Supporting Information

for

A fully dynamic five-component triangle *via* self-sorting

Michael Schmittel,^{*} Kingsuk Mahata,

Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany, E-mail: <u>schmittel@chemie.uni-siegen.de</u> Fax: (+49) 271-740-3270

Table of Contents

1	General	S 2
2	Synthesis	S2
3	¹ H and ¹³ C spectra	S 6
4	ESI-MS spectra	S 9
5	DOSY	S12
6	DPV	S13
7	References	S14

General

All commercial reagents were used without further purification. The solvents were dried with appropriate desiccants and distilled prior to use. Silica gel (60-230 mesh) was used for column chromatography. ¹H NMR and ¹³C NMR were recorded on a Bruker Avance 400 MHz spectrometer using the deuterated solvent as the lock and residual solvent as the internal reference. The following abbreviations were utilised to describe peak patterns: s = singlet, d = doublet, t = triplet, dd = doublet of doublet and m = multiplet. The numbering of the carbon atoms of the molecular formulae shown in the experimental section is only used for the assignments of the NMR signal and is not in accordance with the IUPAC nomenclature rules. Electrospray ionisation mass spectra (ESI-MS) were recorded on a Thermo-Quest LCQ Deca. Differential pulse voltammetry (DPV) was measured on a Parstat 2273 in dry acetonitrile with 0.1 M *n*Bu₄NPF₆ as electrolyte. Melting points were measured on a Büchi SMP-20 and are uncorrected. Infrared spectra were recorded using a Varian 1000 FT-IR instrument. Elemental analysis measurements were done using a EA 3000 CHNS. Compound **5**,¹**7**² and precursors for **6** (**8** and **10**²) were synthesised according to known procedures.

Synthesis

Scheme S1. Synthesis of ligand 6.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Synthesis of 9

Into an oven-dried 250 mL three-neck round-bottom flask, equipped with reflux condenser and stir bar was added 3-ethynyl-[1,10]phenanthroline (8; 300 mg, 1.47 mmol), 1,4-dibutoxy-2,5-diiodobenzene (3.48 g, 7.34 mmol) and Pd(PPh₃)₄ (51.0 mg, 44.1 μ mol) under N₂ atmosphere. After addition of dry benzene (70 mL) and triethylamine (30 mL), the reaction mixture was stirred at 60-65 °C for 12 h. The reaction vessel was cooled down and the solvents were evaporated to dryness. The resulting crude solid was then dissolved in dichloromethane (200 mL) and washed successively with aq. KOH (200 mL) and water (200 mL). After drying over Na₂SO₄, solvent was removed under reduced pressure. The crude product was purified using column chromatography (SiO₂). For a first separation dichloromethane was used as eluent. Finally, the target compound was furnished using a 1:4 mixture of ethyl acetate and dichloromethane. Yield 38%; mp 122°C; ¹H NMR (400 MHz, CDCl₃) δ 1.01 (t, ³J = 7.4 Hz, 3 H, CH₃), 1.03 (t, ³J = 7.4 Hz, 3 H, CH₃), 1.52-1.66 (m, 4 H, CH₂), 1.80-1.90 (m, 4 H, CH₂), 4.02 (t, ${}^{3}J = 6.4$ Hz, 2 H, OCH₂), 4.05 (t, ${}^{3}J = 6.4$ Hz, 2 H, OCH₂), 6.99 (s, 1 H, a-H), 7.36 (s, 1 H, a'-H), 7.65 (dd, ${}^{3}J = 8.0$ Hz, ${}^{3}J = 4.4$ Hz, 1 H, 8-H), 7.77 (d, ${}^{3}J = 8.8$ Hz, 1 H, 6-H), 7.83 (d, ${}^{3}J = 8.8$ Hz, 1 H, 5-H), 8.26 (dd, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 1 H, 7-H), 8.36 (d, ${}^{4}J$ = 2.0 Hz, 1 H, 4-H), 9.21 (dd, ${}^{3}J$ = 4.4 Hz, ${}^{4}J$ = 1.6 Hz, 1 H, 9-H), 9.28 (d, ${}^{4}J$ = 2.0 Hz, 1 H, 2-H); ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 13.9 (2C), 19.3, 19.4, 31.3 (2C), 69.6, 69.8, 88.7, 90.0, 91.1, 112.7, 115.8, 119.8, 123.2, 123.8, 126.1, 127.3, 127.8, 128.9, 136.0, 137.8, 144.7, 146.0, 150.7, 151.9, 152.2, 154.6; IR (KBr) v 2931, 2871, 2212, 1612, 1594, 1585, 1554, 1493, 1464, 1442, 1430, 1420, 1378, 1346, 1325, 1292, 1274, 1263, 1237, 1213, 1143, 1123, 1097, 1066, 1042, 1025, 1014, 1004, 991, 976, 940, 912, 896, 856, 839, 826, 819, 807, 780, 767, 736, 729, 707, 665; ESI-MS m/z (%) 551.2 (100) [M + H]⁺. Anal. Calcd for C₂₈H₂₇IN₂O₂: C, 61.10; H, 4.94; N, 5.09. Found: C, 60.95; H, 4.88; N, 5.04.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Synthesis of 6

