Ultimate diastereoselectivity in the ring closure of photochromic diarylethene possessing facial chirality

Tatsuya Shiozawa, Mohammed K. Hossain, Takashi Ubukata and Yasushi Yokoyama*

Department of Advanced Materials Chemistry, Graduate School of Engineering Yokohama National University, Hodogaya, Yokohama, 240-8501, Japan

* yyokoyam@ynu.ac.jp

Electronic Supplementary Information

Experimental details of the synthesis of diarylethene $\mathbf{1 0}$
ESI-1 p. S2
UV-vis absorption spectral changes by photoirradiation to 10
ESI-2
p. S6

HPLC chromatograms of diarylethene $\mathbf{1 0}$ during photoirradiation
ESI-3 p. S7
Diastereoselectivity examination with HPLC
ESI-4
p. S9
${ }^{1} \mathrm{H}$ NMR spectra of compounds and diarylethene $1 O$ in CDCl_{3}
ESI-5 p. S12
CD spectra of enantiomers of $\mathbf{1 O}$ and their photostationary states
ESI-6
p. S19

ESI-1. Experimental details of the synthesis of diarylethene 10

General. Chemical reactions were carried out under a dry nitrogen atmosphere. Dry tetrahydrofuran (THF) was purchased and used as received. All other solvents were also used as received. Flash column chromatography was carried out on 230-400 mesh silica gel using ethyl acetate and hexane as the eluant. Analytical thin-layer chromatography was performed on the pre-coated $0.25-\mathrm{mm}$ thick silica gel TLC plates.
${ }^{1} \mathrm{H}$ NMR Spectra were recorded in deuteriochloroform (CDCl_{3}) with a $270 \mathrm{MHz}, 400 \mathrm{MHz}$ NMR or 500 MHz spectrometer. The J values are expressed in Hz and quoted chemical shifts are in ppm. The splitting patterns are indicated as s, singlet; d, doublet; t, triplet; m, multiplet. Infrared spectra (IR) were recorded on a FT-IR spectrometer. Low- and high-resolution mass spectra were measured by the electron impact mass spectrometry using a Mass spectrometer. Ultraviolet and visible spectra were recorded on a UV/Vis spectrophotometer. Optical rotation measurements were carried out using a polarimeter. The melting points were measured using a hot stage microscope and these values were uncorrected.

Photochemical reactions at 313 nm in n-hexane $\left(3.04 \times 10^{-5} \mathrm{M}\right)$ were carried out in a 10 mm path length quartz cell using a 500 W high-pressure mercury lamp which was separated by filters (a 5 cm water filter, a UV-D35 glass filter, a 5 cm aqueous $\mathrm{NiSO}_{4} 6 \mathrm{H}_{2} \mathrm{O}$ solution, a 1 cm aqueous $\mathrm{K}_{2} \mathrm{CrO}_{4}$ solution, and a 1 cm aqueous potassium diphthalate solution) and those at 515 nm were carried out using a 500 W xenon lamp which was separated by filters (a 5 cm water filter, a Pyrex glass filter, a IRA-25S glass filter, a Y-47 glass filter, and a KL-50 interference glass filter). During the photoreactions, the solutions in the cell were stirred continuously.

High-performance liquid chromatography (HPLC) equipped with a UV/Vis detector and a column (Wakosil 5SIL, 4.6 mm diameter $\times 150 \mathrm{~mm}$) was used to follow the photochromic reactions during photoirradiation.

In order to check the diastereoselectivity in hexane, toluene, and ethyl acetate, an HPLC apparatus equipped with different columns and different solvent systems were used. Details are shown in ESI-4.

Synthesis of diarylethene.

