Supplementary Information

(2S,4S)-4-tert-Butyl-2,5,5-triphenyl-oxazolidine (5a)

A solution of aminoalcohol $4 \mathbf{a}(1.21 \mathrm{~g}, 4.50 \mathrm{mmol})$ and benzaldehyde $(0.55 \mathrm{~mL}, 5.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was stirred at room temperature for 24 h in Ar. Solvent was removed under a reduced pressure. The residue was purified by flash chromatography to afford the oxazolidine $\mathbf{5 a}$ ($1.58 \mathrm{~g}, 98 \%$).
5a : colorless crystal (AcOEt). mp 149-152 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}=-59.55$ (c 2.25, CHCl_{3}). IR (KBr) $\mathrm{cm}^{-1}: 3461 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 8.14(\mathrm{~s},(1 / 3) 1 \mathrm{H}), 7.73-7.11(\mathrm{~m}, 15 \mathrm{H}), 5.33(\mathrm{~s},(2 / 3) 1 \mathrm{H})$, $4.08(\mathrm{~s},(1 / 3) 1 \mathrm{H}), 4.05(\mathrm{~s},(2 / 3) 1 \mathrm{H}), 0.82(\mathrm{~s},(2 / 3) 9 \mathrm{H}), 0.79(\mathrm{~s},(1 / 3) 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: $162.22,149.24,147.00,144.94,135.73,130.68,129.35,128.45,128.04,127.91,127.72$, $127.19,127.05,126.47,126.32,126.27,125.85,125.80,88.21,83.06,80.12,75.54,36.28$, 33.71, 29.55, 28.47. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}$: C, 83.99 ; H, 7.61; N, 3.92. Found: C, 84.02; H, 7.84; N, 3.85. EI-MS $m / z: 357\left(\mathrm{M}^{+}\right)$; HRMS (EI) : calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}\left(\mathrm{M}^{+}\right)$357.2093, found 357.2110 .

(2S,4S)-4-tert-Butyl-2,5,5-triphenyl-oxazolidine trifluoroacetate (6a)

A solution of oxazolidine $\mathbf{5 a}(578 \mathrm{mg}, 1.62 \mathrm{mmol})$ and trifluoroacetic acid $(0.12 \mathrm{~mL}$, $1.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 min in Ar. Solvent was removed under a reduced pressure to give the oxazolidine salt $\mathbf{6 a}$ in quantitative yield.
6a : colorless crystal (n-hexane). mp 70-72 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-102.88$ (c 2.08, CHCl_{3}). IR (KBr) $\mathrm{cm}^{-1}: 3368,1666 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.71$ (brs, 2 H), $7.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.29(\mathrm{~m}$, $11 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 143.25,139.50,130.67$, $129.02,128.99,128.94,128.92,128.63,128.28,127.59,127.57,126.95,126.92,126.89$, 89.82, 85.77, 71.72, 34.12, 27.65. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3}$: C, 68.78; H, 5.99; N, 2.97. Found: C, 68.79; H, 6.11; N, 2.86. FAB-MS $m / z: 470(\mathrm{M}-\mathrm{H})^{-}$.

General procedure for the DA reaction of 1, 2-dihydropyridine 9 with acrolein 10 using catalyst 6a.

To a $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ solution of catalyst $\mathbf{6 a}(0.02 \mathrm{mmol})$, cold water $(0.052 \mathrm{~mL})$ and distillated acrolein $\mathbf{1 0}(0.013 \mathrm{~mL}, 0.20 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ and the solution was stirred. After $1 \mathrm{~min}, 1,2$-dihydropyridine $9(80 \mathrm{mg}, 0.040 \mathrm{mmol})$ was added and the solution was stirred at $0^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched by water. The reaction mixture was diluted with water and extracted with diethyl ether. The combined organic extracts were washed with brine, dried over MgSO_{4}, and removed under reduced pressure to give crude DA adduct 11a, which was used to the next reaction without purification.