Compound 10 (160 mg, 336 µmol), 9 (185 mg, 336 µmol), TBAF•3H₂O (636 mg, 2.02 mmol), and PdCl₂(PPh₃)₂ (7.50 mg, 11.0 µmol) were combined in a Schlenk flask under nitrogen atmosphere. The solid mixture was stirred at 80 °C for 12 h. Then, it was cooled, dissolved with dichloromethane, and washed successively with aqueous KOH (200 mL) and water (5 \times 200 mL). After drying over Na₂SO₄, the organic solvent was removed under reduced pressure. The crude product was purified by column chromatography (SiO₂; CH₂Cl₂/EtOAc, 9:1) furnishing 6 as a yellow solid. Yield 64%; mp 250-252 °C; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 1.06 \text{ (t, }^3J = 7.6 \text{ Hz}, 3 \text{ H}, \text{CH}_3), 1.08 \text{ (t, }^3J = 7.6 \text{ Hz}, 3 \text{ H}, \text{CH}_3), 1.54-1.69$ (m, 4 H, CH₂), 1.80-1.92 (m, 4 H, CH₂), 3.71 (s, 6 H, OCH₃), 3.74 (s, 6 H, OCH₃), 3.96 (t, ³J = 6.4 Hz, 2 H, OCH₂), 4.02 (t, ${}^{3}J$ = 6.4 Hz, 2 H, OCH₂), 6.41 (s, 1 H, c-H), 6.66 (d, ${}^{3}J$ = 8.4 Hz, 2 H, [a/a']-H), 6.67 (d, ${}^{3}J$ = 8.4 Hz, 2 H, [a/a']-H), 7.03 (s, 1 H, c'-H), 7.30 (t, ${}^{3}J$ = 8.4 Hz, 1 H, [b/b']-H), 7.33 (t, ${}^{3}J$ = 8.4 Hz, 1 H, [b/b']-H), 7.63 (d, ${}^{3}J$ = 8.0 Hz, 1 H, 8-H), 7.65 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 4.0 Hz, 1 H, 8'-H), 7.77 (d, ${}^{3}J$ = 8.8 Hz, 1 H, [6/6']-H), 7.79 (d, ${}^{3}J$ = 8.8 Hz, 1 H, [6/6']-H), 7.83 (d, ${}^{3}J$ = 8.8 Hz, 2 H, [5,5']-H), 8.23 (d, ${}^{3}J$ = 8.0 Hz, 1 H, 7-H), 8.26 (dd, ${}^{3}J$ $= 8.0 \text{ Hz}, {}^{4}J = 1.6 \text{ Hz}, 1 \text{ H}, 7' \text{-H}), 8.35 \text{ (d}, {}^{4}J = 2.0 \text{ Hz}, 1 \text{ H}, 4' \text{-H}), 8.41 \text{ (s}, 1 \text{ H}, 4 \text{-H}), 9.21$ $(dd, {}^{3}J = 4.0 \text{ Hz}, {}^{4}J = 1.6 \text{ Hz}, 1 \text{ H}, 9'\text{-H}), 9.27 (d, {}^{4}J = 2.0 \text{ Hz}, 1 \text{ H}, 2'\text{-H}); {}^{13}C \text{ NMR} (100)$ MHz, CDCl₃) δ 14.0 (2C), 19.3, 19.4, 31.3, 31.4, 56.3, 56.5, 69.2, 69.5, 90.4, 90.6, 91.8, 93.5, 104.5, 105.2 (2C), 112.9, 115.0, 117.2, 117.3, 119.9, 120.8, 123.2, 125.8, 126.1, 126.2, 127.0, 127.2, 127.3, 127.8, 128.0, 128.9, 129.6, 129.8, 135.3, 136.0, 137.8, 138.1, 144.7, 145.1, 146.0, 146.1, 150.7, 152.2, 153.1, 153.8, 155.3, 156.8, 158.6, 158.9; IR (KBr) v 3416, 2956, 2934, 2871, 2836, 2361, 2338, 2208, 1617, 1598, 1590, 1559, 1540, 1498, 1473, 1458, 1432, 1423, 1410, 1396, 1303, 1277, 1251, 1213, 1174, 1142, 1110, 1062, 1022, 991, 909, 891, 842, 781, 766, 732; ESI-MS m/z (%) 899.5 (100) [M + H]⁺. Anal. Calcd for C₅₈H₅₀N₄O₆•H₂O: C, 75.96; H, 5.72; N, 6.11. Found: C, 76.34; H, 5.57; N, 6.14.