Synthesis of $\mathbf{1 0}$ was carried out according to the following procedures:

2,4-Dibromo-3,5-bis(chloromethyl)thiophene (2) ${ }^{1}$

To a stirred solution of 2,5-dibromothiophene ($20.0 \mathrm{~g}, 82.7 \mathrm{mmol}, 1.0 \mathrm{eq}$) and chloromethyl methyl ether ($34.0 \mathrm{ml}, 448 \mathrm{mmol}, 5.4 \mathrm{eq}$) in 100 ml of CS_{2} at $0^{\circ} \mathrm{C}$ was added dropwise a mixture of $\mathrm{SnCl}_{4}(20.0 \mathrm{ml}, 171 \mathrm{mmol}, 2.1 \mathrm{eq})$ in 10 ml of CS_{2}. The mixture was then stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and 1 h at room temperature. The reaction was quenched by adding water, and the resultant mixture was extracted with CS_{2} two times. The combined organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent evaporated. The residue was purified by column chromatography on silica gel using hexane as the eluant to give $13.8 \mathrm{~g}(40.7 \mathrm{mmol})$ of compound 2 as a white solid in 49 \% yield.
Mp. 83.2-85.1 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{1} \mathrm{mp} .86 .0-88.0{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta / \mathrm{ppm} 4.57$ (s, 2H), 4.70 (s, 2H). IR (ATR, neat) $\mathrm{v} / \mathrm{cm}^{-1} 2968,1531,1432,12258,1037,901,725,637$. LRMS (EI, 70 $\mathrm{eV}) \mathrm{m} / \mathrm{z}$ (relative intensity), 344 (1.4), 342 (8.1), 340 (21.6), 338 (24.3), 336 ($9.0, \mathrm{M}^{+}$), 305 (74.8), 303 (100), 259 (29.1).

3-Bromo-2,4-bis(hydroxymethyl)-5-phenylthiophene (3)

To a stirred solution of $2(6.01 \mathrm{~g}, 17.7 \mathrm{mmol}, 1.0$ eq) , phenyl boronic acid ($2.25 \mathrm{~g}, 18.5 \mathrm{mmol}$, $1.0 \mathrm{eq})$ and tetrakis(triphenylphosphine)Palladium(0) ($1.81 \mathrm{~g}, 1.56 \mathrm{mmol}, 0.09 \mathrm{eq}$) in 100 ml of THF was added 60 ml of aq. sat. sodium carbonate ($2.83 \mathrm{~mol} \mathrm{dm}^{-3}, 170 \mathrm{mmol}, 9.6 \mathrm{eq}$). The mixture was then refluxed for 9 h . The reaction was quenched by adding $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ aq. and the resultant mixture was extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent evaporated. The residue was purified by column chromatography on silica gel using AcOEt/hexane $=1 / 2$ as the eluant to give 3.02 g (10.1 mmol) of compound 3 as a white solid in 57% yield.
Mp. 123.5-130.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta / \mathrm{ppm} 1.90(\mathrm{t}, \mathrm{J} / \mathrm{Hz}=6.1,1 \mathrm{H}$), $1.96(\mathrm{t}$, $\mathrm{J} / \mathrm{Hz}=6.3,1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=6.3,2 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=5.9,2 \mathrm{H}), 7.40-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.56(\mathrm{~m}$, 2H). IR (ATR, neat) $v / \mathrm{cm}^{-1} 3302,2868,1441,1344,1050,694$. LRMS (EI, 70 eV) m/z (relative intensity), 300 (91.8), 298 ($93.6, \mathrm{M}^{+}$), 281 (27.3), 201 (62.7), 173 (100). Found: m/z 297.96633.

NOE experiment of 30

NOE experiments of $\mathbf{3 O}$ were carried out in CDCl_{3} (Fig. S11, p. S13). Upon irradiation of the methylene protons at $\delta 4.62$ (methylene A), the phenyl protons at $\delta 7.53$ showed an NOE signal. On the other hand, when the methylene protons at $\delta 4.86$ (methylene B) were irradiated, none of the phenyl protons showed NOE signals. This means that methylene A is close to the phenyl group, while methylene B is remote from the phenyl group. Only the structure of $\mathbf{3 O}$ can fulfill these requirements.

