
$^{1}H/^{13}C$ NMR spectra of compound 23 57
¹ H/ ¹³ C NMR spectra of compound 26b 58

COMPOUNDS ONLY MENTIONED IN THIS SUPPLEMENT

$^{1}H/^{13}C$ NMR spectra of compound S6b 68
$^{1}H/^{13}C$ NMR spectra of compound S6i
$^{1}H/^{13}C$ NMR spectra of compound S7b 70
$^{1}H/^{13}C$ NMR spectra of compound S11 71
$^{1}H/^{13}C$ NMR spectra of compound S12 72
$^{1}H/^{13}C$ NMR spectra of compound S13 73
$^{1}H/^{13}C$ NMR spectra of compound S14 74
$^{1}H/^{13}C$ NMR spectra of compound S15 75

$^{1}H/^{13}C$ NMR spectra of compound 5

$^{1}H/^{13}C$ NMR spectra of compound 20a

$^{1}H/^{13}C$ NMR spectra of compound 20c

$^{1}H/^{13}C$ NMR spectra of compound S2d

$^{1}H/^{13}C$ NMR spectra of compound S3h

 $^{1}H/^{13}C$ NMR spectra of compound S4b

$^{1}H/^{13}C$ NMR spectra of compound S11

$^{1}H/^{13}C$ NMR spectra of compound S12

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry, 2010

¹H/¹³C NMR spectra of compound **S13**

¹H/¹³C NMR spectra of compound **S14**

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry, 2010

¹H/¹³C NMR spectra of compound **S15**