Synthesis of isosceles triangle T

A mixture of **5** (4.02 mg, 3.52 µmol), **6** (3.17 mg, 3.52 µmol), **7** (1.80 mg, 3.52 µmol), $Zn(OTf)_2$ (1.28 mg, 3.52 µmol) and [Cu(MeCN)₄]PF₆ (2.63 mg, 7.05 µmol) were refluxed in a mixture of dichloromethane (10 mL) and acetonitrile (30 mL) for 3 h. The solvents were evaporated under reduced pressure and the solid was characterised as such. Yield quantitative; mp > 260 °C; IR (KBr) v 3448, 3069, 2953, 2933, 2870, 2211, 1617, 1602, 1589, 1550, 1499, 1475, 1427, 1406, 1384, 1277, 1256, 1224, 1161, 1112, 1069, 1030, 1019, 989, 912, 843, 791, 768, 725, 638; ESI-MS *m/z* (%) 685.8 (65) [M – 2PF₆ – 2OTf]⁴⁺, 963.7 (100) [M – 2PF₆ – OTf]³⁺, 1519.5 (10) [M – 2PF₆]²⁺. Anal. Calcd for C₁₆₁H₁₂₇Br₂Cu₂F₁₈N₁₃O₁₂P₂S₂Zn•3CH₂Cl₂ C, 56.92; H, 3.85; N, 5.08; S, 1.79. Found: C, 56.87; H, 3.30; N, 5.20; S, 2.06.

NMR Spectra

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 9.

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of **9**.

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 6.

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 6.

 $[Cu_2Zn(5)(6)(7)](OTf)_2(PF_6)_2.$

Figure S6. ¹H NMR spectra (400 MHz, CD₃CN, 298 K) of (a) $[Cu_3(5)(6)(7)](PF_6)_3$, (b) $[Cu_3(5)(6)(7)](PF_6)_3$ + one equiv. of Zn^{2+} and (c) $T = [Cu_2Zn(5)(6)(7)](OTf)_2(PF_6)_2$.

ESI-MS spectra

Figure S7. ESI-MS spectrum of $\mathbf{T} = [Cu_2Zn(5)(6)(7)](OTf)_2(PF_6)_2$ (in acetonitrile) and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the different charged species obtained after the loss of counter anion(s).

Figure S8. ESI-MS spectrum of homometallic triangle = $[Cu_3(5)(6)(7)](PF_6)_3$ (in acetonitrile) and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the different charged species obtained after the loss of counter anion(s).

Figure S9. ESI-MS spectrum of homometallic triangle = $[Zn_3(5)(6)(7)](OTf)_6$ (in acetonitrile) and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the different charged species obtained after the loss of counter anion(s).

DOSY

Figure S10. DOSY NMR of triangle $T = [Cu_2Zn(5)(6)(7)](OTf)_2(PF_6)_2$.