2,4-(2,5,8,11-Tetraoxa)dodecano-3-bromo-5-phenylthiophene (5)

To a stirred suspension of sodium hydride (60% in oil, $422 \mathrm{mg}, 10.5 \mathrm{mmol}, 3.2 \mathrm{eq}$) in 350 ml of THF at reflux temperature was added dropwise a solution of $3(1.00 \mathrm{~g}, 3.34 \mathrm{mmol}, 1.0 \mathrm{eq})$ and triethylene glycol bis(p-toluenesulfonate) ($1.54 \mathrm{~g}, 3.36 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 50 ml of THF. The mixture was then refluxed for 1 h and cooled to room temperature. The reaction was quenched by adding $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ aq. and THF was removed in vacuo. The resultant mixture was extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent evaporated. The residue was purified by column chromatography twice on silica gel using AcOEt/hexane (40 \%) and AcOEt/hexane/pyridine $=6 / 9 / 1$ as the eluant to give 44.8 $\mathrm{mg}(0.11 \mathrm{mmol})$ of compound 5 as a colorless oil in 3% yield.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta / \mathrm{ppm} 3.34-3.87(\mathrm{~m}, 12 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=12.9,1 \mathrm{H}), 4.49(\mathrm{~d}$, $\mathrm{J} / \mathrm{Hz}=13.8,1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=12.9,1 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=13.8,1 \mathrm{H}), 7.37-7.48(\mathrm{~m}, 5 \mathrm{H})$. IR (ATR, neat) $\mathrm{v} / \mathrm{cm}^{-1}$ 2860, 1443, 1355, 1087, 1007, 697. LRMS (EI, 70 eV) m/z (relative intensity), 414 (28.2), 412 (26.4, M ${ }^{+}$), 333 (91.8), 265 (60.9), 263 (58.2), 185 (100). Found: m/z 412.03445 . Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrO}_{4} \mathrm{~S}$: $\mathrm{M}, 412.03439$.

1-(2,4-Dimethyl-5-phenylthien-3-yl)heptafluorocyclopentene (6) ${ }^{2}$

To a stirred solution of 3-bromo-2,4-dimethyl-5-phenylthiophene ($1.91 \mathrm{~g}, 7.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 50 ml of THF at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a hexane solution of $n-\mathrm{BuLi}\left(1.63 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane, $5.0 \mathrm{ml}, 8.2 \mathrm{mmol}, 1.1 \mathrm{eq})$. The mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$ and then perfluorocyclopentene ($6.0 \mathrm{ml}, 45 \mathrm{mmol}, 6.3 \mathrm{eq}$) was added in one portion. The mixture was stirred overnight and the reaction was quenched by adding water, and the resultant mixture was extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent evaporated. The residue was purified by column chromatography on silica gel using hexane as the eluant to give $2.48 \mathrm{~g}(6.58 \mathrm{mmol})$ of compound $\mathbf{6}$ as a white solid in 92 \% yield.
Mp. 61.0-62.8 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{2}$ mp. $63-64{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta / \mathrm{ppm} 2.11$ (s, 3 H), 2.39 (s, 3H), 7.31-7.43 (m, 5H). IR (ATR, neat) $\mathrm{v} / \mathrm{cm}^{-1} 2928,1706,1274,1149,968,698$. LRMS (EI, 70 $\mathrm{eV}) \mathrm{m} / \mathrm{z}$ (relative intensity), $380\left(100, \mathrm{M}^{+}\right)$, 365 (19.1). Found: $\mathrm{m} / \mathrm{z} 380.04807$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{7} \mathrm{~S}$: M, 380.04695.

hexafluorocyclopentene (10)