To a stirred solution of product 11a in ethanol (2.0 mL), $\mathrm{NaBH}_{4}(4.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 1 h . Solvent was evaporated under a reduced pressure. The reaction mixture was diluted with water and extracted with AcOEt. The combined organic extracts were washed with brine, dried over MgSO_{4}, removed under reduced pressure to give a crude DA adduct 12a. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane : $\left.\mathrm{AcOEt}=1: 1\right)$ to afford the DA adduct $\mathbf{1 2 a}$ in quantitative yield. The enantiomeric excess (ee) was determined by HPLC [DAICEL Chiralcel AD-H, 0.5 $\mathrm{mL} / \mathrm{min}, n$-hexane : 2-propanol $=85: 15, t_{r}($ major $)=21.64 \mathrm{~min}, t_{r}($ minor $)=23.09 \mathrm{~min}$ for 12a ($>99 \%$ ee), DAICEL Chiralcel AD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, n-hexane $: 2$-propanol $=85: 15, t_{r}$ $(\operatorname{minor})=16.97 \mathrm{~min}, t_{r}($ major $)=20.50 \mathrm{~min}$ for 12b] . For the ee's of other catalysts: catalyst 6b (12a: 97% ee), 8a (12a: 27% ee, 12b: 29% ee), $\mathbf{8 b}$ (12a: 85% ee, 12b: 39% ee), $\mathbf{6 e}$ (12a: 39% ee, 12b: 18% ee), $\mathbf{6 f}$ (12a: 33% ee), $\mathbf{6 g}$ (12a: 42% ee).

(1S,4S,7S)-7-Hydroxymethyl-2-azabicyclo[2.2.2]oct-5-ene-2-carboxylic acid

phenyl ester (12a) : colorless crystal (n-hexane/AcOEt). mp 110-112 ${ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{21}=95.00$ (c $\left.1.00, \mathrm{CHCl}_{3}\right)$. IR (KBr$)_{\mathrm{cm}}{ }^{-1}: 3507,1694,1408 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.36-7.32(\mathrm{~m}, 2 \mathrm{H})$, 7.18 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (brs, (4/9)1H), 4.93 (brs, $(5 / 9) 1 \mathrm{H}), 3.50-3.06(\mathrm{~m}, 4 \mathrm{H}), 2.82$ (brs, 1H), 2.47 (brs, 1H), 1.86 (ddt, $J=11.6,8.7$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.96-0.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 151.34,135.15,134.80,130.41,129.89$, 129.14, 125.07, 121.74, 65.49, 47.83, 47.42, 47.08, 41.53, 30.68, 26.05. Anal. Calcd for
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 69.48 ; \mathrm{H}, 6.61$; N, 5.40. Found: C, $69.65 ; \mathrm{H}, 6.69 ; \mathrm{N}, 5.41$. EI-MS $m / z: 259$ $\left(\mathrm{M}^{+}\right)$; HRMS (EI) : calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$259.1208, found 259.1202.

The absolute stereochemistry assignment of the new DA adducts 11a, 16, 20, 21
The absolute stereochemistry assignment of the new DA adducts 11a, 16, 20, 21 was carried out as follows (Scheme 1, 2). Both 11a and the known $(7 R)-\mathbf{2 4}{ }^{7 \mathrm{c}}$ were converted to the alcohol 12a by the synthetic methodology as shown in Scheme 1. The compound 24 gave $(7 R)-(-)-\mathbf{1 2 a}$ and 11a afforded the enantiomer (7S)-(+)-12a of (7R)-(-)-12a. On the other hands, the absolute stereochemistry of DA adduct $\mathbf{1 6}$ was determined by the conversation from 1-tert-butoxycarbonyl-18a to the known 1-benzyloxycarbonyl-17a.

Scheme 1 Determinations of the absolute stereochemistry of 11a,16

To assign the structure of 1-phenoxycarbonyl-20 by X-ray study, the compound was converted to bromolactone 25 (Scheme 2). Thus, the Kraus oxidation of 20 and the bromolactonization of the obtained carboxylic acid afforded the desired bromolactone $\mathbf{2 5}$. On On the other hands, the absolute stereochemistry of 1-benzyloxycarbonyl-21 was decided by
converting to 26. Thus, compound $\mathbf{2 2}$ for which the absolute stereochemistry was determined, was converted to alcohol 26, by reduction of the olefin moiety in $\mathbf{2 2}$. The similar reduction of alcohol 23 that was derived from 20, followed by the exchange from the Cbz group to the phenoxycarbonyl group on nitrogen at 2-position, and then the reaction with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{H}_{2} \mathrm{O}$ afforded the alcohol 26.

Scheme 2 Determinations of the absolute stereochemistry of 20,21