Differential pulse voltammetry (DPV)

Figure S11. Differential pulse voltammetry (DPV) investigation of isosceles triangle $\mathbf{T} = [Cu_2Zn(5)(6)(7)](OTf)_2(PF_6)_2$. The experiment was carried out in dry acetonitrile with 0.1 M nBu_4NPF_6 as electrolyte against a Ag wire as a quasi-reference electrode and 1,1'-dimethyl-ferrocene (left wave) as internal standard (scan rate of 20 mVs⁻¹ and a pulse height of 2 mV).

Deconvolution of the DPV

Figure S12. Deconvoluted differential pulse voltammogram of isosceles triangle $T = [Cu_2Zn(5)(6)(7)](OTf)_2(PF_6)_2$.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Fitted H	Paramet	ers							
r ² Coef	Det	DF Ad	j r ²	Fit St	d Err	F-va	lue		
0.99953	781	0.9995	1995	1.983	7e-09	6420	50.7482		
Peak	I ype	Amn	a()	7	a]	202	a <u>2</u> 0.04626702		
2	Gauss	Amp	1.903e-07 9.6295e-08		0.38832392		0.04030793		
B	Linear	Bg	-3.051e-	00 09	4.1249e-	09	0.00440257		
		U							
Measur	ed Valu	ies	A 1.	1	C (
Peak	Туре		Amplitu	de	Center		FWHM	Asym50	FW Base
Asymre 1	1 Gauss Amn		1.965e-07		0.58852392		0 10918813	1 00000004	0 21856278
-	0.9999	9999							
2	2 Gauss Amp 1.00000000		9.6295e-08		0.64308477		0.15184490	1.00000000	0.30394919
Peak	Туре		Anlyte A	rea	% Area		Int Area	% Area	Centroid
Momen	t2		2						
1	Gauss	Amp	2.2839e-	08	59.47134	107	2.2836e-08	59.4905724	0.58854896
2	Gauss	Amp	1.5565e-	08	40.52865	593	1.555e-08	40.5094276	0.64300002
	0.0041 Total	1259	3 8/0/2	08	100 0000	000	3 83860 08	100 00000	
	Totai		5.04040-	08	100.0000	00	5.85800-08	100.000000	
Parame	eter Stat	tistics							
Peak 1	Gauss A	mp	Ct J Erma		4 1		05		
Amp	1 965e	-07	25313e	r 08	t-value 7 763021	183	95 1.466e-07	2.4641e-07	
Ctr	0.5885	2392	0.000642	779	908.5036	522	0.58724683	0.58980100	
Wid	0.0463	6793	0.001222	236	37.93315	514	0.04395813	0.04877773	
Peak 2	Gauss A	mp							
Parm	Value	1	Std Error	r	t-value		95		
Amp	9.6295	e-08	1.7739e-	08	5.428341	121	6.1323e-08	1.3127e-07	
Ctr	0.6430	8477	0.01237	702	51.95796	579	0.61868429	0.66748525	
W1d	0.0644	8239	0.003613	303	17.84417	///	0.05/35852	0.07160667	
Baseline	e Linea	r Bg							
Parm	Value		Std Erro	r	t-value		95		
a0	-3.051	e-09	1.5521e-	09	-1.96553	30	-6.11e-09	9.1598e-12	
al	4.1249	e-09	1.9641e-	09	2.100159	9/6	2.5283e-10	/.9969e-09	
Analysi	s of Vai	riance							
r ² Coef	Det	DF Ad	j r ²	Fit St	d Err				
0.99953	781	0.9995	1995	1.983	7e-09				
Source	Source Sum of Squares DF					an Squ	iare	F	
Regr	1.7700307e-12 7		7	2.5286152e-13			64260.748		
Error 8.18465376		646537e- 108401a	>-16 208		3.9349297e-18		/e-18		
1 Otal	1.//	004910	-12	213					
Details	of Fit								
Set Convergence			State .	It	erations	N	Ainimization	Extent	
IE-6 Curvetu	re Matri	v C	Converged 45 Least Squares			I/I Violated			
Spars	e-Roots		25.0000-5	.0000	0-50.0000	- Non	e - None	0	
Defe									
Keler	rences)							

1 M. Schmittel, C. Michel, A. Wiegrefe and V. Kalsani, Synthesis, 2001, 1561.

2 K. Mahata and M. Schmittel, J. Am. Chem. Soc., 2009, 131, 16544.