To a stirred solution of $5(87.7 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0 \mathrm{eq})$ in 5 ml of THF at $-78{ }^{\circ} \mathrm{C}$ was added
 at $-78{ }^{\circ} \mathrm{C}$ and then was added dropwise a solution of $6(82.0 \mathrm{mg}, 0.218 \mathrm{mmol}, 1.0 \mathrm{eq})$ in 1 ml of THF. The mixture was stirred overnight and the reaction was quenched by adding water, and the resultant mixture was extracted with ethyl acetate three times. The combined organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent evaporated. The residue was purified by column chromatography on silica gel using AcOEt/hexane (20%) as the eluant to give 64.1 mg (0.0923 mmol) of diarylethene $\mathbf{1 O}$ as an amorphous solid in 44% yield.

In the following ${ }^{1} \mathrm{H}$ NMR data, Mj and Mn stand for the major and minor conformers, respectively. As the major singlet methyl group on C2 of thiophene group appears at $\delta 1.84$ (anisotropic high-field shift), it belongs to the photo-cyclizable antiparallel conformer. The other is the parallel conformer without steric hindrance. The ratio of $\mathrm{Mj} / \mathrm{Mn}$ is about 51/49.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta / \mathrm{ppm} 1.84$ (s, 3H, Mj), 2.13 (s, 3H, Mn), 2.21 (d, J/Hz = 3.5, coupling with $\left.\mathrm{F}\left({ }^{6} J\right), 3 \mathrm{H}, \mathrm{Mj}\right), 2.49\left(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=2.8\right.$, coupling with $\left.\mathrm{F}\left({ }^{6} J\right), 3 \mathrm{H}, \mathrm{Mn}\right), 3.06-4.01(\mathrm{~m}$, 12 H each), 4.08 (d, J/Hz = 21.1, 1H, Mn), 4.11 (d, J/Hz = 21.1, 1H, Mj), 4.21 (d, J/Hz = 20.5, 1H, $\mathrm{Mj}), 4.23$ (d, $\mathrm{J} / \mathrm{Hz}=20.5,1 \mathrm{H}, \mathrm{Mn}$), 4.74-4.84 ($\mathrm{m}, 4 \mathrm{H}$ each), $7.23-7.41$ ($\mathrm{m}, 10 \mathrm{H}$ each, aromatic). IR (ATR, neat) $\mathrm{v} / \mathrm{cm}^{-1}$ 2922, 1444, 1280, 1106, 697. LRMS (EI, 70 eV) m/z (relative intensity), 694 (15.5, M^{+}), 544 (40.0), 532 (46.4), 517 (100). Found: m/z 694.16111. Calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}: \mathrm{M}$, 694.16461 .

Diarylethene closed-form 1C

A solution of $\mathbf{1 O}(20 \mathrm{mg})$ in hexane $(80 \mathrm{ml})$ in a pyrex cylindrical cell was irradiated with 313 nm light for 8 h . The solvent was then removed in vacuo and the residue was purified by column chromatography on silica gel using hexane as the eluant to give $\mathbf{1 C}(12.3 \mathrm{mg})$ as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR shows only one set of the peaks assignable to a diastereomer of $\mathbf{1 C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta / \mathrm{ppm} 2.04\left(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=2.4\right.$, coupling with $\mathrm{F}\left({ }^{6} \mathrm{~J}\right), 3 \mathrm{H}$), $2.27(\mathrm{~s}$, $3 H), 3.35-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.78(\mathrm{~m}, 10 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=11.0,1 \mathrm{H}), 4.30(\mathrm{~d}$, $\mathrm{J} / \mathrm{Hz}=11.2,1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=10.0,1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J} / \mathrm{Hz}=10.3,1 \mathrm{H}), 7.42-7.55(\mathrm{~m}, 10 \mathrm{H}$, aromatic). IR (ATR, neat) $\mathrm{v} / \mathrm{cm}^{-1} 2925,2861,1486,1335,1121,760,696$. LRMS (EI, 70 eV) m/z (relative intensity), 694 (6.3, M^{+}), 532 (22.9), 518 (30.7), 517 (100), 502 (21.9).

References

1 M. Takeshita and M. Tashiro, J. Org. Chem., 1992, 57, 746-748.
2 S. Kobatake and M. Irie, Tetrahedron, 2003, 59, 8359-8364.

ESI-2. UV-vis absorption spectral change by photoirradiation of 10 in toluene and ethyl acetate

Figure S1. Absorption spectral changes in toluene

Figure S2. Absorption spectral changes in ethyl acetate

ESI-3. HPLC chromatograms of diarylethene 10 during photoirradiation

The photochromic reaction of $\mathbf{1}$ in hexane was followed by UV-vis spectral change as well as HPLC. First, 10 solution in hexane was measured (Fig. S3). Then, after 313-nm light irradiation was carried out until no change in the absorption spectra was observed (i.e. at the photostationary state: pss), the ratio of the components was determined by detection at the isosbestic point (Fig. S4). The new peak at $c a .13 .5 \mathrm{~min}$ is assigned to the C -form. This pss solution was further checked at the absorption maximum wavelength of the C-form in the visible region (Fig. S5) where only C-forms can be detected. As shown in Fig. 3, only one peak was observed. However, this did not mean that the diastereoselectivity was 100%. Therefore, we carried out photoirradiation in hexane, toluene, and ethyl acetate, and their pss solutions were examined by HPLC equipped with different columns using different solvent systems as eluants. Details are described in ESI-4.

Figure S3. HPLC chromatogram of $\underline{1 O}$ before 313 -nm light irradiation in hexane
Wakosil 5SIL, $33 \mathrm{v} / \mathrm{v} \%$ AcOEt/hexane, $0.5 \mathrm{ml} \mathrm{min}^{-1}$
Detection wavelength: $\mathbf{2 8 7 \mathrm { nm }}$

Figure S4. HPLC chromatogram of $\mathbf{1}$ at the photostationary state of 313-nm light in hexane Wakosil 5SIL, $33 \mathrm{v} / \mathrm{v} \%$ AcOEt/hexane, $0.5 \mathrm{ml} \mathrm{min}^{-1}$

Detection wavelength: $\mathbf{2 8 7 \mathrm { nm }}$

Figure S5. HPLC chromatogram of $\mathbf{1}$ at the photostationary state of 313-nm light in hexane
Wakosil 5SIL, $33 \mathrm{v} / \mathrm{v} \%$ AcOEt/hexane, $0.5 \mathrm{ml} \mathrm{min}^{-1}$
Detection wavelength: 559 nm

ESI-4. Diastereoselectivity examination with HPLC

In order to confirm that only one of two possible diastereomers of $\mathbf{1 C}$ was formed upon 313-nm light irradiation to the solution of $\mathbf{1 O}$, solutions of hexane, toluene, and ethyl acetate of $\mathbf{1 O}$ were irradiated and their pss solutions were examined by HPLC using three different columns with different solvent systems. Some of the results are shown as chromatograms. The rest of the results have been tabulated as follows: When columns with chiral adsorbents were used, the enantiomers ($\mathbf{1 O}_{\mathbf{f}}$ (faster-moving) and $\mathbf{1 O}_{\mathrm{s}}$ (slower-moving)) were resolved so that two pairs of peaks would be observed if two diastereomers were generated. However, none of them showed evidence of the generation of minor-colored forms. Together with the results of DFT calculations, we could conclude that the minor diastereomer was not produced by 313-nm light irradiation for all of these solvents.

Table S1. Detection of HPLC peaks

Solvent	Column	2-Propanol/Hexane	Ethyl acetate/Hexane	chloroform/Hexane
Hexane	Wakosil 5SIL	E, 1 peak (17\%)	E, 1 peak (33\%) Fig S6	------
	Daicel Chiralpak IA	P, 2 peaks (5\%)	G, 2 peaks (15\%)	P, 2 peaks (10%)
	Daicel Chiralpak IB	G, 2 peaks (5\%)	E, 2 peaks (15\%)	P, 2 peaks (20\%)
	Daicel Chiralcel OD-H	E, 2 peaks (5\%)	------	------
Toluene	Wakosil 5SIL	E, 1 peak (17\%)	E, 1 peak (33\%)	------
	Daicel Chiralpak IA	P, 2 peaks (5\%)	G, 2 peaks (15\%)	P, 2 peaks (10\%)
	Daicel Chiralpak IB	G, 2 peaks (5\%)	E, 2 peaks (15\%) Fig. S7	P, 2 peaks (20\%)
	Daicel Chiralcel OD-H	E, 2 peaks (5\%)	------	------
Ethyl acetate	Wakosil 5SIL	E, 1 peak (17\%)	E, 1 peak (33\%)	------
	Daicel Chiralpak IA	P, 2 peaks (5\%)	G, 2 peaks (15\%)	P, 2 peaks (10\%)
	Daicel Chiralpak IB	G, 2 peaks (5\%)	E, 2 peaks (15\%)	P, 2 peaks (20\%)
	Daicel Chiralcel OD-H	E, 2 peaks (5\%) Fig. S8	------	------

Wakosil 5SIL: Non-chiral column. Enantiomers cannot be distinguished.
Daicel Chiralpak IA and IB: Chiral column. Distinguishes enantiomers. Ordinary solvents can be used.
Daicel Chiralcel OD-H: Chiral column. Distinguishes enantiomers. Column requires 2-propanol to be contained in the eluant.
E: Excellent resolution. G: Good resolution. P: Poor resolution.
Detection wavelength: 559 nm .

Figure S6. HPLC chromatogram of $\mathbf{1}$ at the photostationary state in hexane Wakosil 5SIL, $17 \mathrm{v} / \mathrm{v} \%$ 2-PrOH/hexane, $0.5 \mathrm{ml} \mathrm{min}^{-1}$

Detection wavelength: 559 nm

Figure S7. HPLC chromatogram of $\mathbf{1}$ at the photostationary state in toluene Daicel Chiralpak IB, $15 \mathrm{v} / \mathrm{v} \%$ AcOEt/hexane, $0.5 \mathrm{ml} \mathrm{min}^{-1}$

Detection wavelength: 559 nm
The ratio of $\mathbf{1 0} \mathbf{O}_{\mathrm{f}}$ and $\mathbf{1 0}$ is $50 / 50$.

Figure S8. HPLC chromatogram of $\mathbf{1}$ at the photostationary state in ethyl acetate Daicel Chiralcel OD-H, $5 \mathrm{v} / \mathrm{v} \% ~ 2-\mathrm{PrOH} / \mathrm{hexane}, 0.5 \mathrm{ml} \mathrm{min}^{-1}$

Detection wavelength: 559 nm The ratio of $\mathbf{1 0 _ { \mathbf { f } }}$ and $\mathbf{1 0} \mathbf{s}$ is $50 / 50$.

ESI-5. ${ }^{1} \mathbf{H}$ NMR spectra of compounds and diarylethene $1 O$ in CDCl_{3}

DFILE	comp.4.als
COMNT	comp.4
DATIM	Tue Dec 01 10:43:58 2009
OBNUC	1H
EXMOD	NON
OBFRQ	399.65 MHz
OBSET	124.00 KHz
OBFIN	10500.00 Hz
POINT	32768
FREQU	7992.01 Hz
SCANS	16
ACQTM	4.1001 sec
PD	2.9000 sec
PW1	7.20 usec
IRNUC	1 H
CTEMP	20.8 c
SLVNT	CDCL3
EXREF	0.00 ppm
BF	0.12 Hz
RGAIN	24

ancol
ゅ
ㄷ

\cdots
comp.5.als
comp.5.als
comp. 5
Tue Dec 01 10:53:27 2009
1H
NON
$\quad \begin{aligned} & \quad 399.65 \mathrm{MHz}\end{aligned}$ zHY 00 ' \downarrow II
zHW $99^{\circ} 66 \varepsilon$ 89 LZE
zH 00.00s0 zH 10 z 266 oวs 0006 ววงn 0Z'L
 zH zI
udd 00 $\frac{\pi}{0}$ N

0S809't
SLEZ9't
SIZ $+8^{\prime} \dagger$
SIZt8't
It \angle S8't

ItLS

Fig. S11 NOE spectrum of compound 3 ($500 \mathrm{MHz}, \mathrm{TMS}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$)
 AST-2-070-2
Tue Jun 09 08:47:08 2009
1H 2
z
z
z
8 112.00 KHz t8891 $\mathrm{zH} 0+\mathrm{S}$ Sts O
0
0
0
0
0
0

 Ω

270.05 MHz
112.00 KHz
t8E9I
z 00.0085

ววs $0696 \cdot \varepsilon$
ววง 01 I $\varepsilon 0^{\circ} \varepsilon$
8

zH ZI
udd 00°

9SEtS ${ }^{\prime}$ I
ย9てIIて \qquad
LI98E゙て

$86 t \varsigma て$
$86 t S$
$6 \neq \angle 0 \varepsilon^{\circ}$
Z602
I6IEE゙L
ャて6と๕．
ちて6EE．
EItナ $\varepsilon^{\circ} L$
عZOSE＇L
ZISSE．
てZI9E゙L
660LE＇
L898E＇
SLI6E＇L
98L6E＇L
S880t
S6カIt゙L
0SEZだ
LILてだし

ה
0

\qquad

（年）

$$
-
$$

AST－2－182－1＿H\％ø 1 Í，Y̌．Ýals

I889で \mathcal{E}
88૬9E＇E
I $\angle \angle 8 \varepsilon^{\circ} \mathcal{E}$
Z $290 \dagger^{\circ} \mathcal{E}$
197てガを
เてZSt゙と
$9629 \downarrow^{\circ} \mathcal{E}$
と989がと
カ0とLナ・を
てLBL大゙E
9LE8t＊ \mathcal{F}
$9006 t^{\circ} \mathcal{E}$
tozec
t020s•E
st90 ${ }^{\circ} \mathcal{E}$

9IEE9＊ \mathcal{E}
$600 t 9^{\circ} \mathcal{E}$
て0Lt $9^{\circ} \varepsilon$
$9 \varepsilon t L L \cdot \mathcal{E}$
IOE86 \mathcal{E}－
で800 \dagger
LII90＇t
82880＊\dagger
ItEOI＇t
ISOEI＇t
て998I＇t
てLEIでも
6SLZで七
$0 \angle t S て ゙ ち$
I LOtL＇t
0L69 L＇$\dagger=$
IEZ8 L° カ
IEII8＇t
$010 \pm て ゙ し$
88Eャでし
ILZSでL
$09 t S て ゙ L$
$6+9$ CZ゙L
6LZ9で
6ZLLZ゙L
ES06でL
8682E L
$8 \pm$ \＆たE゙L
89ISE L
SELSELL
6EZ9E゙L
8ナてLE゙L
8698EL
90L6E＇L
9SIIt゙し

$\underset{H}{0}$

ESI-6. CD spectra of enantiomers of $1 O$ and their photostationary

 states

Figure S16. CD spectra of optically resolved enantiomers of 10 and their pss of 313-nm irradiation in hexane. Optical resolution: Daicel Chiralpak IA with $4.5 \% \mathrm{CHCl}_{3}$-hexane. Solid line: (a) $\mathbf{1 O}_{\mathbf{f}}$ (faster moving enantioner) and (b) its pss. Broken line: (a) $\mathbf{1 O}_{\mathbf{s}}$ (slower moving enantiomer) and (b) its pss.

